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Abstract: The improved discrete ordinates method (IDOM) developed in our previous paper is
extended to solve radiative transfer in three-dimensional radiative systems with anisotropic scattering
medium. In IDOM, radiative intensities in a large number of new discrete directions are calculated
by direct integration of the conventional discrete ordinates method (DOM) results, and radiative heat
flux is obtained by integrating radiative intensities in these new discrete directions. Ray effects and
false scattering, which tend to compensate each other, are investigated together in IDOM. Results
show that IDOM can mitigate both of them effectively with high computation efficiency. Finally, the
effect of scattering phase function on radiative transfer is studied. Results of radiative heat flux at
boundaries containing media with different scattering phase functions are compared and analyzed.
This paper indicates that the IDOM can overcome the shortages of the conventional DOM well while
inheriting its advantages such as high computation efficiency and easy implementation.

Keywords: ray effects; false scattering; improved discrete ordinates method; anisotropic scattering

1. Introduction

Efficient and precise solutions for radiative heat transfer are essential for thermal
analysis in high-temperature processes, such as combustion, solar energy utilities, etc.
Many numerical methods are employed to solve the radiative transfer equation (RTE).
Among these, the discrete ordinates method (DOM) is widely used due to its high com-
putation efficiency and easy implementation [1,2]. However, the accuracy of the DOM
is affected by ray effects and false scattering [3–5], which are related to the angular and
spatial discretization, respectively.

The most straightforward approaches for mitigating ray effects and false scattering
are to increase discrete directions and refine spatial grids, respectively. Unfortunately, these
approaches are computationally expensive due to increased computation time and memory.
To use more accurate spatial discretization schemes is another common way to reduce
false scattering [6–8]. The performance of several schemes including the upwind, central,
hybrid, exponential, and high-resolution SMART schemes have been comprehensively
compared by Liu et al. [6] to predict radiative intensity as well as radiative heat flux. Jessee
and Fiveland [7] applied several bounded, high-resolution schemes to DOM, and the
investigated schemes showed obvious improvement in accuracy over the standard step
scheme. A later paper by Coelho [8] showed that bounded skew high-resolution schemes
had better accuracy compared with the standard high-resolution schemes, yet with higher
computational requirements. Besides, the double rays method is developed by Li et al. [9]
to reduce false scattering error. In order to treat collimated irradiation, Li additionally
used a hybrid spatial differencing scheme to reduce false scattering in arbitrarily specified
discrete directions [10].

In terms of ray effects, in addition to increase discrete directions, to modify direction
layout is another common remedy [11–15]. Numerical experiments have been conducted
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by Li et al. [11] showing that ray effects can be reduced by modifying direction layouts, and
three corresponding countermeasures were proposed in their paper. Tencer [12] proposed
a ray effects mitigation technique by averaging the computed results of various direction
layouts, which are generated by arbitrarily rotating the reference layout. Quadrature rota-
tion was also applied to solve time-dependent transport and results showed that ray effects
were reduced significantly, including for small numbers of quadrature points [13]. Recently,
goal-oriented angular adaptive algorithm was also utilized to mitigate ray effects [14,15].
However, neither increasing discrete directions nor modifying direction layout is a partially
effective remedy for ray effects [16,17]. Several modifications to the discrete ordinates
scheme were also proposed to eliminate ray effects. Lathrop [16] converted the discrete
ordinates equation into a spherical harmonic-like equation to eliminate ray effects. A modi-
fication of the discrete ordinates named artificial scattering was proposed to mitigate ray
effects [18]. Results demonstrated that artificial scattering yielded better accuracy than the
traditional DOM with the same number of discrete ordinates. A modified discrete ordinates
method (MDOM) has also been developed to mitigate ray effects caused by non-uniform
emission of boundaries [19,20]. Coelho [21] extended the MDOM to reduce ray effects origi-
nated from non-uniform emission of the boundaries as well as the media. A similar concept
was also applied to YIX method to mitigate ray effects [22]. Huang et al. [23] developed an
improved discrete ordinate method (IDOM) based on the discrete ordinates scheme with
infinitely small weight (DOS+ISW) concept [24]. Radiative intensities in a large number
of new discrete directions are calculated by direct integration of the conventional DOM
results. Several cases with isotropic scattering media were studied. Results showed that
the IDOM can mitigate ray effects effectively with negligible computation time increased
comparing with the conventional DOM.

In the papers mentioned above, ray effects and false scattering are resolved separately
with different strategies. However, it is reported that there is an interaction between these
two errors and that they tend to compensate each other [21,25,26]. That is to say, reducing
one error while keeping the other unchanged may make the accuracy of final results worse.
Then, in order to evaluate the performance of strategies applied to the DOM, ray effects
and false scattering need to be considered at the same time. However, to the best of our
knowledge, there is no previous work proposing or discussing a strategy that mitigates ray
effects and false scattering concurrently.

In this paper, the IDOM is extended to solve radiative transfer in three-dimensional
systems with anisotropic scattering medium. Ray effects, as well as false scattering, in the
IDOM are investigated. First, the description of the IDOM is given. Then, ray effects and
false scattering in the IDOM are studied by comparing the calculated radiative heat flux
with the benchmark solution provided by the reverse Monte Carlo (RMC) method. Finally,
the effect of scattering phase function on radiative transfer is studied by the IDOM.

2. The Improved Discrete Ordinates Method

In this section, a brief description of the conventional discrete ordinates method is
given firstly. Then, the detailed description of the improved discrete ordinates method and
the comparison of these two methods in calculation accuracy will follow.

2.1. Conventional Discrete Ordinates Method

In a three-dimensional radiative system filled with emitting, absorbing and scattering
gray medium, discrete ordinate equations of the DOM with N discrete angular directions
are written as

ξi
∂Ii
∂x

+ ηi
∂Ii
∂y

+ µi
∂Ii
∂z

+ βIi = βSi, i = 1, 2, . . . , N (1)
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where I is radiative intensity, β and S are the extinction coefficient and the source function
of the medium, respectively. The source function and the boundary condition can be
given as

Si = (1−ω)Ib +
ω

4π

N

∑
j=1

wjΦji Ij, i = 1, 2, . . . , N (2)

Ii = εw Ibw +
1− εw

π ∑
γj<0

wj Ij
∣∣γj

∣∣, i = 1, 2, . . . , N (3)

where Φ is the scattering phase function, ω and ε are the scattering albedo of the medium
and the emissivity of the wall, respectively. w is the weight of a specific discrete direction.

A general control volume p in three-dimensional radiative system is shown in Figure 1.
It has six faces labeled as w, e, s, n, f, b. The finite difference form of Equation (1) can be
obtained by integrating it over a volume element,

ξi Ax(Ie,i − Iw,i) + ηi Ay(In,i − Is,i) + µi Az(Ib,i − I f ,i) + βpVp Ip,i = βpVpSp,i (4)

where Ax = ∆y∆z, Ay = ∆x∆z, Az = ∆x∆y, are face areas in different directions, Vp = ∆x∆y∆z
is the element volume.

Figure 1. A control volume in three-dimensional radiative systems.

The volume-averaged intensity, Ip,i, is expressed as the weighted average of the
surface-averaged intensities,

Ip,i = γx Ie,i + (1− γx)Iw,i
= γy Ib,i + (1− γy)I f ,i
= γz In,i + (1− γz)Is,i

(5)

where γx, γy, γz are differential weighting factors, and 0.5 ≤ γx, γy, γz ≤ 1.
Substitute Equation (5) into Equation (4), and the volume-averaged intensity is ex-

pressed as

Ip,i =
βpVpSp,i + ξi Iw,i Ax/γx + ηi Is,i Ay/γy + µi I f ,i Az/γz

βpVp + ξi Ax/γx + ηi Ay/γy + µi Az/γz
(6)

where Sp,i is the volume-averaged radiative source function,

Sp,i = (1−ω)Ib,p +
ω

4π

N

∑
j=1

wjΦji Ip,j (7)

Solving Equations (5) and (6) over all N directions and all the elements, radiative
intensities at all the volumes and surfaces in N direction is updated. The procedure is
repeated until the convergence criteria are met. Then, radiative intensities in N directions at
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all the volumes and surfaces are obtained. Heat flux at any position in the radiative system
can be calculated by integrating the known radiative intensities. For instance, heat flux in z
direction at a point can be obtained by integrating radiative intensities at this point as

qDOM =
N

∑
i=1

wiµi Ii (8)

2.2. Improved Discrete Ordinates Method

IDOM is based on the conventional DOM. Radiative intensity results calculated in the
conventional DOM are needed in a follow-up calculation of IDOM. Therefore, the first step
of IDOM is utilizing the conventional DOM to obtain radiative intensities in N directions
at all volumes and surfaces. Then, the second step begins by generating M new directions
with finite weights wsk, k = 1,2,..., M. For these M new directions, the discrete ordinate
equations can be rewritten as

dIk
ds

+ βIk = βSk, k = 1, 2, . . . , M (9)

where s is the geometric length. If source function Sk, k = 1,2, . . . , M is known, Equation (9)
can be solved by direct piecewise integration. Take the k-th new direction at point B and
the control volume p for example, as shown in Figure 2, the ray AB intersects the control
volume p at the line segment CD, then the integral form of Equation (9) along CD can be
given as

ID,k = IC,k · exp(−βp · ∆s) + Sp,k · [1− exp(−βp · ∆s)] (10)

where ∆s is the geometric length of the line segment CD, βp is the extinction coefficient, and
Sp,k is the source function of control volume p in k-th new direction. For control volume p,
the source function Sp,k can be solved by rewriting Equation (2) as

Sp,k = (1−ω)Ib,p +
ω

4π

N

∑
i=1

wiΦik Ii, k = 1, 2, . . . , M (11)

Figure 2. Calculation model for radiative intensity in a new direction in IDOM.

For the starting point A of the ray AB, the boundary intensity at point A can be solved
by rewriting Equation (3) as

IA,k = εA Ib,A +
1− εA

π ∑
γi<0

wi Ii|γi|, k = 1, 2, . . . , M (12)
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where wi is the weight of i discrete direction in the conventional DOM, Ii is radiative
intensity in i discrete direction and is already known in the first step calculation, i.e., the
conventional DOM calculation.

With all the source functions and boundary conditions expressed by Equations (11)
and (12) are solved, radiative intensity in k-th new direction at point B can be calculated by
integrating Equation (9) from point A to point B,

IB,k =
Nk

∑
p=1

Sp,k · [1− exp(−βp · ∆sp,k)] · exp(−
Np−1

∑
m=1

βm · ∆sm,k) + IA,k · exp(−
Nk

∑
m=1

βm · ∆sm,k) (13)

where Nk and Np is the number of control volumes that the ray AB and CB passes through,
respectively.

Similarly, radiative intensities in all M directions at point B, IB,k (k = 1, 2, . . . , M), can
be obtained by repeating this procedure for each of the M discrete coordinate equations.
Then, the heat flux in z direction at point B can be obtained by integrating the radiative
intensities in M new directions as

qIDOM =
M

∑
k=1

wskµsk Ik (14)

2.3. Accuracy Analysis of IDOM

Ray effects and false scattering are two shortcomings of the DOM and cause inaccuracy
of radiative intensity results as well as radiative heat flux which is calculated by integrating
radiative intensity as shown in Equation (8).

In order to analyze the accuracy of IDOM, the source function in Equation (11) is
rewritten as the sum of emission source function Sp,k,em and in-scattering source function
Sp,k,sca,

Sp,k = Sp,k,em + Sp,k,sca (15)

Sp,k,em = (1−ω)Ib,p (16)

Sp,k,sca =
ω

4π

N

∑
i=1

wiΦik Ii (17)

Similarly, the boundary intensity in Equation (12) is rewritten as the sum of boundary
emission intensity Iw,k,em and boundary reflection intensity Iw,k,re,

Iw,k = Iw,k,em + Iw,k,re (18)

Iw,k,em = εw Ib,w (19)

Iw,k,re =
1− εw

π ∑
γi<0

wi Ii|γi| (20)

Then, radiative intensity in k-th new direction at point B can be rewritten as the sum
of two terms,

IB,k = Id
B,k + Is

B,k (21)

Id
B,k =

Nk

∑
p=1

Sp,k,em · [1− exp(−βp · ∆sp,k)] · exp(−
Np−1

∑
m=1

βm · ∆sm,k) + Iw,k,em · exp(−
Nk

∑
m=1

βm · ∆sm,k) (22)

Is
B,k =

Nk

∑
p=1

Sp,k,sca · [1− exp(−βp · ∆sp,k)] · exp(−
Np−1

∑
m=1

βm · ∆sm,k) + Iw,k,re · exp(−
Nk

∑
m=1

βm · ∆sm,k) (23)

where Id
B,k is the direct part of radiative intensity contributed by emission of the media and

the boundary, Is
B,k is the indirect part of radiative intensity contributed by in-scattering of



Energies 2021, 14, 6839 6 of 14

the media and reflection of the boundary. Correspondingly, radiative heat flux calculated
by IDOM can also be expressed as the sum of direct heat flux qd

IDOM and indirect heat flux
qs

IDOM,
qIDOM = qd

IDOM + qs
IDOM (24)

qd
IDOM =

M

∑
k=1

wskµsk Id
B,k

(25)

qs
IDOM =

M

∑
k=1

wskµsk Is
B,k

(26)

As indicated by Equations (15)–(26), the direct part of heat flux is calculated by
integrating radiative intensity contributed by media and boundary emission, which can
be accurately evaluated when the number of discrete directions (M) generated in the
second step of IDOM is large. For the calculation of indirect heat flux in IDOM, since
indirect radiative intensity is calculated by path integrating of in-scattering source function
and boundary reflection intensity rather than sweeping over all the volume elements in
the conventional DOM, the error is accordingly reduced. Overall, ray effects and false
scattering are significantly relieved in IDOM, and this will be demonstrated by numerical
experiments given in Section 3.

3. Results and Discussion
3.1. Model Description

The IDOM and the conventional DOM are applied to solve radiative transfer in a
three-dimensional cubic radiative system as shown in Figure 2. The side length of the cube
is L. Six boundaries are all black, and the enclosed medium is gray with uniform extinction
coefficient β. Three different scattering phase functions as described by Equation (27) are
considered,

Φ(θs) = 1 + A1 · cos θs (27)

where θs is the angle between the directions of incoming and scattered radiative ray.
Different values of A1, equal to 0, −1, and 1, which represent isotropic, backward and
forward scattering, are considered. Three cases with different radiative conditions as listed
in Table 1 are examined. In order to examine ray effects caused by non-uniform boundary
emission, Case 1 is a radiative system with only one boundary emission which is similar
to cases used in refs. [20,22]. Case 2 with a stepwise medium emission which is similar to
cases in ref. [22] is used to study ray effects caused by non-uniform medium emission. A
radiative system with uniform medium emission is considered in Case 3.

Table 1. Emissive power and scattering albedo for the cases studied.

Cases Emissive Power
at the Boundary Emissive Power in the Medium Scattering Albedo

Case 1 eb = 1.0, z = 0 eb = 0 1.0
Case 2 eb = 0 eb = 1.0, 0 < z < 0.5 L; eb = 0, 0.5 L < z < L 0.9
Case 3 eb = 0 eb = 1.0 0.9

For all calculations in this paper, the medium is discretized into NX × NY × NZ
uniform volume elements. NX, NY and NZ are set to be the same value for the cubic
systems. Six boundaries are divided in to 6 × NX × NX uniform surface elements. For the
angular quadrature in the conventional DOM and the N original directions in IDOM (first
step calculation), LSO angular quadrature scheme is employed. For the M new directions
in IDOM (second step calculation), the spherical ring angular quadrature scheme [27] is
employed and abbreviated as SR. Therefore, IDOM S8 + SR10 means that the N original
discrete directions and weights are based on the LSO S8 scheme, and the M new discrete
directions and weights are based on the spherical ring angular quadrature scheme with
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10 levels. All calculations are performed on a personal computer with an Intel Dual-Core
3.40 GHz CPU, 8.0 GB memory, 64-bit operating system. In all calculations, a single CPU
core is employed. Program is written in FORTRAN language.

3.2. Ray Effects in IDOM

In this section, the IDOM and DOM are applied to calculate radiative heat flux distri-
butions along the diagonal line of the top boundary for all three cases. Ray effects in both
methods are investigated by considering the reverse Monte Carlo method with 2 million
energy bundles as the benchmark solution. For all cases considered in this section, NX = 20
is applied to spatial discretization.

Figure 3 shows radiative heat flux along the diagonal line of the top boundary in
Case 1. In this case, the enclosed medium is cold and purely scattering, and the optical
thickness βL is 1.0. The bottom boundary is hot with unity emissive power, while the
other boundaries are all cold. As shown in the figure, the difference between heat flux
calculated by DOM S8 and RMC is obvious because of ray effects. Comparing with the
RMC method, there is still obvious difference even a higher order scheme (DOM S12) is
applied. Results calculated by IDOM are in better agreement with the benchmark solution.
Take results in Figure 3b for example, the average errors of heat flux by DOM S8 and DOM
S12 are about 18%, and the average errors for IDOM S8 + SR10 (M = 530) and S8 + SR20
(M = 2058) reduce to 4.3% and 2.0%, respectively. It shows that the IDOM can reduce ray
effects effectively both in isotropic and anisotropic scattering medium.

Figure 3. Heat flux at the boundary of Case 1: (a) results for A1 = 0; (b) results for A1 = −1; (c) results for A1 = 1.
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Heat flux at the top boundary in Case 2 is displayed in Figure 4. In this case, the
enclosed medium is absorbing and scattering with optical thickness βL equal to 2.0. The
bottom half of the medium is hot with a unity emission, while the top half and all bound-
aries are cold. As displayed in the figure, both DOM S8 and DOM S12 suffer from obvious
ray effects due to the non-uniform emission of the medium. Their calculation results are
significantly larger than the benchmark solution, and the average errors are larger than
8.2%. In contrast, heat flux calculated by IDOM S8 + SR10 is in good agreement with the
benchmark solution and the average error is less than 1.4%. The above results once again
show that IDOM can effectively reduce the error of ray effects and significantly improve
the accuracy of radiative heat flux.

Figure 4. Heat flux at the boundary of Case 2: (a) results for A1 = 0; (b) results for A1 = −1; (c) results for A1 = 1.

Figure 5 shows heat flux along the diagonal line of the top boundary in Case 3. All the
conditions are the same as those in Case 2, except that the medium has uniform emission
in this case. As displayed in the figure, DOM with both S8 and S12 has the same and
acceptable accuracy since ray effects is not obvious in the uniform medium. Obvious
improvement of the IDOM results can still be observed and the heat flux curves by the
IDOM confirm excellently with those of the RMC method. In DOM, the results keep
unchanged while the angular discrete scheme changes from S8 to S12. This means the
ray effects are not the cause of the error for DOM in this case, and false scattering may be
the main reason and this will be investigated in the following section. Furthermore, as
displayed in Figure 5d, results of both RMC and IDOM show that heat flux with forward
scattering medium is smaller than that with backward scattering medium in the middle
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of the boundary, while is larger at the edge of the boundary. At first glance, the trend is
contradictory to our initial expectation that the forward scattering medium benefits for
energy transfer and should have larger radiative heat flux at the boundary. This interesting
result, which is related to the effect of scattering phase function on radiative transfer, is to
be studied in Section 3.4.

Figure 5. Heat flux at the boundary of Case 3: (a) results for A1 = 0; (b) results for A1 = −1; (c) results for A1 = 1; (d) results
comparison for A1 = −1 and 1.

3.3. False Scattering in IDOM

As shown in previous section, the IDOM reduces ray effects effectively since radiative
intensity in a large number of discrete directions are obtained and used to evaluate radiative
heat flux. However, false scattering and ray effects usually have impacts on each other,
reducing one of them may increase the other one [21,25,26]. Then, the false scattering in
IDOM is to be examined in this section.

In order to decouple the errors caused by ray effects and false scattering on final
results, Case 3 with uniform emission medium is considered in which ray effects is not
obvious as shown in Figure 5. The enclosed medium is isotropic scattering, and the optical
thickness βL is equal to 2.0. Heat flux along the diagonal line of the top boundary with
different spatial discrete number NX = 10 and 40 are depicted in Figure 6. From the figure,
results calculated by DOM S8 and DOM S12 agree well with each other for all the spatial
discrete numbers, which shows ray effects has no influence on results accuracy in these
cases. Meanwhile, as the number of NX increases, results of DOM have better accuracy.
This means the false scattering is the main cause of the error, and this error is reduced by
refining spatial grids.
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Figure 6. Heat flux by DOM with different angular and spatial discretization of Case 3.

Figure 7 shows radiative heat flux distribution at top boundary in Case 3 with different
optical thicknesses. As shown in Figure 7a,b, when optical thickness is 1.0 and 2.0, heat flux
by the IDOM is in good agreement with the benchmark solution and the average errors are
only 0.83% and 0.79%, while the average errors of heat flux by DOM are 3.54% and 3.75%.
These results show that the IDOM can significantly reduce false scattering error comparing
with the conventional DOM.

Figure 7. Heat flux of Case 3 with different optical thicknesses (a) βL = 1.0 and NX = 10; (b) βL = 2.0 and NX = 10; (c)
βL = 10.0 and NX = 10; (d) βL = 10.0 and NX = 20.
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When the optical thickness is thick, as shown in Figure 7c, although the IDOM
has better accuracy than the DOM, it also suffers from false scattering with low spatial
resolution (NX = 10). Refining the spatial resolution to NX = 20, the IDOM significantly
reduces the false scattering error, and its calculation results are in good agreement with
the benchmark solution, while the DOM still has obvious false scattering error, as shown
in the Figure 7d. These results indicate that, if the radiative system studied has a thick
optical thickness, it is also necessary to refine spatial grids in IDOM to reduce the false
scattering error. Meanwhile, the false scattering error in IDOM is much less than that in the
conventional DOM if the same spatial grids are employed.

3.4. Effect of Scattering Phase Functions on Radiative Transfer

Scattering behavior is one of the key factors affecting radiative transfer. Radiative
rays change their original propagating directions by scattering in the medium, and the
directional distribution of scattered rays is described by the scattering phase function. In
this section, the effect of scattering phase function on radiative energy transfer is analyzed
by the IDOM. Radiative heat flux results calculated by IDOM S8 + SR20 with discrete
number NX = 20, which have been shown to have good accuracy in Section 3.2, are
compared for media with different scattering phase functions.

Figure 8 shows heat flux along the diagonal line on boundary of Case 1. As displayed
in the figure, heat flux at the top boundary with forward scattering medium is larger than
that with backward scattering medium, while the trend of heat flux at the bottom boundary
influenced by scattering phase function is reverse. The explanation for these results is
straightforward. The forward scattering medium scatters more radiative energy forward;
thus, heat flux at boundaries located in the upward direction of emission plane (z = 0) has
bigger values, and at boundaries located in the downward direction has smaller values.

Figure 8. Heat flux with different scattering phase functions in Case 1: (a) results at top boundary; (b) results at bottom
boundary.

Heat flux curves along the diagonal line at boundaries in Case 2 are presented in
Figure 9. At the top boundary in Figure 9a, heat flux with forward scattering medium is
larger than that with backward scattering medium, and this trend is the same as that in
Case 1. However, at the bottom boundary in Figure 9b, heat flux at the center area with
forward scattering medium is smaller than that with backward scattering medium, while
an opposite trend is observed at the edge area. This is because radiative energy received
by the bottom boundary is affected by both the backward scattering part (of the energy
emitted upward by the source) and the forward scattering part (of the energy emitted
downward by the source). These two parts are influenced by the scattering phase functions
in an opposite way, and the trend of radiative heat flux at the bottom boundary depends
on the overall effects of these two parts. If we revisit the results in Figure 5d, the same
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trend as in Figure 9b can be observed and can be explained similarly. These results show
that unlike the case with emitting boundary, the effect of scattering phase functions on
radiative transfer within systems with emitting medium is complicated and needs to be
considered case by case.

Figure 9. Heat flux with different scattering phase functions in Case 2: (a) results at top boundary; (b) results at bottom
boundary.

3.5. Computation Cost Comparison

For conventional DOM, its computation time mainly depends on the number of
control volumes, discrete directions, and the number of iterations. Take the cubic radiative
system in Figure 2 for example, assuming that the number of control volumes is Ns

3, the
number of discrete directions is N and the number of iterations is Ni, the computation time
of the conventional DOM is roughly proportional to Ns

3 × N2 × Ni. For IDOM, in addition
to the computation time spent in the first step, which is the same as that of the conventional
time, extra computation time to make the integral calculation of Equation (13) in the second
step is needed. On average, the number of integrated control volumes in each direction is
around Ns. Assuming the number of new discrete directions is M and heat flux at Nq points
is to be calculated, the additional computation time of IDOM is roughly proportional to
Ns ×M × N × Nq. Since Ns ×M × N × Nq is much smaller than Ns

3 × N2 × Ni in most
cases, the additional computation time of IDOM is almost negligible compared with the
computation time of the conventional DOM.

The above analysis can also be proved by calculation times of different methods
listed in Table 2. The computation time is about specific cases considered in Section 3.2.
Take Case 1 with isotropic scattering medium as listed in the first line of the table for
instance, calculation time consumed by DOM increases from 1.22 s to 5.88 s with angular
discretization number increases from 80 (S8) to 168 (S12), while the average errors of heat
flux by DOM S8 and DOM S12 are about 16% as shown in Figure 3a. For IDOM S8 + SR10,
its calculation time is only about 0.08 s more than that of DOM S8, while the average error
of heat flux reduces to about 3.8%. This error in IDOM can be further reduced by using
more new directions (such as IDOM S8 + SR20) with negligible increased computation
time. There are similar conclusions in the other cases. That is to say, IDOM can provide
results with much higher accuracy while keeping computation time almost the same as the
conventional DOM.

Furthermore, since the second step in IDOM is merely an integral calculation, the
memory usage for new variables in IDOM is limited and negligible compared with that of
the conventional DOM.
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Table 2. Calculation times consumed by different methods, sec.

Cases A1 RMC DOM S8 DOM S12 IDOM S8 + SR10 IDOM S8 + SR20

Case 1
0 41.64 1.22 5.88 1.30 1.53
−1 42.91 1.77 7.64 1.86 2.03
1 41.86 1.53 6.61 1.63 1.78

Case 2
0 37.70 1.78 8.27 1.92 2.13
−1 38.83 2.61 11.34 2.64 2.88
1 38.05 2.23 9.83 2.27 2.52

Case 3
0 42.48 1.98 8.47 2.03 2.20
−1 43.30 2.78 12.13 2.84 3.02
1 42.69 2.30 9.89 2.33 2.53

4. Conclusions

The IDOM is extended to calculate radiative heat flux in three-dimensional radiative
systems with anisotropic scattering medium. Radiative heat flux calculated in IDOM is
divided into the direct part contributed by emission of the media and the boundaries and
the indirect part contributed by in-scattering of the media and reflection of the boundaries.
Theoretical analysis indicates that IDOM has higher accuracy than the conventional DOM.

Ray effects, together with false scattering in IDOM, were investigated in this paper by
considering the reverse Monte Carlo method as the benchmark solution. In the considered
radiative system with only one boundary emission, which suffers obvious ray effects, the
average error of heat flux was about 16%, and the calculation time was about 1.22 s for
conventional DOM. For IDOM, the average error of heat flux was less than 4% and the
calculation time was only 0.08 s more than that of the conventional DOM. More numerical
experiments show that the IDOM could reduce ray effects effectively both in isotropic
and anisotropic scattering medium with negligible increased computation time compared
with the conventional DOM. Meanwhile, in a radiative system with uniform medium
emission of which the accuracy is not influenced by ray effects, the calculation error of
conventional DOM was larger than 3% while that of IDOM is less than 1%, when the same
spatial resolution was applied in both methods. This numerical experiment proves that
the false scattering error in IDOM was much smaller than that in the conventional DOM.
In a word, the IDOM can overcome the shortages of the conventional DOM well, while
inheriting its advantages such as high computation efficiency and easy implementation.

The IDOM was also applied to investigate the effect of scattering phase functions on
radiative transfer. Results show that the trend of radiative heat flux with different scattering
phase functions is simple for cases of emitting boundaries, while it is complicated for cases
of emitting media.
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