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Abstract: In this study, the combustion characteristics and emission of toxic gases of a non-class
1E cable in a nuclear power plant were investigated with respect to the aging period. A thermal
accelerated aging method was applied using the Arrhenius equation with the activation energy of
the cables and the aging periods of the cables set to zero, 10, 20, 30 and 40 years old by considering
the lifetime of a nuclear power plant. According to ISO 5660-1 and ISO 19702, the cone calorimeter
Fourier transform infrared spectroscopy test was performed to analyze the combustion characteristics
and emission toxicity. In addition, scanning electron microscopy and an energy dispersive X-ray
spectrometer were used to examine the change in the surface of the sheath and insulation of the
cables according to the aging periods. To compare quantitative fire risks at an early period, the
fire performance index (FPI) and fire growth index (FGI) are derived from the test results of the
ignition time, peak heat release rate (PHRR) and time to PHRR (tPHRR). When comparing FPI and
FGI, the fire risks decreased as the aging period increased, which means that early fire risks may
be alleviated through the devolatilization of both the sheath and insulation of the cables. However,
when comparing heat release and mass loss, which represent the fire risk at the mid and late period,
fire intensity and severity increased with the aging period. The emission of toxic gases coincided
with the results obtained from the heat release rate, which confirms that the toxicity of non-aged
cables is higher than that of aged cables. From the results, it can be concluded that the aging period
significantly affects both the combustion characteristics and toxicity of the emission gas. Therefore,
cable degradation with aging should be considered when setting up reinforced safety codes and
standards for cables and planning proper operation procedures for nuclear power plants.

Keywords: non-class 1E cable; accelerated aging; cone calorimeter FTIR; SEM-EDS; combustion char-
acteristics

1. Introduction

In recent years, when a nuclear power plant (NPP) has been developed for the third
generation, the design life time of NPPs has been increased to 60 years [1]. Previously
designed second generation NPPs intend to extend the design lifetime of the original
40 years according to the long-term operation (LTO). Therefore, studies on the aging
degradation of systems, structures and components (SSCs) for predicting their lifetime have
been continuously conducted [2]. Cables, one of the components, are available in various
types and span several thousand kilometers [3,4] for power supply and signal transmission.
As cables are widely installed and difficult to replace regularly, it is necessary to conduct
normal operating functions during the design lifetime of NPPs. In particular, cables
consisting of a polymeric insulation and sheath are classified as combustible materials and
must maintain a certain level of flame retardant performance during the design lifetime of
NPPs. However, cables degrade with age due to exposure to several stress factors such as

Energies 2021, 14, 2003. https://doi.org/10.3390/en14072003 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6171-1314
https://doi.org/10.3390/en14072003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14072003
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/7/2003?type=check_update&version=1


Energies 2021, 14, 2003 2 of 17

high temperatures, humidity and radiation [5]. These factors can lead to the hardening of
the polymeric material and eventually cracking and loss of function [6]. In addition, cable
aging degrades the flame retardant performance leading to cable fires that may affect the
safety of NPPs [3] because the polymeric insulation and sheath undergo many changes
during the aging period such as chemical structure changes, chemical chain breaks and an
increase in micro-voids [7,8].

Studies on the aging properties and mechanisms of cables consisting of polymeric
materials have been conducted steadily in recent years [8–10]. Chi et al. [1] and Zhang
et al. [11] reported on the changes of the properties of cable insulation with thermal aging
including the chemical, thermal, dielectric and mechanical properties. Sarac et al. [12]
and Min et al. [13] studied the influence of gamma ray irradiation on the mechanical and
dielectric characteristics of polymers used in NPPs. In addition, the power cables used in
NPPs operate at a high voltage and high ampacity, resulting in the thermal degradation
of cables. It leads to changes in the properties of the polymeric insulation [14]. Kang
et al. [15] investigated the changes in properties of aged polymeric insulation by using
the accelerated aging test. Kang et al. concluded that the insulation resistance, which is
the main function of insulation, rapidly reduced after an induced aging time of 40 years.
For the properties of fire performance, Zhang et al. [16] investigated the effects of thermal
aging, xenon arc aging, ozone aging and hydrothermal aging on fire performance including
the ignition time and heat release rate of cables using a cone calorimeter. Zhang et al.
reported that the fire hazard of a thermal aged cable was higher than the other aged cables.
These studies contend that thermal and irradiation aging are critical factors of degradation.
However, irradiation aging occurs only within the containment unit of NPPs and thermal
aging can occur in any area of NPPs. Therefore, this study preferentially focuses on the
influence of thermal aging on the changes in the fire properties of cables.

Consequently, in this study, the fire behaviors and thermal aging properties of cables
are evaluated according to their aging periods. Thermal aging was conducted by applying
the accelerated thermal aging model described in Section 2.2. The aging periods were
decided for up to 40 years with intervals of 10 years in consideration of the original design
lifetime of second generation NPPs. The aged cables according to the aging periods were
implemented through the accelerated thermal aging process. The fire behaviors were
divided into the combustion characteristics and the emission characteristics of toxic gases.
These were analyzed by conducting cone calorimeter FTIR (Fourier Transform Infrared
Spectroscopy). In addition, the thermal aged cables were investigated by using a scanning
electron microscopy (SEM)-energy dispersive X-ray spectrometer (EDS) to analyze the
microscopic surface changes of the sheath and insulation during the accelerated aging
process. These results provide valuable information on the fire behaviors and the thermal
aging properties of the polymeric materials. This study ultimately aims to support fire
safety improvements in NPPs by providing foundational data that can help establish the
technical standards for aged cables.

2. Materials and Methods
2.1. Material

Cables used in NPPs must pass certain fire resistance tests including IEEE-383 (IEEE
Standard for Type Test of Class 1E Electric Cables, Field Splices and Connections for Nu-
clear Power Generating Stations) [17] and IEEE 1202 (IEEE Standard for Flame Testing of
Cables for Use in Cable Tray in Industrial and Commercial Occupancies) [18] according
to NUREG (Nuclear Regulatory Report)-0800 [19] and the regulatory guidelines of the
Nuclear Regulatory Commission (NRC). This test standard is a flame retardant perfor-
mance measurement carried out through a vertical tray flame test (VTFT), which should
demonstrate that flames do not spread even if the sheath or insulation of cables at the
flame contact area is damaged for 20 min of test time. In this study, a non-class 1E cable
that passed the VTFT was used. As shown in Table 1 and Figure 1, the cable is used for
power supply and control and consists of a polychloroprene rubber (CR)-based sheath,
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ethylene-propylene rubber (EPR)-based insulation and a bundle of conductive copper
wires. The outer diameter of the cable is 25 mm. The item number of the cable is 600 V
FR-PN 1 C × 300 MCM cable. Herein, FR is flame retardant; PN means EPR insulation and
Neoprene (CR) sheath; 1 C is 1 core.

The aged cables were implemented through the accelerated thermal aging process
described in Section 2.2. The combustion characteristics and toxic gases in the non-aged
and accelerated aged cables (10, 20, 30 and 40 years) were analyzed via the cone calorimeter
FTIR test described in Section 2.3.

Table 1. Specification of experimental cable.

Division Detail

Application Power/Control

Voltage [V] 600

Outer diameter [mm] 25

Material properties
Sheath Polychloroprene rubber (CR)

Insulation Ethylene propylene rubber (EPR)
Conductor Copper
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Figure 1. Cross-sectional view of a non-class 1E cable.

2.2. Accelerated Aging Method

To produce accelerated aged cables, a thermal aging model that considers the rela-
tionship between time and temperature was applied. The accelerated thermal aging test
was performed using an ESPEC Industrial Ovens temperature chamber (ESPEC CORP,
Osaka 530-8550, Osaka, Japan). The accelerated aged cables were produced by drying the
non-aged cables inside the chamber where hot air was circulated.

Herein, the accelerated aging period was determined by applying the Arrhenius
equation of Equation (1).

ln

(
k(T)

k(Tre f )

)
=

(
Ea

kB

)
×
(

1
Tre f

− 1
T

)
(1)

where T was the operating temperature of the cable, k(T) was the reaction rate at tempera-
ture T, Tref was the temperature of the chamber, k(Tref) was the reaction rate at temperature
Tref and kB was the Boltzmann constant (=8.617 × 10−5 eV/K). In this study, T was set
to 60 ◦C (=333.15 K), the maximum continuous operating temperature of the 600 V class
control cable conductor. Tref was set at 100 ◦C considering the operating condition of the
chamber and the calculation of the suitable accelerated aging time. However, the activation
energy (Ea) was not provided by the cable supplier so it was experimentally obtained using
a thermogravimetric (TG) analyzer.

The TG analyzer is a useful tool for analyzing the thermal decomposition and pyrolysis
of materials using TG and differential thermal analyses according to the heating rate [20–23].
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From the TG experiments, the exothermic peak temperature (Tm), which is a unique
property of the material, could be measured and it varied with respect to the heating rates.

The Kissinger method utilized this characteristic of materials to induce Ea [24] and the
fundamental expression of the analytical method was as Equation (2).

ln
(

β

T2
m

)
= ln

(
αR
Ea

)
−
(

Ea

RTm

)
(2)

where α was the Arrhenius pre-exponential factor and R was the gas constant (=8.314 J/mol
K). The Kissinger method is a model-free method that calculated Ea without model as-
sumptions by grouping the terms such as the pre-exponential factor and model into the
intercept of a linear equation and uses the slope of that equation to calculate the activation
energy [25]. Thus, Ea could be determined from the slope of the straight line obtained by
plotting ln(β/Tm

2) versus 1/Tm.
In this study, four heating rates of 5, 10, 15 and 20 ◦C/min were selected to obtain

the slope (=d[ln(β/Tm
2)]/d[1/Tm]) because four points were enough to verify the linearity

of the relationship between ln(β/Tm
2) and 1/Tm, which also proved the reliability of the

experiments. The detailed procedure and results to obtain Ea for the present study using
the Kissinger method is described in Section 3.1 and the required time for the accelerated
aging was also calculated from the obtained Ea.

2.3. Cone Calorimeter FTIR

To analyze the combustion characteristics and gases for the cables, cone calorimeter
FTIR was used according to the ISO 5660-1 [26] and ISO 19702 [27] standards.

The cone calorimeter test method is based on the principle that approximately 13.1 MJ
of heat is emitted when 1 kg of oxygen is consumed during combustion. The cone calorime-
ter measures flammability parameters such as time to ignition (TTI), mass loss (ML), heat
release rate (HRR) and total heat release (THR). Moreover, this setup can be coupled with
various gas analyzers to determine the toxic gases in the smoke correlated with their toxic-
ity [28]. The combustion gases were analyzed using FTIR based on the principle that each
combustion gas has a specific spectrum when transmitted in the infrared (IR) spectrum.
In this study, a Gasmet DX-4000 was used, allowing the identification and quantification
simultaneously of multiple gaseous compounds, among which were CO, CO2, HCN, HCl,
HBr, HF, SO2 and NOX [29]. The sampling flow rate was 0.2 L/min.

As shown in Figure 2, the combustion products emitted during the test were passed
through the ring probe to measure the combustion gases and flammability parameters
with respect to time. If the temperature of the combustion gases exceeds 200 ◦C, accurate
measurement can be difficult, thereby changing the molecular structure and composition
of the gases [30]. Thus, the combustion gas temperature was maintained at approximately
150–180 ◦C during the gas sampling process. The specimens were prepared by assembling
four in a row side by side cables of 100 mm length and 25 mm outer diameter, hence the
configuring 100 mm × 100 mm × 25 mm size as shown in Figure 2. The test was set to
20 min and a heat flux of 50 kW/m2. The exhaust flow was maintained at the rate of
0.024 ± 0.002 m3/s. Table 2 presents the detailed cone calorimeter test conditions. Each test
for all cases of non-aged and aged cables was conducted three times repeatedly to ensure
the reliability of the test by following the standard code of ISO 5660-1.

Table 2. Cone calorimeter test conditions.

Test Condition Value

Size of specimens (mm3) 100 × 100 × 25
The number of tests for each cable 3

Test running time (min) 20
Heat flux (kW/m2) 50

Exhaust flow (m3/s) 0.024 ± 0.002
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2.4. SEM-EDS

SEM-EDS is one of the best and most widely used techniques for the chemical and
physical characterization of materials [31]. In this study, a scanning electron microscope
(SEM, Model: JSM 7001F) was used to capture the images of the samples of aged and non-
aged cables by scanning their surface with a focused electron beam. An energy dispersive
X-ray spectroscopy (EDS, Model: Oxford X-Max 50 mm2), which was linked to the SEM,
was also used to obtain the information on the elemental compositions of the samples [32].
SEM-EDS analyses were conducted for the sheath and the insulation independently and
the size of each sample was around 10 mm × 10 mm. Each sample was coated with a highly
conductive thin gold film to effectively enhance the reflexibility of the sample because
rubbers such as CR and EPR, which are the main materials of the sheath and insulation,
weakly reflect and mostly absorb the electronic beam. In the post-processing procedure,
the signal of the SEM for gold was compulsorily excluded because it was not an original
element contained in the samples. By this manner, good SEM images of the samples of
non-aged and aged cables could be acquired and they are illustrated in Section 3.5.

3. Results and Discussions
3.1. TG Analysis

Figure 3 shows TG and DTG (differential thermogravimetric) curves of the non-class
1E cable at heating rates of 5, 10, 15 and 20 ◦C/min. The initial temperature at which
the thermal conversion reaction begins is approximately 250 ◦C. When the heating rate
was increased from 5 to 20 ◦C/min, the peak temperature Tm shifted from 338.40 to
364.04 ◦C. A higher heating rate implies that the material reaches that temperature in a
shorter time [25,33]. Hence, an increase in the heating rate tends to delay the thermal
degradation process.

As shown in Figure 4, the TG analysis results were plotted in the ln(β/Tm
2) versus

1/Tm domain to determine the slope of the linear fitting, which was identical to E/R. The
correlation coefficient (R2) of the linear fitting was 0.9944, which indicated that ln(β/Tm

2)
and 1/Tm were highly correlated and proved the high reliability of the experimental results
in compliance with Equation (2). From the obtained values of the slope of the line (=E/R),
the intercept (=ln[αR/E]) and the Kissinger equation, the Ea of the non-class 1E cable was
calculated as 163.20 kJ/mol (=1.691 eV), which was rather higher than the Ea of EPR cables
in other studies (e.g., 1.23 eV was obtained by Kim et al. [34]; 0.98 eV was obtained by Park
et al. [35]). In this study, a higher Ea was obtained because not only the EPR insulation but
also the CR sheath were used in the TG analysis while the others did not. From the obtained
Ea, the required accelerated aging time was calculated according to the aging period as
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shown in Table 3. The required time for aging increased linearly with an increased aging
period but it varied significantly with respect to Ea and more time was required for it to be
equally aged for the cable having a lower Ea. For example, 887 h, 1774 h, 2660 h and 3547 h
were required for 10, 20, 30 and 40 year aging, respectively, when Ea = 1.23 eV; 2256 h,
4511 h, 6767 h and 9022 h were required for 10, 20, 30 and 40 year aging when Ea = 0.98 eV.
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Table 3. Required time for accelerated aging calculated by the Arrhenius equation.

Aging Period [y]
Required Time [h]

Ea = 1.69 eV
(The Present Study)

Ea = 1.23 eV
(Ref. [34])

Ea = 1.69 eV
(The Present Study)

10 157 887 2256
20 315 1774 4511
30 472 2660 6767
40 630 3547 9022
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3.2. Combustion Characteristics in the Early Period

The fire performance index (FPI) and fire growth index (FGI) were observed as repre-
sentative indicators of the combustion characteristics in the early period while HRR, THR
and ML were analyzed as representative indicators of the combustion characteristics in
the mid and late periods. As previously mentioned in Section 2.3, each test was replicated
three times and both the average and the standard deviation (SD) of the test results were
compared, as shown in Table 4. While the PHRR and the tPHRR had a small standard
deviation relative to the mean value, the TTI had a large deviation up to 75.36% of the
SD/mean. The large SD of 30 year and 40 year accelerated aged cables were attributed
from the results that the TTI in only one test case was measured as more than 100 s. This
phenomenon may be considered as a singular point but the irregular retards in the ignition
was the nature of the fire itself so the data remained in the input of the calculation. The
SDs of the PHRR and the tPHRR were under 15% so the repeatability of this study was
within the acceptable level of significance when considering that the cone calorimeter test
had a quite large deviation in most results up to several tens of percentage [36].

Table 4. Mean and standard deviation for each of the test values.

Parameter Number of
Repeated Tests

Aging
Period [y] Mean SD SD/Mean

(%)

PHRR
[kW/m2] 3

Non-aged 146.19 3.08 2.11%
10 131.14 2.32 1.77%
20 125.23 1.77 1.41%
30 92.05 3.70 4.02%
40 99.32 1.96 1.97%

TTI [s] 3

Non-aged 38 0.58 1.52%
10 44 12.66 28.77%
20 31 3.46 11.16%
30 73 49.10 67.26%
40 56 42.20 75.36%

tPHRR [s] 3

Non-aged 72 2.65 3.68%
10 88 4.93 5.60%
20 80 3.79 4.74%
30 88 11.93 13.56%
40 83 9.50 11.45%

FPI
[s-m2/kW] 3

Non-aged 0.262 0.005 1.88%
10 0.333 0.094 28.26%
20 0.248 0.027 10.73%
30 0.789 0.505 64.01%
40 0.560 0.396 70.71%

FGI
[kW/m2-s] 3

Non-aged 2.030 0.096 4.71%
10 1.490 0.073 4.92%
20 1.565 0.037 2.33%
30 1.046 0.244 23.33%
40 1.197 0.113 9.42%

Initial mass
[g] 3

Non-aged 719 10.15 1.41%
10 667 2.94 0.44%
20 645 6.31 0.98%
30 650 5.11 0.79%
40 619 7.63 1.23%

The FPI and FGI are defined as the ratio of the TTI to the PHRR and the ratio of the
PHRR to the tPHRR, respectively. FPI and FGI can be obtained using Equations (3) and (4),
respectively [37,38].

FPI =
TTI

PHRR
(s·m2/kW). (3)
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FGI =
PHRR
tPHRR

(kW/s·m2). (4)

FPI and FGI are closely correlated with fire risk, as presented in Equation (5). A short
TTI signifies the easy ignition of a fire; a high PHRR signifies serious damage due to the
radiated heat during a fire; a short tPHRR signifies easy fire growth from the ignition to a
fully developed fire during flashover.

FGI
FPI

∝ Fire risk. (5)

As shown in Figure 5, the mean FPI of 30 and 40 year accelerated aged cables was
larger than that of non-aged, 10 and 20 year accelerated aged cables. This result was very
similar to those reported in NUREG/CR-2868 (Aging Effects on Fire Retardant Additives in
Organic Materials for Nuclear Plant Applications) [39] and NUREG/CR-5619 (The Impact
of Thermal Aging on the Flammability of Electric Cables) [40] published by the NRC. As
both of them reported, the flame retardant performance of the aged cables was better than
that of the non-aged cables because of the evaporated volatile components during the aging
process of the cables consisting of EPR insulation and a chlorosulfonated polyethylene
sheath. The results of this study also supported the fact that volatile components contained
in the cable evaporated as the accelerated thermal aging progressed. In addition, the
clue on the evaporation of volatile components with respect to aging could also be found
by comparing the variations in the initial mass of specimens as shown in Table 4. The
initial mass of same size specimens by volume base (=100 mm × 100 mm × 25 mm)
decreased as the aging period increased and this fact was clear evidence of the loss of
volatile components derived from thermal aging.
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Figure 5. Fire performance index (FPI) and fire growth index (FGI) with respect to the accelerated
aging periods.

The sharp jump of the FPI on the 30 year accelerated aged cable should be noted.
This sharp jump mainly resulted from the rapid increase in the TTI at 30 years. The
reason for the large increase of the TTI at 30 years was that only one test case of 30 and
40 year accelerated aged cables ignited after 100 s from the start of the test. Hence, a
large standard deviation was obtained for 30 and 40 year accelerated aged cables, as
previously mentioned. These irregular results were considered not to be singular but
the nondeterministic and irregular nature of fire itself. The ignition phenomenon has
a high possibility of various irregularities as it involves complicated consecutive multi-
processes of a thermal heating/pyrolysis/gasification/gas combustion reaction that should
successfully and continuously be processed to be ignited. In addition, these results are
stochastically meaningful when considering that the ignition in one of the three cases
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was delayed due to the evaporation of volatile organic compounds during the process of
long thermal degradation. Thus, the increase in the FPI value was directly affected by the
increase of the TTI and the decrease of the PHRR.

The FGI displayed a trend opposite to the FPI. The mean FGI of the 30 and 40 year
accelerated aged cables were measured to be lower than the non-aged, 10 and 20 year
accelerated aged cables. The mean tPHRR of the accelerated aged cables and the non-
aged cable were measured at 80 s and 70 s, respectively. The FGI value decreased with
a decreasing PHRR and an increasing tPHRR. Thus, it could be confirmed that the early
fire risk decreased as the accelerated thermal aging progressed. However, Lee et al. [41]
reported that the evaporation of the volatile components did not indicate a general trend
to enhance the flame retardant performance. Therefore, in this study, the fire risk was
evaluated in detail by analyzing the combustion characteristics of the mid to late period.

3.3. Combustion Characteristics in the Mid to Late Period

The combustion characteristics in the mid to late period were analyzed through the
HRR, THR and ML and their results are shown in Figures 6–8. Although the HRR, THR
and ML included the combustion characteristics in the whole period of the test, we defined
that they represented the combustion characteristics in the mid to late period because the
PHRR and the tPHRR were already examined to characterize the combustion phenomenon
in the early period in Section 3.2.

The results from the three repeated tests were averaged and plotted for each aging
year and the results from each test run for the 30 year accelerated aged cable are provided
in small plots in Figures 6 and 7 to prove the qualitative repeatability of the time series test
results. Other test cases had a similar level of repeatability to the 30 year accelerated aged
cable and their plots are omitted for the readability and simplicity of the figures.

Figure 6 verifies the PHRR trend at 80 s as discussed in Section 3.2 followed by
repeated instances of an increase and decrease in the HRR. The HRR characteristics in
the late period (after 900 s) showed that the measured final peak value was larger than
the initial peak value in the 30 and 40 year accelerated aged cables. This was due to the
steady heat release from the split occurrence in the cable’s char layer because of continuous
pyrolysis and combustion, which agreed with the results of Seo et al. [42]. Flame retardants
are added to non-class 1E cables for NPPs to comply with a certain level of fire protection
capability and they play a role in increasing the formation of the char layer and reinforcing
cable strength [43]. In addition, Zhengzhou et al. [44] reported that the char layer formation
delayed the pyrolysis by blocking heat penetration, which was also observed in the present
study. The HRR curve of the non-aged cable was maintained at 25 kW/m2 after 80 s
whereas that of the accelerated aged cables showed a tendency to increase continuously.
It could be judged that as the accelerated thermal aging progressed beyond 10 years, the
flame retardant performance deteriorated. This caused the unstable formation of the char
layer, thereby generating constant pyrolysis and combustion. Thus, higher HRR values
were displayed in the mid and late periods of combustion.

The mean THRs of the non-aged cables and the 10, 20, 30 and 40 year accelerated
aged cables were calculated as 40 MJ/m2, 69 MJ/m2, 65 MJ/m2, 64 MJ/m2 and 77 MJ/m2,
respectively, as shown in Figure 7. As the accelerated thermal aging progressed, the heat
release increased due to a reduced flame retardant performance, a weakened bond between
the molecules and the instability of the char layer. The increased heat release increased
the fire risk in the accelerated aged cables as the initial fire transformed into the fully
developed fire.

Figure 8 shows the ML of the non-aged cable and the accelerated aged cables during
combustion. The ML is the rate of decrease for the initial mass over test time, as presented
in Equation (6).

ML(%) =
mo − m f

mo
× 100 (6)
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where mo is the initial mass and mf is the final mass. The mean MLs of the non-aged cables
and the 10, 20, 30 and 40 year accelerated aged cables were 8.02%, 8.16%, 8.73%, 9.01% and
9.58% and the SDs of the ML were 0.47, 0.44, 0.60, 1.24 and 0.40, respectively. The ratio of
the SD to the mean ML was between 4.1% and 13.7% so it could be judged that the ML
results had a reliable repeatability.

The unstable formation of the char layer can result in a steady heat release and
pyrolysis. As a result, the reinforced combustion increased the mass loss rate in the
accelerated aged cables, thereby leading to a larger ML. Not only the ML but also the
change of absolute mass provided clear evidence of this assertion. The differences of mass
before and after the combustion (=mo − mf) were 54.40 g, 56.26 g, 58.60 g and 59.30 g for
the 10, 20, 30 and 40 year accelerated aged cables, respectively, so the increase of mass
reduction could be considered as the results affected the more rigorous combustion reaction
of the more aged cables.

Energies 2021, 14, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 6. Time series heat release rate (HRR) with respect to the accelerated aging periods. 

 

Figure 7. Time series total heat release (THR) with respect to the accelerated aging periods. 

Figure 6. Time series heat release rate (HRR) with respect to the accelerated aging periods.

Energies 2021, 14, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 6. Time series heat release rate (HRR) with respect to the accelerated aging periods. 

 
Figure 7. Time series total heat release (THR) with respect to the accelerated aging periods. Figure 7. Time series total heat release (THR) with respect to the accelerated aging periods.



Energies 2021, 14, 2003 11 of 17Energies 2021, 14, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 8. Total mass loss with respect to the accelerated aging periods. 

3.4. Emission Characteristics of Toxic Gases 

The emission characteristics of CO, CO2, HCN, HCl, HBr, HF, SO2 and NOX during 

combustion were examined according to the ISO 19702 standards. The results presented 

in Figure 9 show that CO, CO2, HCN and HCl were commonly detected for all test cases 

whereas HBr and NOx were not detected for all test cases. HF and SO2 were released from 

the accelerated aged cables. 

For the non-aged and accelerated aged cables, the CO2 curves exhibited the first peak 

at 150 s. These peak values showed a decreasing tendency as the accelerated thermal aging 

progressed. The CO2 peak value of the non-aged cable was measured to be higher than 

that of the accelerated aged cables. It could be seen that a large amount of CO2 gas was 

released as the volatile components present in the cables were burned. However, the CO2 

peak decreased with accelerated thermal aging because volatile components evaporated 

during the accelerated thermal aging. CO2 released by the non-aged cables decreased sig-

nificantly and remained at approximately 500 ppm after 350 s. In contrast, the accelerated 

aged cables increased to approximately 750 ppm after 350 s. It could be seen that the un-

stable char layer in the accelerated aged cables led to heat penetration and continuous 

combustion. 

The similar emission trends of CO with CO2 could be clearly seen for all cases (Figure 

9), which signified that both CO and CO2 were released concurrently as combustion pro-

gressed. These two emission gases are major components of product gas and affect the 

toxicity in the largest portion. The CO released by the non-aged cables showed a peak 

value of approximately 150 ppm at 150 s and was maintained at approximately 100 ppm. 

However, CO released by the accelerated aged cables was approximately 250–300 ppm 

after 150 s. CO gas could be formed due to the oxidation of char [28] and the aforemen-

tioned unstable char layer could promote the oxidation of the char layer as the accelerated 

aging progressed. It is notable that the whole emissions of CO and CO2 during the com-

bustion time until 1200 s increased with the aging period while the initial emission of CO 

and CO2 during the combustion time until 200 s decreased as the aging period increased. 

These results coincided with the results obtained from the HRR and the THR, which had 

similar time series trends with these emission data because both the release and emission 

gases were products of the combustion reaction and indicated how much the cables were 

well burnt. 

The maximum HCl release of the non-aged cable, 10 year accelerated aged cable and 

beyond 20 year accelerated aged cables were 250 ppm, 100 ppm and 15 ppm, respectively. 

Figure 8. Total mass loss with respect to the accelerated aging periods.

3.4. Emission Characteristics of Toxic Gases

The emission characteristics of CO, CO2, HCN, HCl, HBr, HF, SO2 and NOX during
combustion were examined according to the ISO 19702 standards. The results presented
in Figure 9 show that CO, CO2, HCN and HCl were commonly detected for all test cases
whereas HBr and NOx were not detected for all test cases. HF and SO2 were released from
the accelerated aged cables.

For the non-aged and accelerated aged cables, the CO2 curves exhibited the first peak
at 150 s. These peak values showed a decreasing tendency as the accelerated thermal aging
progressed. The CO2 peak value of the non-aged cable was measured to be higher than that
of the accelerated aged cables. It could be seen that a large amount of CO2 gas was released
as the volatile components present in the cables were burned. However, the CO2 peak
decreased with accelerated thermal aging because volatile components evaporated during
the accelerated thermal aging. CO2 released by the non-aged cables decreased significantly
and remained at approximately 500 ppm after 350 s. In contrast, the accelerated aged cables
increased to approximately 750 ppm after 350 s. It could be seen that the unstable char
layer in the accelerated aged cables led to heat penetration and continuous combustion.

The similar emission trends of CO with CO2 could be clearly seen for all cases
(Figure 9), which signified that both CO and CO2 were released concurrently as com-
bustion progressed. These two emission gases are major components of product gas
and affect the toxicity in the largest portion. The CO released by the non-aged cables
showed a peak value of approximately 150 ppm at 150 s and was maintained at approxi-
mately 100 ppm. However, CO released by the accelerated aged cables was approximately
250–300 ppm after 150 s. CO gas could be formed due to the oxidation of char [28] and
the aforementioned unstable char layer could promote the oxidation of the char layer as
the accelerated aging progressed. It is notable that the whole emissions of CO and CO2
during the combustion time until 1200 s increased with the aging period while the initial
emission of CO and CO2 during the combustion time until 200 s decreased as the aging
period increased. These results coincided with the results obtained from the HRR and
the THR, which had similar time series trends with these emission data because both the
release and emission gases were products of the combustion reaction and indicated how
much the cables were well burnt.

The maximum HCl release of the non-aged cable, 10 year accelerated aged cable and
beyond 20 year accelerated aged cables were 250 ppm, 100 ppm and 15 ppm, respectively.
As can be seen from Figure 10, the HCl values decreased significantly with aging. HCl
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release during combustion is mainly due to the Cl content [45]. In this study, the HCl
gas was mainly released from the sheath of the non-class 1E cable consisting of the CR.
For polymers containing Cl, dehydrochlorination can occur during the thermal degrada-
tion process [46–48]. Therefore, the decrease in the HCl released by the beyond 20 year
accelerated aged cables could be attributed to dehydrochlorination that occurred with
thermal aging.
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The HCN released by the non-aged and accelerated aged cables were approximately
2 ppm and 6 ppm, respectively. HCN gas can be produced during heating under air
conditions at 700–1000 ◦C and the amount of HCN increases with an increasing tempera-
ture [49]. As the cone calorimeter test is conducted in an open system, air can be supplied
during combustion [42]. Therefore, it seemed that the HCN concentration of the accelerated
aged cables was measured to be higher than the non-aged cable because the HRR of the
accelerated aged cable increased compared with that of the non-aged cable maintained
after 80 s.

HF and SO2 were only released from the accelerated aged cables. Although the
composition of the cables is confidential and was not provided by the cable supplier, it
could be estimated that these two gases might be attributed from the additives in the cables.
A flame retardant consisting of F added chemical composites might be applied to increase
the thermal and photochemical safety and durability and a small amount of S might be
added to the cable sheath and insulation to maintain excellent heat resistance [50–52]. The
SO2 released by all cables was approximately 3–5 ppm and the release of HF was around
10–30 ppm. It was notable that neither HF nor SO2 was detected in the case of the non-aged
cable. Three repeated tests for the non-aged cable showed the same results that no HF and
SO2 were detected whereas all of the tests for the aged cables detected a small amount of
HF and SO2. From these results, it was difficult to determine whether S or F was contained
the cable so an SEM-EDS analysis was performed to find clear evidence of the elements in
the cable in Section 3.5.

3.5. SEM-EDS Analysis

The SEM equipment was used to analyze changes in the surface structure of the sheath
and insulation with accelerated aging. An EDS microanalysis was conducted to obtain
information on the elemental composition of the sheath and insulation. Figure 10 shows the
SEM images of the insulation with accelerated aging. In the aged cables, voids and cracks
were observed, as shown by the dotted yellow circles in Figure 10b,c. These small voids
and cracks could be newly formed and expanded through the accelerated thermal aging,
which was also observed in [53]. The voids and cracks significantly degraded the flame
retardant performance of the cables by allowing oxygen penetration into the cable sheath.
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Figures 11 and 12 show the SEM image matrix, as demonstrated by EDS elemental
mapping of the sheath and insulation. As seen in Figures 11 and 12, the flame retardant
components were identified to include the halogenated elements F and Cl and the additive
of S, which matched well with the FTIR results in Section 3.4. The chemical elements
were homogeneously distributed on the surface and also supported the reliability of the
experiments and materials in this study. Other cases of non-aged and aged cables showed
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similar results, which included carbon, chlorine, sulfur, oxygen and fluorine so it could be
confirmed that these elements were contained in the non-class 1E cable.
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4. Conclusions

In this study, the combustion characteristics of a non-class 1E cable were investigated
according to the ISO 5660-1 and ISO 19702 standards. The effect of accelerated thermal
aging on the combustion characteristics was investigated and the following conclusions
were obtained.

The FPI and FGI were analyzed to determine the early combustion characteristics. As
the aging period increased, the FPI increased while the FGI tended to decrease. This was
because the evaporation of volatile components during the thermal aging process reduced
the initial ignition possibility thereby delaying the ignition time and reducing the initial
PHRR value.

The HRR, THR and ML over time were analyzed to examine the mid to late combustion
characteristics. Larger values of HRR, THR and MLR were observed for the accelerated
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aged cables than the non-aged cables because of continuous pyrolysis and heat release,
which was affected by the unstable formation of the char layer.

For the emission characteristics of harmful combustion gases, as the aging period
increased, the values of the three gases (CO2, CO and HCl) were notable. The peak of the
CO2 emission significantly decreased in the accelerated aged cables when compared with
the non-aged cable because the volatile components evaporated during the accelerated
thermal aging process. In the late period of fire, after 350 s from the ignition, the CO2
emission in the accelerated aged cables increased due to a continuous combustion derived
from the unstable char layer. HCl tended to significantly decrease as the aging progressed
beyond 10 years due to dehydrochlorination resulting from the accelerated aging process.

To evaluate the overall fire risks from the test results, the combustion characteristics
of each cable due to aging revealed that the fire risk was lower at the early combustion
characteristics owing to the low ignition possibility. In contrast, the fire risk increased in
the mid and late periods due to continuous pyrolysis and heat release. In addition, the
gases released during combustion showed various changes with the aging periods.

The results and test data from this study can be used for qualitative assessment of
fire risks in NPPs. The reinforcement of appropriate regulatory guides should reflect the
increased toxicity and high risks in mid to late period fires.

The results of this study can be practically used when setting up reinforced safety
codes and standards of cables used for NPPs especially in consideration with the flame
retardant performance with respect to the aging period. In addition, operators of NPPs
can refer to the results of this study when developing a manual or standard operation
procedure (SOP) in emergency situations. For instance, as they cannot evacuate from the
control room during the operation of NPPs even in the case of a fire the information on
the toxicity and combustion characteristics from the cables should be carefully considered
when planning a proper operation procedure ensuring both the safety of operators and the
normal operation of NPPs.
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