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Abstract: Classic circuit modeling for supercapacitors is limited in representing the strongly non-
linear behavior of the hybrid supercapacitor technology. In this work, two novel modeling techniques
suitable to represent the time-domain electrical behavior of a hybrid supercapacitor are presented.
The first technique enhances a well-affirmed circuit model by introducing specific non-linearities.
The second technique models the device through a black-box approach with a neural network. Both
the modeling techniques are validated experimentally using a workbench to acquire data from a
real hybrid supercapacitor. The proposed models, suitable for different supercapacitor technologies,
achieve higher accuracy and generalization capabilities compared to those already presented in
the literature. Both modeling techniques allow for an accurate representation of both short-time
domain and steady-state simulations, providing a valuable asset in electrical designs featuring
supercapacitors.

Keywords: supercapacitors; equivalent circuit models; time-domain; model identification; neural
networks; genetic algorithms

1. Introduction

Supercapacitors (SC) are widely adopted as Energy Storage Systems (ESS) in several
applications, because of properties such as suitability for fast and efficient charging, high-
power density, and low internal resistance. One more advantage of the SCs is that they
have a reduced recharge time if compared to Li-ion batteries; commercially available SCs
do not typically rely on redox reactions at the electrodes, so that a limited resistance is
opposed towards energy storing and release [1]. Additionally, in practical applications,
the time required to store a specified energy amount at nominal levels of charge is at least
50% shorter than that required by batteries. Moreover, SCs result in a long life and wide
operative temperature range, thus, SCs are a promising alternative to traditional batteries
and lead to the so-called Hybrid Energy Storage Systems (HESS) [2].

To properly size an SC pack, an equivalent model reproducing the dynamic behavior
of each cell is crucial. An appropriate dynamic behavior model must reproduce both
the transient and the steady-state response of an SC. That is, the model must accurately
reproduce the voltage/current dynamic characteristic and must correctly predict the power
loss occurring during the charge and discharge process [3].

Although very complex models could be implemented, simplicity is often a desirable
characteristic. This is for three main reasons: (a) computational, since the model is often a
part of a time-domain or frequency-domain simulation of a switched-type circuit (e.g., a
DC–DC converter) [4–6]; (b) overfitting must be avoided because the availability of data
for SCs is often scarce and fewer parameters can make the model less prone to memorize
the data and achieve better generalization capabilities; and c) in complex models, the
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identification algorithm required to determine the model parameters might run in local
optima [4]. Moreover, many circuit analysis and control methodologies can only be used if
the circuit can be represented as a fully linear (or at least, linearized) system. On the other
hand, the intrinsic dynamic non-linear nature of the phenomenon requires a minimum
parametric complexity to achieve an acceptable model accuracy. As a result, the derivation
of an optimal model requires a compromise between accuracy and complexity.

This paper aims to determine an optimal modelling strategy for the time-domain
simulation of the electrical behaviors of a hybrid SC. Modelling Hybrid SC involves the
implementation of an equivalent circuit featuring multiple time constants (as for any SC)
and a non-linearity related to the state-of-charge [7,8]. This makes the derivation of an
optimal model for SCs a still open problem. In this work, an optimal modelling strategy is
achieved by investigating two novel approaches suitable to represent the device behavior.
The first is based on the introduction of non-linearities in a linear model already published
in the literature. The second one utilizes a black-box model based on a Neural Network
(NN). Indeed, NNs, along with other machine learning techniques, achieve very good
results when utilized to represent non-linear dynamic problems with very complex white-
box models [9]. The two proposed models are compared against the three SC models
most commonly utilized in the existing literature, to assess their superior accuracy and
generalization capability. Model identification is performed on data acquired by using a
real Hybrid SC device through an experimental workbench. Identification of the model is
performed with a hybrid two-step optimization algorithm suitable for non-linear problems,
which exhibit strong protection against local minima entrapment, as shown in [9,10]. The
generalization capability of the models is obtained by measuring the error against an
independent dataset which has not been used during the identification process.

The paper is structured as follows. First, the supercapacitors technologies are briefly
introduced by a literature review, here the advantages and disadvantages of the individual
construction techniques, and the most commonly used models to represent their electrical
behavior are highlighted. Then, the equivalent circuit model equations are discussed for
the state-of-the-art models, and for the proposed non-linear model. Following this, the
black-box model based on the NN is discussed, along with the sizing criteria for its hyperpa-
rameters. Then, the optimization strategy is presented, highlighting the methodology used
to partition the solution space in the two-step’s algorithm. Following this, the experimental
layout used to acquire data on the new Hybrid SC in transient regime is discussed. Finally,
results related to the identified parameters, the accuracy, and the generalization capabilities
and the robustness are presented for both the state-of-the-art models and those proposed
in this work. Conclusions and final remarks summarizing the most fundamental paper
highlights close this paper.

2. Literature Review: Supercap Technologies and Equivalent Circuit Models

The existing SC technologies can be divided into five different categories. Electrostatic
Double Layer Capacitors (EDLCs) which, typically, use active carbon as the electrode.
Additionally, allotropes of carbon like graphene or graphene have been recently explored
to boost the available active surface. These devices are characterized by a high-power
density (up to 100 W/g) and a long-life cycle (more than 100,000 charging/discharging
cycles). Conversely, energy densities are limited. In the beginning, this technology used
active carbon as an electrode, but recently, carbon allotrope materials, such as graphene,
carbon nanotubes, and aerogels have been addressed. Pseudocapacitors, conversely, store
the charge by pseudocapacitive effect, leveraging on underpotential deposition redox
pseudocapacitance and intercalation pseudocapacitance [11]. Compared to other SC tech-
nologies, they are characterized by a higher energy density, but also higher susceptibility
to aging because of poisoning (electrodeposition on the electrodes) or the destruction of
active adsorption sites [12].

Asymmetric supercapacitors are capacitors based on an EDLC-type electrode and
an electrode-pseudo-capacitor-like type. As a result, the advantages of both technologies



Energies 2021, 14, 6837 3 of 16

can be used, leading to a higher power and energy density. Hybrid supercapacitors are
obtained from a combination of a supercapacitor and a battery. Here, an electrode is made
like in the supercapacitor and the other like in a battery. The charge is stored through both
electrochemical and electrostatic effects [13].

Quantum supercapacitors represent a promising technology in which quantum re-
sources are employed to boost the charging power density of a battery or the stored energy
density of a supercapacitor [14]. Introducing defects and doping onto graphene improves
the effective surface area accessible by the electrolytic ions and the quantum capacitance of
graphene. The quantum capacitance is an intrinsic capacitance offered by the materials
having a limited density of states at the Fermi level. The total capacitance that determines
a supercapacitor energy density is a quantity depending on the double-layer and quantum
capacitances. Thus, in these devices, it is mandatory to use electrode materials with suffi-
ciently large quantum capacitance to achieve high energy densities [15]. This technology
is still at a research level of development, and it is not yet available in the market. As an
overview, Table 1 summarizes the characteristics of several types of supercapacitors for
which most recent data are available from the literature and the manufacturer specifica-
tions; features of typical lithium-ion technologies are also highlighted as a reference [16].
References are also provided in Table 1 for the most established versions of each type of
SC, to ease retrieval; a more comprehensive list of SC manufacturers can be found in [17].
The ratio of standard recharge current and accumulated energy for the different energy
storage elements is an index of their charging time and is calculated by using associated
datasheets. New types of SC are represented by new Hybrid Supercapacitors (HS) featuring
higher specific energy densities as high as 200 Wh/kg, making them competitive with
Li-ion batteries, also considering that the life cycle is almost the same as other types of
SCs (from 20,000 to 100,000 cycles). Nevertheless, the specific power, up to 1835 W/kg,
is lower than that of other SC technologies (but in line with Li-ion batteries), and this
limits their applications in low power solutions. From this perspective, this type of SC
fits micromobility purposes, e.g., implementation on pedal-assisted electric bikes or e-kick
scooters. The low charging time, which is similar to that of other SCs makes the use of these
energy storage devices beneficial in battery sharing schemes, i.e., in applications where the
storage system is shared among the users, rather than the vehicle. Here, a decrease in the
charging time allows a larger number of users to benefit from the sharing service per day,
the energy stored in the pack being the same.

Table 1. Characteristics comparison of Lithium-Ion Batteries and different types of supercapacitors.

Parameter Li-Ion Batteries Double-Layer SC
[18] Pseudocaps [19] Hybrid SC [20] New-Gen EDLCs

[21]

Temperature range (◦C) −20 to +60 −40 to +70 −20 to +70 −20 to +70 −40 to +70
Max.Voltage (V) 2.5 to 4.35 1.2 to 3.3 2.2 to 3.3 2.2 to 3.8 2.1 to 2.7

Cycles (103) 0.5 to 10 100 to 1000 100 to 1000 20 to 100 500
Cost (€/Wh) 0.3 to 0.6 0.3 to 2.0 0.3 to 2.0 0.3 to 2.0 0.3 to 2.0

Specific Energy (Wh/kg) 100 to 240 1.5 to 3.9 4 to 9 10 to 15 30 to 70
Specific power (kW/kg) 0.3 to 2.4 2 to 100 3 to 100 3 to 14 2.7

Efficiency 95% 95% 95% 95% 95%
Internal Resistance (mΩ) >15 <0.1 <0.1 <0.1 0.5 to 30

Std. Recharge
Current/Energy

(A/Wh)
0.14–0.2 45–53 32–40 20–22.7 0.35–0.48

Several SC models have already been investigated in the literature [22–33]. In Table 2
and Figure 1, most of the models available in the literature are summarized. Most of the
proposed models have been designed for double layer and pseudocapacitor technologies.
The validity of the models proposed for these previous technologies has not been yet
verified for hybrid supercapacitors and is one of the core aspects of this work.
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Table 2. Available supercapacitor devices available in the literature.

Ref. Models Commercial Supercap SC Technology

[22] (a), (b), (c) - EDLC
[23] (a), (b), (c), (d) - EDLC
[24] (e) BCAP3000, by Maxwell EDLC
[25] (d) 10 F, 2.7 V, by Maxwell EDLC
[26] (b) - EDLC
[27] (d) BCAP0650 P270, by Maxwell EDLC
[28] (c), (d) - EDLC
[29] (d) BCAP0350 E270 T11 350 F, by Maxwell EDLC
[30] (b) - EDLC
[31] (c) - EDLC
[32] (d) - EDLC

[33] (f)

ETON, XL60
LSUC, EA ST01

MAXWELL, BCAP
SPSCAP, 2R7STA

EDLC
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3. Materials and Methods

In this section, the methodologies proposed in this work are discussed, along with the
experimental workbench used to acquire the data for the model identification and validation.

3.1. Linear Dynamic Models for SC

An SC equivalent circuit aims to reproduce the complex behavior exhibited by the
components in transient and steady-state operation of the device. It is a common occurrence
that the equivalent circuit is composed of two independent sub-circuits, with different
time constants, that accommodate the electrical response of the network, according to
both regimes. The only exception is the classic lossy capacitor model, shown in Figure 2a.
This model results in a capacitor small-signal equivalent circuit unless high frequencies
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are involved; in such a case, a series inductance must be added to the equivalent circuit.
Modelling the SC in this fashion has the advantage of linearity, making the analysis in the
Laplace domain simple if control systems must be implemented. The limit of the resulting
first-order circuit, however, is that it represents the behavior of the device through a single
time constant. This is acceptable for classic electronics capacitors but fails to describe the
complex dynamic response of SCs. A natural evolution of this model is given in [22], where
two additional RC cells are added, as shown in Figure 2b. This model, often addressed as
“dynamic” in the literature, is a third-order equivalent circuit. The individual capacitor C
often assumes a large value and represents the circuit part inside the device devoted to the
energy storage. This is clearly understandable by the fact that, when operated under open
circuit conditions, the voltage across the SC is equal to the voltage across C, once a steady
state is reached. The two RC cells account for the non-instantaneous transient response of
the capacitor under pulsed current operations.
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A third proposed equivalent circuit, generally addressed as “multi-cell”, is shown in
Figure 2c: it is similar to the one shown in Figure 2b, but here the series of RC parallels
are replaced by the parallel of the RC series. This equivalent circuit denotes the absence
of a dominating capacitor accounting for a state-of-charge device; moreover, the physical
interpretation of short-time transient responses, in terms of redistribution of charge inside
the porous dielectric, is accounted. In [26], the authors propose this model with a small
non-linearity added to one of the RC series branches. The three topologies constitute
circuits that can be included easily in a time-domain simulation of a larger network the SC
belongs to. The state-space representations of the classic, dynamic, and multi-cell circuits
are, respectively, given in (1), (2), and (3).

.
x1 =

1
C

(
iSC − x1

RSH

)
(1)



Energies 2021, 14, 6837 6 of 16


.
x1 = 1

C (iSC)
.
x2 = 1

C1

(
iSC − x2

R1

)
.
x3 = 1

C2

(
iSC − x3

R2

) (2)


.
x1 = 1

C1+(Cv ·
x1

vnom )
G1

(
isc+G2(x2−x1)+G3(x3−x1)

(G1+G2+G3)

)
.
x2 = 1

C2
G2

(
isc+G1(x1−x2)+G3(x3−x2)

(G1+G2+G3)

)
.
x3 = 1

C3
G3

(
isc+G2(x2−x3)+G1(x1−x3)

(G1+G2+G3)

) (3)

Equations (1)–(3) can be analytically integrated or, if included in a larger non-linear
system (as usually is the case), can be numerically solved. Initial conditions at a steady
state can be easily defined, assuming the SC is disconnected from any load (i.e., isc(0) = 0).
In (1), assuming that RSH is very large, results in that vsc(0) ≈ x1(0). In (2), the two RC
branches allow discharging of the capacitors; however, the main capacitor has no path to
discharge. Thus, x1(0) = vsc(0), x2(0) = 0, and x3(0) = 0. In (3), at a steady state, no
current flows through the three conductances G1, G2, and G3. All capacitors share the same
voltage, which is equal to the SC voltage, thus x1(0) = x2(0) = x3(0) = vsc(0).

3.2. Non-Linear Dynamic Model (NLDL)

Although the simplicity of the models shown in Figure 2 is important to have an
insight into the time constants of the circuit and to limit the computational costs associated
with the simulation, these models fail in representing two aspects of a hybrid SC’s real
behavior. The first one is related to the state of charge (SOC) of the SC. A trend that can be
observed experimentally is the slower time constant of the hybrid SC, i.e., the one relative
to the capacitor C, which changes drastically according to the SOC, falling rapidly once the
SC reaches a threshold that usually denotes an empty SC.

Since the energy stored inside the hybrid SC is not strictly related to the energy stored
in a normal SC, the value of the main capacitor C should change according to the SOC. A
proportional dependence between the capacitance and the SOC is used in this paper, by
introducing a non-linearity inside the system, modeled by CNL. The same effect is expected
for the series resistance, where large voltage drops appear when the hybrid SC approaches
the discharged condition. To consider this effect, the series resistance is replaced with
a voltage-controlled resistance RS,NL. The obtained model, shown in Figure 3, is non-
linear and is defined by the following state-space equations, with the added non-linear
relationships for the capacitor and resistor.

Energies 2021, 14, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Proposed SC non-linear dynamic model, featuring non-linear components for the main 
capacitor and main series resistance. 

⎩⎪⎪⎨
⎪⎪⎧𝑥ሶଵ = 1𝐶ே௅(𝑥ଵ) (𝑖ௌ஼)𝑥ሶଶ = 1𝐶ଵ ൬𝑖ௌ஼ − 𝑥ଶ𝑅ଵ൰𝑥ሶଷ = 1𝐶ଶ ൬𝑖ௌ஼ − 𝑥ଷ𝑅ଶ൰ 

 

𝑅ௌ,ே௅ = 𝑅ௌ 11 + (𝑥ଵ − 𝑣௠௜௡)௞ 

𝐶ே௅(𝑥ଵ) = 𝐶௠௜௡ + 𝑥ଵ − 𝑣௠௜௡𝑣௡௢௠ − 𝑣௠௜௡ (𝐶௠௔௫ − 𝐶௠௜௡) 

(4)

The non-linear term 𝑅ௌ,ே௅ is a hyperbole-shaped function of the current through the 
resistor itself, with a flection point at 𝑣௠௜௡, and a steepness gave by the 𝑘 term. The term 𝐶ே௅ has a linear descending slope between a maximum value of capacitance 𝐶௠௔௫, when 
the SC is completely full, and a minimum value of capacitance 𝐶௠௜௡, when the SC is com-
pletely discharged. In general, the nominal voltage 𝑣௡௢௠  is obtained from the SC 
datasheet, whereas the threshold 𝑣௠௜௡ is considered as a parameter to be optimized. In-
deed, even if the relationship for 𝐶ே௅ is linear, the capacitor equivalent circuit itself ex-
hibits non-linear behavior. Moreover, the circuit is not time-invariant anymore. The re-
sulting equivalent circuit can be classified as a grey-box model, because of the heuristic 
inclusion of the two non-linear components’ constitutive relationships. The general ad-
vantage of the NLDL model is its capability to represent the behavior of the physical object 
(the SC) under different time scales. The behavior of short transient is very different from 
the general charge–discharge procedure of the SC. Moreover, differently from any type of 
capacitor, a Hybrid SC exhibits very different behavior when the voltage across it reaches 
the minimum nominal value, quickly rising the series resistance. The advantage of the 
NLDL model is to represent all these behaviors at the same time with an equivalent circuit 
model that can be included in circuit simulation software easily. Lastly, it should be noted 
that the NLDL model considering 𝑘 = 0 and 𝐶௠௔௫ = 𝐶௠௜௡ is equivalent to the dynamic 
model. This extends its compatibility to the EDLC technology as well, as shown from the 
references in Table 2. 

3.3. Neural Estimator (NE) 
Purely black-box approaches are implemented to represent the dynamic behavior of 

the component as well. The advantage of these models is the algorithmic approach that 
can be used for their construction. Neural models can be used to define the relationship 
between the instantaneous current and the instantaneous voltages across the SC. 

Obviously, the neural model should be chosen among the architectures featuring dy-
namic response (i.e., neural networks with memory). Several very complex neural net-
work architectures are available in the literature. However, considering the necessity of 
including this model inside the simulation of a larger network (e.g., a time-domain simu-
lation of a circuit or a Monte Carlo analysis), the reduction in computational complexity 

(4)



Energies 2021, 14, 6837 7 of 16
Energies 2021, 14, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Proposed SC non-linear dynamic model, featuring non-linear components for the main 
capacitor and main series resistance. 

⎩⎪⎪⎨
⎪⎪⎧𝑥ሶଵ = 1𝐶ே௅(𝑥ଵ) (𝑖ௌ஼)𝑥ሶଶ = 1𝐶ଵ ൬𝑖ௌ஼ − 𝑥ଶ𝑅ଵ൰𝑥ሶଷ = 1𝐶ଶ ൬𝑖ௌ஼ − 𝑥ଷ𝑅ଶ൰ 

 

𝑅ௌ,ே௅ = 𝑅ௌ 11 + (𝑥ଵ − 𝑣௠௜௡)௞ 

𝐶ே௅(𝑥ଵ) = 𝐶௠௜௡ + 𝑥ଵ − 𝑣௠௜௡𝑣௡௢௠ − 𝑣௠௜௡ (𝐶௠௔௫ − 𝐶௠௜௡) 

(4)

The non-linear term 𝑅ௌ,ே௅ is a hyperbole-shaped function of the current through the 
resistor itself, with a flection point at 𝑣௠௜௡, and a steepness gave by the 𝑘 term. The term 𝐶ே௅ has a linear descending slope between a maximum value of capacitance 𝐶௠௔௫, when 
the SC is completely full, and a minimum value of capacitance 𝐶௠௜௡, when the SC is com-
pletely discharged. In general, the nominal voltage 𝑣௡௢௠  is obtained from the SC 
datasheet, whereas the threshold 𝑣௠௜௡ is considered as a parameter to be optimized. In-
deed, even if the relationship for 𝐶ே௅ is linear, the capacitor equivalent circuit itself ex-
hibits non-linear behavior. Moreover, the circuit is not time-invariant anymore. The re-
sulting equivalent circuit can be classified as a grey-box model, because of the heuristic 
inclusion of the two non-linear components’ constitutive relationships. The general ad-
vantage of the NLDL model is its capability to represent the behavior of the physical object 
(the SC) under different time scales. The behavior of short transient is very different from 
the general charge–discharge procedure of the SC. Moreover, differently from any type of 
capacitor, a Hybrid SC exhibits very different behavior when the voltage across it reaches 
the minimum nominal value, quickly rising the series resistance. The advantage of the 
NLDL model is to represent all these behaviors at the same time with an equivalent circuit 
model that can be included in circuit simulation software easily. Lastly, it should be noted 
that the NLDL model considering 𝑘 = 0 and 𝐶௠௔௫ = 𝐶௠௜௡ is equivalent to the dynamic 
model. This extends its compatibility to the EDLC technology as well, as shown from the 
references in Table 2. 

3.3. Neural Estimator (NE) 
Purely black-box approaches are implemented to represent the dynamic behavior of 

the component as well. The advantage of these models is the algorithmic approach that 
can be used for their construction. Neural models can be used to define the relationship 
between the instantaneous current and the instantaneous voltages across the SC. 

Obviously, the neural model should be chosen among the architectures featuring dy-
namic response (i.e., neural networks with memory). Several very complex neural net-
work architectures are available in the literature. However, considering the necessity of 
including this model inside the simulation of a larger network (e.g., a time-domain simu-
lation of a circuit or a Monte Carlo analysis), the reduction in computational complexity 

Figure 3. Proposed SC non-linear dynamic model, featuring non-linear components for the main
capacitor and main series resistance.

The non-linear term RS,NL is a hyperbole-shaped function of the current through
the resistor itself, with a flection point at vmin, and a steepness gave by the k term. The
term CNL has a linear descending slope between a maximum value of capacitance Cmax,
when the SC is completely full, and a minimum value of capacitance Cmin, when the SC
is completely discharged. In general, the nominal voltage vnom is obtained from the SC
datasheet, whereas the threshold vmin is considered as a parameter to be optimized. Indeed,
even if the relationship for CNL is linear, the capacitor equivalent circuit itself exhibits
non-linear behavior. Moreover, the circuit is not time-invariant anymore. The resulting
equivalent circuit can be classified as a grey-box model, because of the heuristic inclusion
of the two non-linear components’ constitutive relationships. The general advantage of the
NLDL model is its capability to represent the behavior of the physical object (the SC) under
different time scales. The behavior of short transient is very different from the general
charge–discharge procedure of the SC. Moreover, differently from any type of capacitor, a
Hybrid SC exhibits very different behavior when the voltage across it reaches the minimum
nominal value, quickly rising the series resistance. The advantage of the NLDL model
is to represent all these behaviors at the same time with an equivalent circuit model that
can be included in circuit simulation software easily. Lastly, it should be noted that the
NLDL model considering k = 0 and Cmax = Cmin is equivalent to the dynamic model. This
extends its compatibility to the EDLC technology as well, as shown from the references in
Table 2.

3.3. Neural Estimator (NE)

Purely black-box approaches are implemented to represent the dynamic behavior of
the component as well. The advantage of these models is the algorithmic approach that
can be used for their construction. Neural models can be used to define the relationship
between the instantaneous current and the instantaneous voltages across the SC.

Obviously, the neural model should be chosen among the architectures featuring dy-
namic response (i.e., neural networks with memory). Several very complex neural network
architectures are available in the literature. However, considering the necessity of including
this model inside the simulation of a larger network (e.g., a time-domain simulation of
a circuit or a Monte Carlo analysis), the reduction in computational complexity must be
considered. The core of the architecture proposed for this NE, as shown in Figure 4a, is a
fully recurrent layer, shown in Figure 4b. This layer is composed of non-linear neurons
whose output is fed back as input (after a delay) to all the neurons of the layer. This imple-
ments a dynamical system of non-linear state equations. The output of the Fully Recurrent
Layer is fed to a linear output layer, with a feedback loop. The reason for this loop is to
give the NE the additional information about the actual SOC of the supercapacitor. As can
be seen in Figure 4a, even if the output of the NE is the voltage across the SC, the output
of the neural part is the quantity vZ

SC[t], which is defined as vZ
SC[t] = vSC[t]− vSC[0]. This

quantity is, in fact, the deviation of the supercapacitor voltage from its initial condition
vSC[0]. Training the two neural layers to predict this quantity (instead of the true voltage)
is required because, differently from the equivalent-circuit based models, here, it is im-
possible to translate an electrical initial condition in the inner parameters of a black-box
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model. Thus, the initial condition is removed before the data are processed and returned
at the output through a sum block. Since the non-linear behavior of the SC is strongly
related to the initial conditions, this quantity is used as input for the NE as well. Lastly,
to better reflect the fact that the neural layers represent only the deviation from the initial
condition (and thus should have a steady-state null output), all biases are forced to zero
in the neurons of the two layers. Designed with these observations in mind, the NE can
be sized easily to accommodate the fitting of the proposed problem. However, being in
a black-box system, it suffers from the inability of obtaining any insight on the system,
apart from its direct output. Equivalent circuit models, on the other hand, can be used
to assess commutation losses, state of charge, and individual time constants. This cannot
be performed by a black-box model unless specifically trained to do so with additional
data. The Neural Estimator is implemented as a customized “layerecnet” in Matlab R2021b
environment, provided with the feedback loops shown in Figure 4 and decurted of the
biases to avoid convergence towards non-physical solutions. Training is performed using
backpropagation through time for gradient calculation (due to the dynamic nature of the
NN) and a classic Levenberg-Marquardt algorithm for LSQ minimization.
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3.4. Model Identification Algorithm

The model identification is performed by minimizing the difference, in terms of
response, between the reference data and the model, for a given excitation, which is the SC
current isc(t); the circuit response is the voltage across the SC vsc(t). Thus, the goal of the
model identification approach is to minimize the error vector:

e[t] = vS
sc[t]− vR

sc[t] (5)

where the superscripts S and R denote the simulated and reference values of the SC voltages.
This problem could be simply approached by the least squares (LSQ) solver, but this could
yield sub-optimal solutions. Non-linear least-squares problems can exhibit local minima
where the identification algorithm might stop, halting before reaching an optimal solution.
Moreover, the separation of the time constants of the circuit might not occur if a greedy
optimization algorithm is used from all the optimization process. For these two reasons, a
hybrid strategy, composed of the cascade of two optimization systems, was implemented,
as shown in Figure 5. The first stage investigates a wide solution space utilizing a highly
explorative genetic algorithm, for which the main parameters are reported in Table 3. The
cost function associated with each individual of the genetic pool is the combination of
three contributions.

c f = c ferr + c fτ1 + c fτ2 (6)

where c ferr is the absolute sum of all elements constituting the error vector in (5). The cost
functions c fτ1 and c fτ2 account for the separation of the time constants of the circuits and
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are differently calculated, according to the used model. For the four models proposed, the
expressions are given in Table 3. Since the time constants in the non-linear dynamic model
change according to the instantaneous electrical quantities in the circuit, average values
R∗

S,NLC∗
NL, over the whole simulation, are used. The genetic algorithm generates several

candidate solutions that need to be refined further by a local search algorithm. For each of
these candidate solutions, the sub-space of the solution space centered on the individual
is defined. In this sub-space, an LSQ refinement of the solution is obtained through a
Levenberg–Marquardt algorithm. Solutions refined by the LSQ are then ranked for mean
absolute error, and the best performing one is considered as the identified model.

Energies 2021, 14, x FOR PEER REVIEW 9 of 16 
 

 

could yield sub-optimal solutions. Non-linear least-squares problems can exhibit local 
minima where the identification algorithm might stop, halting before reaching an optimal 
solution. Moreover, the separation of the time constants of the circuit might not occur if a 
greedy optimization algorithm is used from all the optimization process. For these two 
reasons, a hybrid strategy, composed of the cascade of two optimization systems, was 
implemented, as shown in Figure 5. The first stage investigates a wide solution space uti-
lizing a highly explorative genetic algorithm, for which the main parameters are reported 
in Table 3. The cost function associated with each individual of the genetic pool is the 
combination of three contributions. 𝑐𝑓 = 𝑐𝑓௘௥௥ + 𝑐𝑓ఛଵ + 𝑐𝑓ఛଶ  (6)

where 𝑐𝑓௘௥௥ is the absolute sum of all elements constituting the error vector in (5). The 
cost functions 𝑐𝑓ఛଵ and 𝑐𝑓ఛଶ account for the separation of the time constants of the cir-
cuits and are differently calculated, according to the used model. For the four models pro-
posed, the expressions are given in Table 3. Since the time constants in the non-linear dy-
namic model change according to the instantaneous electrical quantities in the circuit, av-
erage values 𝑅ௌ,ே௅∗ 𝐶ே௅∗ , over the whole simulation, are used. The genetic algorithm gener-
ates several candidate solutions that need to be refined further by a local search algorithm. 
For each of these candidate solutions, the sub-space of the solution space centered on the 
individual is defined. In this sub-space, an LSQ refinement of the solution is obtained 
through a Levenberg–Marquardt algorithm. Solutions refined by the LSQ are then ranked 
for mean absolute error, and the best performing one is considered as the identified 
model. 

 
Figure 5. Hybrid model identification strategy featuring the maximal Genetic Algorithm solution 
space and one of the sub-spaces, where the LSQ algorithm refines each one of the candidate solu-
tions. 

Table 3. Cost functions in (6) for the specific problem. 

 Classic Dynamic Multicell NLDL 𝑐𝑓ఛଵ 0 
𝑅ଵ𝐶ଵ𝑅ௌ𝐶  

𝐺ଵ𝐶ଶ𝐺ଶ𝐶ଵ 
𝑅ଵ𝐶ଵ𝑅ௌ,ே௅∗ 𝐶ே௅∗  𝑐𝑓ఛଶ 0 

𝑅ଶ𝐶ଶ𝑅ௌ𝐶  
𝐺ଵ𝐶ଷ𝐺ଷ𝐶ଵ 

𝑅ଶ𝐶ଶ𝑅ௌ,ே௅∗ 𝐶ே௅∗  

3.5. Data Acquisition: Experimental Workbench Layout 
An experimental workbench to acquire data representing the electrical behavior of 

the hybrid supercapacitor SC4R2V402F24 supercapacitors by Gonghe Electronics was im-
plemented. The characteristics of the supercapacitor are those reported in Table 4. This 
supercapacitor has good stability and chemical reversibility which makes it suitable for 
military and aerospace applications. After 20,000 charging/discharging cycles, the capac-
itor maintains 95% of the initial capacity. 

  

Figure 5. Hybrid model identification strategy featuring the maximal Genetic Algorithm solution
space and one of the sub-spaces, where the LSQ algorithm refines each one of the candidate solutions.

Table 3. Cost functions in (6) for the specific problem.

Classic Dynamic Multicell NLDL

c fτ1 0 R1C1
RSC

G1C2
G2C1

R1C1
R∗

S,NLC∗
NL

c fτ2 0 R2C2
RSC

G1C3
G3C1

R2C2
R∗

S,NLC∗
NL

3.5. Data Acquisition: Experimental Workbench Layout

An experimental workbench to acquire data representing the electrical behavior of
the hybrid supercapacitor SC4R2V402F24 supercapacitors by Gonghe Electronics was
implemented. The characteristics of the supercapacitor are those reported in Table 4.
This supercapacitor has good stability and chemical reversibility which makes it suitable
for military and aerospace applications. After 20,000 charging/discharging cycles, the
capacitor maintains 95% of the initial capacity.

Table 4. Characteristics of the SC4R2V402F24 hybrid supercapacitor employed for model retrieval.

Parameter Value

Rated Voltage 4.2 V
Rated Capacity 4000 F

Continuous Maximal Discharging Current 6 A
Pulse Discharging Current 30 A

To apply charging and discharging cycles to the supercapacitor, the experimental
layout shown in Figure 6 was employed. The supercapacitor is part of a circuit that is
connected to a DSC DP15-60H charger and a RIGOL DL3021 discharger. Both instruments
are automatically controlled by a NI LabVIEW 2017 interface specially developed for this
application. The SC Voltages and currents are continuously monitored: during discharging,
the RIGOL directly interfaces with LabVIEW for the acquisition of both measurements;
during charging, the current is deducted by measuring the voltage drop at the ends of a
188 mΩ resistance, amplified by a TI INAP128, and converted to a digital value through an
Arduino UNO device.
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3.6. Identification and Validation Procedures Datasets

The datasets used for the identification and validation are acquired using the setup
described in the previous section. Both datasets are composed of the sampling of an
excitation vector (current) and a response vector (voltage). The waveform used, depicted in
Figure 7, aims to show both the fast transient response of the SC (through very rapid steps)
and the slow discharging dynamic (through a long constant section of absorbed current).
The data are acquired in batches of 2000 samples with a timestep of 100 ms using a current
waveform 200 s long as the excitation. The current waveform is used repeatedly to generate
different datasets, which are different due to the different states of charge of the SC. Most
importantly, the discharge is performed up to a point where the non-linear behavior of the
SC exhibits a strong increase in the series resistance. The identification and the validation
datasets consist, respectively, of 8000 samples (four curves) and 2000 samples (one curve)
of couples

{
iR
SC, vR

SC
}

. The identification dataset is used for the identification procedure
of the circuit models, as described in Sections 3.1 and 3.2, and for the training of the NE
described in Section 3.3. The validation dataset is used as an independent set of data and
is never utilized to train the model/NE. This has been done to check if the identification
procedure managed to generate a model, NE was able to generalize the behavior of the
system, or if it simply managed to memorize the data patterns.
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Figure 7. Base current waveform used for the SC discharge procedure.

4. Results and Discussion

In this section, the results for the identification and validation procedure are discussed
for the four circuit models and the neural estimator.
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4.1. Circuit Models Comparison

The response of the identified models on the identification dataset is shown in Figure 8,
and the response concerning the validation dataset is shown in Figure 9.
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Figure 9. Real voltage trend for the SC and the corresponding best-fitting curve obtained by the four
circuit models, applied to the validation dataset.
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As expected, the classic model is not able to reproduce the slow and the fast response
of the SC circuit at the same time, resulting in an average behavior that neither fits the
transient nor the steady-state response. Dynamic and multicell circuits both exhibit good
responses on the transient behavior and achieve very accurate results in terms of steady-
state response (with an almost null error on the validation set). However, both the Dynamic
and multicell fail in reproducing the SC strong non-linear behavior which arises when the
voltage across the tested device drops to low values (i.e., below 3 V). The NLDL model
is the only one correctly reproducing this non-linear behavior. However, this is achieved
with higher complexity and slightly lower performance in terms of steady-state response,
as shown in Figure 9 The parameters for the identified circuit models are shown in Table 5,
along with the MSE on the identification and validation datasets.

Table 5. Identified parameters for the different models, errors on the identification and validation
datasets, R-squared regression error.

Model Parameters Id. MSE Val. MSE R2

Classic
C = 4.8120 × 103 F

RS = 3.5971 × 10−2 Ω
RSH = 9.6224 × 104 Ω

1.9910 × 10−2 1.0075 × 10−2 0.7505

Dynamic

C = 1.1419 × 104 F
C1 = 9.3870 × 102 F
C2 = 1.8413 × 101 F

R1 = 2.0080 × 10−2 Ω
R2 = 3.0436 × 10−2 Ω
RS = 2.5328 × 10−3 Ω

1.0415 × 10−2 5.4955 × 10−3 0.8909

Multicell

Cv = 1.7809 × 102 F
C1 = 3.5554 × 104 F
C2 = 1.2628 × 101 F

C3 = 1.5601 × 10−7 F
G1 = 1.1281 × 101 S
G2 = 1.7906 × 101 S
G3 = 3.6587 × 102 S

1.0227 × 10−2 5.6761 × 10−3 0.9027

NLDL

Cmax = 1.3330 × 104 F
C1 = 1.4521 × 103 F
C2 = 1.8001 × 101 F

R1 = 1.2120 × 10−2 Ω
R2 = 3.1241 × 10−2 Ω
RS = 5.1129 × 10−2 Ω
vmin = 2.4605 × 100 V

k = 8.5126 × 101

Cmin = 2.1091 × 10−3 F

4.2111 × 10−3 2.3709 × 10−3 0.9590

4.2. Neural Estimator

Identification of the Neural Estimator is performed similarly to the identification of
the circuit model. The inner parameters are defined by using a training algorithm (back-
propagation for the gradient definition, and Levenberg–Marquardt for the minimization of
the resulting LSQ problem) that minimizes the error between the simulated data and the
reference data, on the identification dataset. Once the NE is identified, its performance is
evaluated on the validation dataset. The optimal sizing of the NE was determined empiri-
cally, using a technique described in [9,34] to prevent the data overfitting and resulted in
four neurons in the fully recurrent layer.

This approach is notably different from the circuit model technique; the data are
artificially padded with zeros in the initial region to enlarge the steady-state part. This
gives a larger weight, in terms of training, to these regions. Results on the identification
and validation dataset are shown in Figure 10a,b, respectively. The neural estimator
correctly predicts the strong non-linearity and the discharge behavior, but is less accurate
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in predicting the steady-state operation, especially once the discharge transient is over.
The MSE is equal to 7.0338 × 10−4 in the identification dataset, and 8.1566 × 10−4 in the
validation dataset. The regression error R2 is 0.9895.
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Figure 10. Real voltage trend for the SC and corresponding best-fitting curve obtained by the neural estimator, applied to
the training (a) and testing (b) datasets.

4.3. Statistical Robustness of NLDL Identification

Identification of a non-linear model must be validated statistically by verifying the
robustness of the found solution with respect to noisy input data. This validation is
performed by applying a random noise to the reference data, acquired experimentally, and
repeating the identification procedure several times, recording the average parameters
and their standard deviation. For this purpose, the identification procedure of the NLDL
was repeated 1000 times with a random noise of 100 mV amplitude added to the dataset.
The average parameters obtained, and their standard deviation can be found in Table 6.
The histogram for the individual parameters can be seen in Figure 11. As can be seen, all
parameters exhibit Gaussian-like distribution with the exception of Cmin, which tends to
flatten near the quasi-zero values. Standard deviation of the parameters is not negligible,
especially for the ones relative to the non-linear elements. This variance confirms that the
solution space of the non-linear identification problem features several local minima, for
which an advanced identification algorithm such as the one used in this work is necessary
to avoid sub-optimal solutions.

Table 6. Statistical analysis results over 1000 identification runs, average and standard deviation
values for the NLDL model.

Average Parameter Standard Deviation

Cmax 1.527715 × 104 2.285536 × 103

C1 1.530628 × 103 1.981729 × 102

C2 1.815956 × 101 2.007367 × 10−1

R1 1.233306 × 10−2 8.516536 × 10−4

R2 3.140747 × 10−2 2.315775 × 10−3

RS 5.167659 × 10−2 2.130498 × 10−3

vmin 2.456013 × 100 2.207561 × 10−2

k 9.562971 × 101 1.535824 × 101

Cmin 5.484666 × 10−3 9.681274 × 10−3
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5. Conclusions

Two accurate techniques in modelling the dynamic and non-linear behavior of a hybrid
supercapacitor were presented in this work. The first technique enlarges and increases
the accuracy of the equivalent circuit approach by introducing two specific non-linearities
dependent on the state-of-charge of the device. These non-linearities better represent (with
respect to already known techniques) the large behavioral change exhibited by a hybrid SC
when its voltage is close to the point of maximum discharge. The second technique uses
a recursive neural network to create a neural estimator able to represent the divergence
between the initial conditions and the final conditions of the SC states.

Both the investigated and proposed techniques are new and can be used in time-
domain simulation of an electrical network including SCs. The techniques based on the
NLDL equivalent circuit give an interesting insight into the SC inner structure and can be
used to assess the power losses. The voltage on the main capacitor can be related directly
to the state-of-charge. However, this model requires numerical integration to be performed
and the complexity of the calculations depends on the implementation environment. The
NE based technique embeds the integration in the inner operations of the recursive layer
neurons, making this model simple to use, but its parameters (weights and biases) do not
allow any insight into the inner structure of the device.

Both techniques achieve high accuracy and generalization capabilities, resulting in
a set of valuable tools for the simulation of electrical circuits, power converters, or stand-
alone devices including SCs of the hybrid family.

As future development of this research, the performance of the proposed non-linear
dynamic models will be evaluated for different SC technologies. The obtained high-
accuracy models for hybrid SCs will be employed to pilot the design phase of an SC pack
solution to be applied in micro-mobility contexts, for implementation as an energy storage
system on lightweight, sustainable electric vehicles, such as e-kick scooters or pedelecs.
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