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Abstract: Roughness is an important factor affecting the engineering stability of jointed rock masses.
The existing roughness evaluation methods are all based on a uniform sampling interval, which
changes the geometrical morphology of the original profile and inevitably ignores the influence
of secondary fluctuations on the roughness. Based on the point cloud data obtained by 3D laser
scanning, a non-equal interval sampling method and an equation for determining the sampling
frequency on the roughness profile are proposed. The results show that the non-equal interval
sampling method can successfully maintain the morphological characteristics of the original profile
and reduce the data processing cost. Additionally, direct shear tests under constant normal load
(CNL) conditions are carried out to study the influence of roughness anisotropy on the shear failure
mechanism of joint surfaces. It is found that with the increase in shear displacement, the variations
in the shear stress are related to the failure mechanisms of dilatancy and shear fracture of the joint.
Finally, the distributions of shear stress, dilatancy and fracture areas on the rough joint in different
shear directions are calculated theoretically. Results show that the anisotropy and failure mechanism
of rough joint can be well characterized by the modified root mean square parameter Z2

′.

Keywords: rock joint; surface roughness; sampling interval effect; roughness anisotropy; shear
failure mode

1. Introduction

The safety and stability of jointed rock masses are mainly controlled by the mechan-
ical behavior of the joints. Many factors, such as the mineral composition, geometrical
morphology, roughness and fillers, will significantly affect the mechanical characteris-
tics of the jointed rock mass. Thus, a coupled thermal-hydrological-mechanical model is
employed to investigate the permeability evolution and fault reactivation of a critically
stressed fault in geothermal reservoir [1]. The Mohr–Coulomb model is commonly used
in practice to evaluate the mechanical properties of geotechnical materials [2]. Roughness
will affect the apparent cohesion and friction angle, changing the dilatancy and the peak
shear strength of rock joints [3]. This means that the roughness of the joint surface is a
critical factor in determining the shear strength of rock joints [4]. Consequently, reasonable
characterization of the joint surface roughness and establishment of the correlation between
roughness parameters and shear strength are helpful to evaluate the mechanical behavior
of rock joints.

Initially, 10 standard profiles are used to visually and qualitatively evaluate rock joint
roughness [5]. By comparing the surface morphology of natural joints with the standard
profiles, the most similar profile is selected. The corresponding JRC value can be eas-
ily and quickly obtained by the empirical comparison method, although this is strongly

Energies 2021, 14, 6902. https://doi.org/10.3390/en14216902 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en14216902
https://doi.org/10.3390/en14216902
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14216902
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14216902?type=check_update&version=3


Energies 2021, 14, 6902 2 of 18

dependent on the experience of the engineer. Thus, scholars pay more attention to the
quantitative description of roughness. Many roughness characterization methods, such
as fractal [6], structure functions (SF) [7] and power spectral density (PSD) [8], have been
established. Recently, Ünlüsoy and Süzen [9] proposed a new method for automatically
estimating the JRC of a 2D profile based on PSD. Aslam [10] presented a new approach
to determining roughness coefficient neutrosophic numbers using the neutrosophic ex-
ponentially weighted moving average, which is convenient to apply without fitting the
functions. The root mean square of the first deviation of the profile Z2 has become a
widely used roughness evaluation parameter, although Z2 only considers the effect of
the local inclination angle and ignores the influence of the overall amplitude of the pro-
files on the roughness. Zhang et al. [3] introduced a new roughness index (λ) based on
Z2, which considers the inclination angle, amplitude of asperities and their directions.
Magsipoc et al. [11] conducted a comprehensive review of commonly used 2D and 3D
surface roughness characterization methods. They suggested that 2D profiles may obscure
or exaggerate the roughness features, and 3D roughness characterization methods should
be considered for the development of surface measurement technology. A digital image
processing (DIP) technique was used to reconstruct the surface morphology of joints [12],
and a variogram function was adopted to characterize the anisotropy of the joint surface
roughness and estimate the joint aperture. Moreover, the effects of the sampling interval
and anisotropy on roughness parameters SF, Z2 and Rp were studied utilizing point cloud
data obtained by 3D laser scanning [13]. By averaging the equivalent height difference in
the shear direction to reflect the fluctuation and directivity of the joint surface morphology,
Ban et al. [14] proposed a new roughness parameter called the average equivalent height
difference (AHD), while the fractal dimension of AHD was used to characterize the scale
effect of roughness. The effects of joint surface roughness and anisotropy on the size
and shape of the excavation damage zone in jointed rocks were examined by numerical
simulation [15]. Using a class ratio transform method, the geometric irregularities of the
roughness parameters in the polar coordinate could be transformed to a regular roughness
asperity pattern [16], which could be easily approximated by the ellipse function. However,
the actual roughness in different directions may be ignored after smoothing processing.

The existing statistical methods for roughness evaluation significantly depend on
the sampling interval (∆x) [17]. Azinfar et al. [18] studied the influences of scale effect
on 3D roughness parameters such as the fractal parameter (D), amplitude parameter (A),
roughness parameter (Rs) and (2A0θ*max/(C + 1)). It is noted that the sampling interval
has a negative exponential relationship with the JRC value [19]. While the roughness of
the joint surface AHD proposed by Ban et al. [20] has a positive size effect, there was a
negative size effect and no size effect in a certain direction. The sampling interval has
little influence when using volume and amplitude parameters (Van, Zsa, Zrms, and Zrange)
for JRC estimation, while it has some influence when other parameters (θs, θg, θ2s, SsT
and SsF) are used [21]. Thus, equations with amplitude parameters are recommended
to facilitate the rapid estimation of JRC in engineering practice for their easy calculation.
Huang et al. [22] analyzed the variation in fitting parameters at different values of ∆x based
on the relationship between JRC and statistical parameter Z2, and they established empirical
formulas for JRC, Z2 and ∆x. Due to the scale dependency of roughness, a changing scale
will indirectly affect the surface contact mechanics, such as shear strength and dilation.
Consequently, determining the optimal sampling interval is very important for accurately
estimating the actual roughness and reducing the cost of data processing. Du et al. [23]
proposed the concept of the effective length of the JRC scale effect and established a
graphical method to identify the effective length of the JRC scale effect. Through a Fourier
series reconstructed roughness profile [24], the maximum sampling interval is assigned as
SImax = L/3n, where n is the order of the Fourier series and L is the length of the profile.
A small sample size is generally used during roughness measurement in the laboratory,
while the size of natural joint surfaces may be several meters or even longer. Yong et al. [25]
developed a method for measuring the JRC values of large joints in the field. In order to
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overcome the deficiencies of existing approaches, Huan et al. [26] proposed a new JRC
estimation method based on the back-calculation of shear strength.

Based on the point cloud data obtained by 3D laser scanning, factors that affect the
roughness evaluation, such as the noise of original data and the non-stationary nature
of joints, are discussed in this paper. Four roughness parameters, the roughness ratio
Rp, the angle standard deviation σi, the root mean square method Z2 and the modified
root mean square Z2

′, are used to analyze the scale effect and anisotropy of roughness.
Moreover, the reasons for the scale effect of joint surface roughness are discussed. To
compensate for the deficiencies of the regular interval sampling method that changes the
geometrical morphology of the original profile, a non-equal interval sampling method
and an equation for determining the sampling frequency on the roughness profile are
proposed. Additionally, the influence of roughness anisotropy on the shear mechanism
of the joint is further discussed. The distributions of shear stress and ranges of dilatancy
and non-dilatancy on the joint with different shear directions are calculated based on the
direct shear test. The results are helpful for understanding the influences of the roughness
sampling interval and anisotropy on the shear failure mechanism of the rock joint surface.

2. Materials and Methods
2.1. Collection of Rock Joint Specimen Point Clouds

The joint samples used in this study were collected from the construction site of
Mengxi Road, which is located in Huaxi District, Guiyang City, Guizhou Province. The
lithology of the joints is red argillaceous sandstone. There are three groups of joints
developing in the rock mass, among which the attitude of the dominant joint is 85◦ ∠ 47◦.
In total, 20 jointed rock samples with a size of 140 mm × 140 mm × 70 mm in the x, y
and z axes were collected based on the main joint. A 3D laser scanner was used to obtain
the initial point cloud information of the joint surfaces’ morphology. The resolution of
the scanner was 0.02 mm, and the measurement distance to the samples was controlled at
around 750 mm. In order to collect specimen point clouds without losing data, multiple
separate scan measurements were performed from different angles. The point cloud data
obtained by multiple scans were converted into the original data in a unified coordinate
system according to the relative geometric position of the joint surfaces. Geomagic Studio
was used to extract the three-dimensional scanned information of the research area, and
to perform noise reduction processing on the initial point cloud data. Finally, Surfer was
applied to display the three-dimensional spatial information of the joint surfaces, and to
obtain profiles in different directions for roughness calculation.

2.2. Direct Shear Tests

The 20 scanned contact specimens were subjected to direct shear tests considered to
be under constant normal loading (CNL) conditions. However, slight variations in the
normal stress can occur during the shear test owing to the tolerance of the experimental
device [27]. The shear test device was composed of two blocks: a fixed inferior block and
a superior block, which could move horizontally and vertically through sliding over the
inferior block. A normal force F, corresponding to a normal pressure σn, was applied
on top of the mobile block before the shear tests. This force F generates a normal stress
σn = F/As, where As denotes the area of the horizontal section of the contact specimen.
Then, the superior block was displaced horizontally by applying a horizontal force, thereby
shearing the sample. Displacement sensors were used to record the horizontal and vertical
displacement during the test. The accuracy of the displacement sensor was 0.01 mm. A
YY-8 Type geotechnical mechanics data acquisition instrument was applied to acquire the
experimental data, such as normal stress, shear stress and shear displacement, and the data
collection interval was 10 ms.
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3. Influence of Non-Stationary Joint on Roughness
3.1. Reasons for Non-Stationary Point Clouds

Natural rock masses are subjected to complex tectonization during their geological
history, and their stratification is generally present at a certain angle in the horizontal
direction (Figure 1a). The inclination direction of the joint surface usually becomes the
dominant direction for failure under stress (Figure 1b). The inclination of the joint surface
(Figure 2a) and the non-perpendicular application of light from a 3D laser scanner to
the joint surface (Figure 2b) will cause the point cloud data obtained to be non-stationary.
However, the estimation of joint surface roughness requires the point cloud to be referenced
to the horizontal plane. Ge et al. [28] found that the inclination of the joint surface has
an important influence on the roughness calculation, and a method of transforming the
spatial coordinate system was used to eliminate the influence of joint surface inclination.
Bitenc et al. [29] established an optimal wavelet-denoising procedure for terrestrial laser
scanning data acquired with different scanning ranges and incidence angles, and rock
discontinuities having different roughness characteristics and surface reflectivity.
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Figure 1. Joint surfaces in rock mass. (a) Inclined state of natural rock; (b) Schematic diagram of forces exerted on joint surface.
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Figure 2. Reasons for non-stationary point clouds. (a) Joint surface with an inclination angle; (b) Non-perpendicular
application of light from a 3D laser scanner to the joint surface.
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3.2. Removing the Non-Stationary Feature of Point Clouds

Assume that P(x0, y0, z0) is a source point cloud with non-stationary features and that
Q(x, y, z) is the target point cloud without non-stationary features. The following steps are
required for removing the influence of non-stationarity.
Capturing the original point clouds of rock joints by a 3D laser scanner.
Denoising the original point clouds.
Creating the grid data: the original point clouds are converted into grid data using the
minimum curvature interpolation method (Figure 3a).
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Fitting a plane to the points: the least squares multiple linear regression method is
adopted to obtain the best fitting plane equation of the point cloud of rock joints, which is
Ax + By + Cz + D = 0 (Figure 3b).
Calculating the distance from point P(x0, y0, z0) in the grid data to the fitting plane
d = Ax0+By0+Cz0√

A2+B2+C2 (Figure 3c).
Removing the non-stationary features: new point clouds are generated, taking the

X and Y coordinates of the point P(x0, y0, z0) as the X and Y coordinates of the target
point, and letting the calculated distance d be the Z coordinate of the target point, namely
Q(x0, y0, d) (Figure 3d).

4. Estimation of Joint Surface Roughness
4.1. Methods Used to Evaluate JRC

Numerous methods to represent joint surface roughness have been proposed previ-
ously [11]. Li and Zhang [30] systematically studied the 15 parameters and 47 empirical
equations that are used to evaluate JRC. They found that in terms of correlation coefficients,
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the angle standard deviation σi and the root mean square of the first deviation of the profile
Z2 are the best. In this paper, 14 parallel profile lines along the shear direction with an
interval of 10 mm were intercepted from the study region after the pretreatment process
of original point clouds obtained by a 3D laser scanner (Figure 4). Digitized information
about the intercepted lines was extracted, and the coordinate values for each point on the
lines were obtained. The roughness ratio Rp, σi, Z2 and modified Z2

′ were taken to estimate
the roughness of each profile. Finally, the average roughness of each profile was adopted
to characterize the roughness of the joint surface.
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Roughness ratio Rp
The roughness ratio Rp is the ratio of the actual length of a profile to the nominal

length of the profile [31]:

Rp =
Lt

Ln
=

∑N−1
i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2

∑N−1
i=1 (xi+1 − xi)

(1)

where L is the length of the profile; xi and yi are points along the profile of the x and y
coordinates, respectively.
Standard deviation of the angle σi

The standard deviation of local angle i on the profile line is defined as [32]:

σi = tan−1

[
1
L

∫ x=L

x=0

(
dy
dx
− tan iave

)2
dx

]1/2

(2)

iave =
1
L

∫ x=L

x=0
tan−1

(
dy
dx

)
dx (3)

Root Mean Square method Z2
Amplitude parameters cannot account for local fluctuations and sloping of the profile;

these local fluctuations and sloping of the profile play an important role in the mechanical
behavior of the joints. Myers [33] proposed a parameter to estimate the roughness with
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the root mean square of the average local slope Z2, which has become one of the most
commonly used parameters.

Z2 =

√
1
L

∫ x=L

x=0

(
dy
dx

)2
dx =

√
1
L∑N−1

i=1
(yi+1 − yi)

2

xi+1 − xi
(4)

where Z2 is the root mean square of the first deviation of the profile.
Modified Root Mean Square Z2

′

The roughness of rock joints is an anisotropic property. Variation in the shear direction
may cause a change in the shear strength of the joint surface. The profile is divided
into positive and negative areas along the shear direction to account for the directional
dependencies of JRC (Figure 5). Zhang et al. [3] suggested that the positive area should be
considered in the process of determining joint roughness in the shear direction. Therefore,
the modified root mean square of the first deviation of the profile was obtained.

Z2
′ =

√
1
L

∫ x=L

x=0

(
max

(
0,

dy
dx

))2
dx =

√
1
L∑N−1

i=1
(max(0, yi+1 − yi))

2

xi+1 − xi
(5)
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4.2. Size Effect of Regular Sampling Interval

There are many contradictions in the existing research results regarding the size effect.
Most scholars believe that there is a negative correlation between the sampling interval and
JRC [19], while the roughness characterization method proposed by Ban et al. [20] shows a
positive size effect, a negative size effect and no size effect in a certain direction. The size
effect of roughness is linked to the characteristics of the joint surface itself and the shear
direction. The above equations were used to calculate the roughness of the 14 profiles in the
shear direction. The average roughness and variance are shown in Figure 6. It is obvious
that the parameters Rp, σi, Z2 and Z2

′ decreased with the increase in sampling interval, and
eventually stabilized, showing a negative size effect. As the sampling interval increased,
the roughness parameters reduced rapidly and finally stabilized gradually. As the existing
roughness estimation methods are sensitive to the sampling interval (∆x), it is extremely
important to study the relationship between the sampling interval and roughness in order
to determine the maximum sampling interval. Huang et al. [22] established an empirical
formula of JRC, Z2 and ∆x.

JRC = −13.96∆x−0.24 + 55.90∆x0.01
√

Z2 (6)
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Figure 6. Relationships between roughness parameters with sampling interval. (a) Rp; (b) σi; (c) Z2; (d) Z2
′.

Unfortunately, it is difficult to determine the maximum sampling interval directly
through the above empirical formula. Yong et al. [24] proposed a method of Fourier series
reconstruction of the roughness profiles to determine the maximum sampling interval,
although this approach is very cumbersome.

As shown in Figure 7, the fluctuation of the original profile L1 can be better reflected
when the sampling interval is set as ∆x = 0.7 mm; meanwhile, the sampling point skips a
part of the peak or trough on the profile when the sampling interval is set as ∆x = 7.0 mm.
Consequently, the equal-spacing sampling method modifies the geometrical morphology
of the original profile. The roughness estimation error becomes larger and larger with
the increase in sampling interval. The threshold value of the sampling interval suggested
in previous studies obtained from stabilized roughness in fact filters the influence of the
secondary fluctuations in the original profile on the roughness evaluation. However, these
secondary fluctuations play a significant role in the shearing process of the joint surface.

4.3. Non-Equal Interval Sampling Method

In order to ensure the geometrical morphology of the original profile to the utmost
extent, a non-equal interval sampling method is proposed. When the non-equal interval
sampling method is applied, the sampling frequency should be increased where the
curvature is large, which can be reduced, and the sampling spacing should be increased
in places with small curvature. Mathematically, if the joint profile can be expressed by
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the equation y = y(x)(0 ≤ x ≤ L) (Figure 8), for any point M on the profile line where
y′′ (x) 6= 0, the curvature radius is:

R =
1
K

=

{
1 + [y′(x)]2

}3/2

y′′ (x)
(7)

The curvature K and the radius of curvature R are both greater than 0 when y′′ (x) > 0, indi-
cating that the arc is curved upward or the circle of curvature is above the arc. Conversely,
this implies that the arc is curved downward or the circle of curvature is below the arc.

Energies 2021, 14, x FOR PEER REVIEW 9 of 18 
 

 

Figure 7. Profiles of L1 with different sampling intervals. 

4.3. Non-Equal Interval Sampling Method 
In order to ensure the geometrical morphology of the original profile to the utmost 

extent, a non-equal interval sampling method is proposed. When the non-equal interval 
sampling method is applied, the sampling frequency should be increased where the 
curvature is large, which can be reduced, and the sampling spacing should be increased 
in places with small curvature. Mathematically, if the joint profile can be expressed by the 
equation ( )( )Lxxyy  0  (Figure 8), for any point M on the profile line where 

( ) 0'' xy , the curvature radius is: 

( )  
( )xy

xy

K
R

''

'11
2/32

  (7)

The curvature K and the radius of curvature R are both greater than 0 when ( ) 0'' xy , 
indicating that the arc is curved upward or the circle of curvature is above the arc. 
Conversely, this implies that the arc is curved downward or the circle of curvature is 
below the arc. 

 

Figure 8. Curvature radius of point M on the profile line. 

0 20 40 60 80 100 120 140
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

E
le

va
ti

on
 (

m
m

)

X (mm)

 x=0.7mm
 x=7.0mm

Skipped peak

xM

y=y(x)

Curvature circle

R
M

y

xO

Figure 7. Profiles of L1 with different sampling intervals.

Energies 2021, 14, x FOR PEER REVIEW 9 of 18 
 

 

Figure 7. Profiles of L1 with different sampling intervals. 

4.3. Non-Equal Interval Sampling Method 
In order to ensure the geometrical morphology of the original profile to the utmost 

extent, a non-equal interval sampling method is proposed. When the non-equal interval 
sampling method is applied, the sampling frequency should be increased where the 
curvature is large, which can be reduced, and the sampling spacing should be increased 
in places with small curvature. Mathematically, if the joint profile can be expressed by the 
equation ( )( )Lxxyy  0  (Figure 8), for any point M on the profile line where 

( ) 0'' xy , the curvature radius is: 

( )  
( )xy

xy

K
R

''

'11
2/32

  (7)

The curvature K and the radius of curvature R are both greater than 0 when ( ) 0'' xy , 
indicating that the arc is curved upward or the circle of curvature is above the arc. 
Conversely, this implies that the arc is curved downward or the circle of curvature is 
below the arc. 

 

Figure 8. Curvature radius of point M on the profile line. 

0 20 40 60 80 100 120 140
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

E
le

va
ti

on
 (

m
m

)

X (mm)

 x=0.7mm
 x=7.0mm

Skipped peak

xM

y=y(x)

Curvature circle

R
M

y

xO

Figure 8. Curvature radius of point M on the profile line.

The curvature radius between adjacent points was calculated along the shear direction
after obtaining the point clouds of the rock joints by 3D laser scanning. Different curvature
radius thresholds R0 were applied. The coordinate data were recorded and saved if the
calculated curvature radius R < R0. Otherwise, the data of this point were not recorded.
The values of the four roughness parameters mentioned above under different curvature
radius thresholds were calculated using this method (Figure 9). In the process of reducing
the curvature radius threshold R0, the values of the parameters showed different degrees
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of reduction. However, the reduction in each parameter was trivial when R0 was between
150 mm and 30 mm, indicating that the roughness parameters are not sensitive to the
variation in the curvature radius in this range. Contrarily, the roughness parameters
decreased rapidly with the decrease in the curvature radius when R0 < 30 mm.
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Figure 9. Roughness under different curvature radius thresholds.

The following equation was adopted to determine the sampling frequency on the
joint profile:

f =

[
Ki

∑ Ki

L
∆x0

]
(8)

where the square bracket represents rounding, f is the sampling frequency, and Ki is
the curvature at the i-th point on the profile line; ∆x0 relates to the accuracy of the 3D
laser scanner.

Equation (8) implies that the sampling frequency of a local curve on the profile is close
to 0 when its curvature satisfies Ki ≈ 0. As a consequence, points on this local curve can be
skipped and have almost no influence on the roughness estimation, while the geometry
information of a point will be recorded for roughness calculation where the sampling
frequency f ≥ 1.

Figure 10 shows the original profile, non-equal sampling frequency and its profile of
L1, indicating that the geometrical morphology of the profile obtained using Equation (8) is
almost the same as the original profile. Roughness values calculated by the profile using the
proposed non-equal interval sampling method are listed in Table 1. The relative errors of Rp,
Z2 and Z2

′ are, respectively, 0.01%, −1.15% and 0.60%, while the angle standard deviation
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σi has an error of 50.10%. The roughness values calculated from the original profile and
the non-equidistant profile are in good agreement. Numerous methods, including UAV
aerial surveys and three-dimensional laser scanning, can obtain massive point cloud data.
The processing of these point cloud data is a huge challenge in terms of computer storage
and computing performance. However, the amount of data required by the proposed
non-equal interval sampling method is only 54.7% of the original data. In other words, the
non-equidistant roughness evaluation method can greatly reduce the amount of data to
improve the efficiency of data processing, but has little effect on the overall roughness.
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Figure 10. Non-equidistant sampling frequency and its profiles of L1.

Table 1. Relative error of roughness calculation using non-equidistant methods.

Roughness Parameters Rp Z2 Z2
′ σi

Original profile 1.0061 0.8934 0.4783 1.0017
Non-equidistant profile 1.0060 0.9036 0.4755 0.5000

Relative errors (%) 0.01 −1.15 0.60 50.10

4.4. Roughness Anisotropy

The anisotropy of roughness severely affected the shear failure mode of the rock
joints. Based on the aforementioned four roughness evaluation parameters, the rough-
ness anisotropy of the joint surface is discussed. According to the proposed non-equal
interval sampling method, the four roughness evaluation parameters were calculated by
Equations (1)–(5). In total, 36 directional profiles were extracted from 0◦ to 360◦ with an
interval of 10◦ to analyze the roughness anisotropy of the joint surface (Figure 11a), where
the x axis is the direction of 0◦ and the y axis is the direction of 90◦. Obtained radar plots of
the four roughness parameters are presented in Figure 11b.

To quantitatively characterize the roughness anisotropy of joint surfaces, a parameter
AAHD considering the roughness characteristics of different shear directions was proposed
by Ban et al. [20]. Using a method similar to that of Ban et al. [20], the anisotropy of the
roughness parameter (ARP) is defined as:

ARP =

√
∑n

i=1(RPi − RPave)
2

n
(9)
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where RPi is the roughness for the i-th analysis direction of a specific evaluating parameter,
and four parameters Rp, σi, Z2 and Z2

′ are used in this paper; RPave is the average value of
RPi of all analysis directions, and n is the total number of analysis directions. The roughness
anisotropy parameter ARP is composed of RPi, which can reflect the shear mechanism
and takes into consideration the roughness characteristics of the joint surface in all shear
directions; thus, it is more reasonable and comprehensive. When ARP = 0, the roughness
of the joint surface is isotropic, and when ARP > 0, the roughness of the joint surface is
anisotropic. The larger the value is, the more significant the anisotropic character.

The anisotropy indexes of the four roughness parameters Rp, σi, Z2 and Z2
′ are 0.004,

0.078, 0.187 and 0.137, respectively. The calculation results show that Z2 and Z2
′ can

accurately reflect the anisotropy of the joint surface, while the anisotropy of Rp is the least
obvious, followed by σi. It can be seen from Figure 11a that there are several obvious
ridges on the joint surface with an attitude of around 50◦~70◦. The calculated roughness
of σi, Z2 and Z2

′ in this direction is the smallest, indicating that the resistance is minimal
when the joint surface is sheared along the direction of 50◦~70◦. However, the direction
of 80◦~140◦ intersects the direction of the ridge with a large angle, and the calculated
roughness is relatively large, indicating that the joint surface receives the greatest resistance
when shearing in this direction.
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5. Shear Failure Mechanism of Rock Joints

Two failure modes may exist in the rock joints in the process of shearing, namely
dilatancy failure and non-dilatancy failure (shear fracture) (Figure 12). Ban et al. [14]
defined the critical aspect ratio mc:

mc ≈
1

2 tan
(

ϕ f /2 + 45◦
) (10)

where ϕf is the internal friction angle of an intact rock.
The method proposed by Kwon et al. [34] was used to calculate the shear stress of the

joint surface:{
τ = 2mc f tan

(
45◦ + ϕ f /2

)
+ mσn tan2

(
45◦ + ϕ f /2

)
m < mc

τ = c f + σn tan ϕ f m > mc
(11)

where cf is the cohesion of an intact rock and σn is the normal stress. m = h/l is the aspect
ratio of the local convex area (Figure 12).
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Figure 12. Failure modes of rock joints during direct shear test. (a) Joint matching; (b) Dilatancy failure; (c) Fracture failure.
The aspect ratio of the local convex area is m = h/l, and the dilatancy is δ.

As shown in Figures 5 and 12, the protruding part of the joint surface along the shear
direction is beneficial to improve the shear strength. The roughness profile was divided
into a positive area (yB − yA > 0) and a negative area (yD − yC < 0) along the shear direction
(Figure 5). The shear stress was 0 on the negative region during the shearing process,
i.e., τ = 0. Two failure modes existed on the positive region in the process of shearing
(Figure 12). When m is less than mc, the shear strength increases linearly with m. When m
is greater than mc, the shear strength remains unchanged.

The variation in shear stress with shear displacement on the joint surface is dis-
played in Figure 13a, and the relationship between peak shear strength and normal stress
(Figure 13b) was obtained. The apparent cohesion and internal friction angle of the rock
joint were, respectively, cf = 48.81 kPa and ϕf = 38.26◦. Figure 13a illustrates that, under any
normal stress conditions, an increase in shear stress occurs twice in the process of shearing.
The variation in shear stress with shear displacement can be divided into several stages.
The shear stresses increased rapidly at the initial stage of the test (OA stage), and they were
almost unchanged or only slightly increased at stage AB; the shear stress increased again
at stage BC and finally decreased (CD stage).
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Figure 13. Results of direct shear test. (a) The variation in shear stress with shear displacement; (b) The relationship between
peak shear strength and normal stress.

Complex geo-technical response should be faced with the progress of engineering
construction because of sudden change of failure pattern and formation modulus [35].
The variation in shear stress with shear displacement may be related to the geometric
characteristics of the joint surface. The shear strength on the rough surface was triggered in
two stages. The first stage occurred at the beginning of the test. Initially, the inferior block
and the superior block of the rock joints matched well (shown in Figure 12a). After a slight
displacement of the sample, the friction strength between the upper and lower rocks could
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be quickly activated due to the dilatancy and slip effect. The shear stress was essentially
unchanged or only slightly increased when the sliding friction strength of the structural
surface was fully adjusted. The rock blocks suffered from the resistance of the protruding
parts on the uneven surface after sliding for a certain distance, forming an interlocking
effect. As a consequence, the shear strength was activated again because of the interlocking
effect. The shear stress was quickly reduced if the interlocking effect disappeared owing to
the shearing destruction of these protruding parts on the roughness surface.

The shear stress distribution along different shear directions was calculated by
Equation (11) for the normal stress σn = 400 kPa. Shear stress distribution for shearing in
the positive direction of the x axis is shown in Figure 14, where white indicates that no
shear stress was exerted in this area during the shearing process. The calculation result
reveals that the protruding parts on the roughness surface contributed to the shear strength.
As mentioned previously, two different failure modes were exhibited on the joint surface
during the shearing process. The dilatancy failure area and fracture failure area for shearing
in the positive direction of the x axis are shown in Figure 15. Accompanying the appearance
of dilatancy, a large area on the rough surface expressed a certain degree of slip (Figure 15a).
Stress concentration occurred when the upper and lower blocks of the roughness surface
slipped to a certain extent, resulting in shear fracture failure of the protruding parts on the
roughness surface due to shear stress greater than their shear strength (Figure 15b).
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In order to reflect the influence of roughness anisotropy on shear strength, the shear
stress distribution for shearing in the negative direction of the x axis was calculated under
the same conditions (Figure 16). The dilatancy failure area and fracture failure area in this
situation were discussed (Figure 17). Comparing the shear stress distribution on the joint
surface during shearing along the positive and negative directions of the x axis, it was
found that the shear stress distribution was significantly different by changing the shear
direction. There were regions with failure from dilatancy or shear fracture by shearing in
the positive direction, while no shear stress was exerted in these regions for shearing in the
opposite direction. Significant differences in the shear strength of the joint surface were
exhibited in the two situations. However, only the modified root mean square parameter
Z2
′ among the four roughness evaluation parameters selected in this paper can consider

the failure mechanism in the case of changing the shearing direction of the rock joints.
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6. Conclusions

Influences of point cloud noise and the non-stationary nature of joints on roughness
evaluation are discussed, and a method to remove the non-stationary feature of point
clouds is proposed.

The scale effect and anisotropy of roughness for a uniform sampling interval are
investigated by four parameters Rp, σi, Z2 and Z2

′, exhibiting an obvious negative size
effect. The reason for the scale effect of joint surface roughness is that the regular sampling
interval method changes the geometrical morphology of the original profile, thereby
ignoring the contribution of secondary fluctuations to roughness.

A non-equal interval sampling method and an equation for determining the sampling
frequency on the roughness profile are proposed, which can successfully maintain the
morphological characteristics of the original profile and reduce the data processing cost.

Direct shear tests under constant normal load (CNL) conditions are carried out to
study the influence of roughness anisotropy on the shear failure mechanism of rock joints.
The shear stress is found to be determined by the failure mechanisms of dilatancy and
shear fracture on the roughness of the joint.

The distributions of shear stress, dilatancy and fracture areas on the roughness of
the joint in different shear directions are calculated theoretically. Results show that the
anisotropy and failure mechanism of joint roughness can be well characterized by the
modified root mean square parameter Z2

′.
The research results are helpful for understanding the influences of roughness sam-

pling interval and anisotropy on the shear failure mechanism of the rock joint surface.
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