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Abstract: There is growing interest in multi-purpose offshore floating platforms that: harvest energy
from the sun, wind, water, and waves; desalinize water; host agriculture and aquaculture; and house
residents. While there are some basic commonalities with well established, oil and gas platforms,
lighter variants are functionally different with little wind research coverage. Here, we investigate a
floating, multi-purpose, light duty platform under 1:150 scaled straight atmospheric boundary layer
wind (ABL), tornado like vortices (TLV), and downburst (DB) conditions. The experiments examined
the movement of a 1:150 geometrically scaled platform with six degrees of freedom and two mooring
Configurations. Four Configurations are studied, (1) Loosely moored platform, (2) Tightly moored
platform, (3) Platform with ballast, and (4) Platform with ballast and weight on the deck. DB winds
produced the greatest movement, followed by the TLV winds. Little movement was seen under the
ABL winds. Loosely moored platforms moved more than tightly moored.

Keywords: offshore; floating structure; downburst; tornado; atmospheric boundary layer; off-
shore dynamics

1. Introduction

The number of applications for offshore floating platforms has expanded far beyond
oil and gas floating production systems, or floating wind turbines [1]. Floating platforms are
now being considered for multi-purposed uses which could include offshore greenhouses
or food production [2], solar farms [3,4], residential real estate [5], floating airports [6], or
entertainment facilities [7]. They can also be considered for holding compressors necessary
for underwater compressed air energy storage. For some, these multi-purposed floating
platforms are necessary to enable island living, while in other cases they have been relied
upon to improve reliability and resiliency of energy generation, and to provide energy
storage and clean water [8].

Offshore energy applications are experiencing increasing interest owing to growing
energy demand, climate change, and the desire for clean energy sources. The 2019 Interna-
tional Energy Outlook report predicted that worldwide energy consumption will increase
by nearly 50 percent between 2018 and 2050 [9]. The IEA proposed that renewable energy
will be the fastest growing source of electricity generation enhanced by technological
improvements and government incentives [9,10]. Although many uncertainties remain
regarding the effects of the COVID-19 pandemic on the future of energy innovations, it
was still predicted that the only energy source expected to grow this year is renewables, as
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they are to take the “center stage” in the future of energy [10]. Momentum is building, par-
ticularly with new pressures reshaped by pandemic stimulus spending [10]. Increasingly,
countries understand that new infrastructure spending should support clean tech projects
that bolster national economies and benefit the environment.

Due to the embryonic state of these newly developed multi-purposed floating plat-
forms, few studies have considered the dynamics of such systems. The US Federal National
Offshore Wind Strategy states that a gap remains in the understanding and development of
design practices for extreme weather conditions at offshore sites in the US [11]. As climate
change continues and weather becomes less predictable, extreme weather conditions will
become more frequent and more powerful [12]. More research must focus on the necessary
design standards for offshore floating structures under extreme weather conditions [11].

Vulnerabilities of offshore renewable energy infrastructure have already been exposed.
One example of an offshore wind turbine failure due to a lack of improved design standards
is the Sway turbine [13]. The 1:6 scaled model wind turbine manufactured by Sway sunk
on the Norwegian coast in 2011. The test was modelled to withstand wave heights up
to 4 m, but failed after waves 6.3 m high filled the tower with water [13]. At full scale,
the turbine would have faced waves 40 m high. A hundred-year wave does not exceed
30 m, so the Sway turbine experienced very unlikely conditions [14]. Further testing and
understanding of these unlikely, extreme events are necessary to avoid these failures in
the future.

Mathematical models have been developed to examine the dynamic motions of off-
shore structures in the past [15–17]. Additionally, simulations and experimental tests have
been completed on offshore structures [18–20] however the majority take place in a wave
tank or basin and are therefore only able to investigate wave loads. More recently, it has
been recognized that it is necessary to consider both wave and wind loads, so recent testing
has focused on both parameters. This has been accomplished by performing tests in a
wave basin and adding a configuration of fans to generate a straight-line wind load on
the experimental area. While not entirely realistic, the method provides initial insight
to the effects of simple winds on offshore structures. The Maritime Research Institute
Netherlands (MARIN) Offshore Basin created a 1:50 scaled straight-line only wind genera-
tion set-up for model tests concerning wind and wave loading simultaneously [18]. The
DeepCwind concept was developed and tested in many stages, and modifications of it
were also examined [19–22]. These experiments involved testing non-optimized floating
structure designs to compare the reactions of different generic floating Configurations to
wind and wave loads. Here, the spar buoy provided insight to the effect of lowered center
of mass far from the center of buoyancy, while the Tension Leg Platform (TLP) based model
showed reactions of a taut mooring stabilized system and the semi-submersible structure
represented a system with low center of mass and large water plane area. The study
found that the order of systems with maximum surge was the semi-submersible, closely
followed by TLP, while the spar experienced the smallest surge. As for pitch rotation the
spar saw significantly higher rotations, followed by the semi-submersible, while the TLP
experienced very small rotations. The winds generated in these tests were added into the
testing chamber using a make-shift array of 35 fans generating straight-line winds [22].

Further, a numerical study was completed to test the Configuration of the floating
structure with various numbers of columns [20]. Experimental tests [23] were conducted at
the wind-wave-current tank at Newcastle University to test the effect of a stabilizer on the
motions of an offshore wind turbine. Tests with simulated waves, current and straight-line
winds only were completed [23]. Other experiments focus on the effects the dynamics of
the structure have on wind energy production. One study involved the testing of scaled
wind turbine models first only in a controlled wave simulator tank, and then with an
industrial fan placed in front of the model to produce straight on winds [17]. The models
were ballasted tension leg platform and spar buoy types. Findings showed that surge
acceleration dominated over heave acceleration, and pitch rotations were minimal for each
test [17].
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Various studies have looked at the natural frequencies and damping on floating
offshore platform systems. These values are found by frequency analysis of free-decay
tests. One study considered the natural frequency of a floating, deeply drafted spar buoy
type system with loose (catenary) mooring lines, which had heave, surge, and pitch natural
frequencies of 0.032 Hz, 0.008 Hz and 0.032 Hz, respectively [24]. Comparing the natural
frequencies of different platform and mooring types, the study by Robertson et al. found
that the semi-submersible platform with loose mooring lines experienced a heave natural
frequency of 0.058 Hz, surge natural frequency of 0.0093 Hz, and pitch natural frequency
of 0.037 Hz [22]. The spar platform with loose mooring experienced a heave, surge, and
pitch natural frequency of 0.035 Hz, 0.023 Hz and 0.031 Hz, respectively [22]. The tension
leg platform (TLP) system with taut mooring lines experienced a heave natural frequency
of 0.85 Hz, a surge natural frequency of 0.026 Hz, and pitch natural frequency of 0.27
Hz [22]. Another study comparing three different offshore wind turbine structure types
found that the TLP had heave, surge, and pitch natural frequencies of 0.4375 Hz, 0.0165
Hz, and 0.2211 Hz, respectively [25]. A barge-type floating platform with loose mooring
had heave, surge, and pitch natural frequencies of 0.1283 Hz, 0.0076 Hz, and 0.0849 Hz,
respectively [25]. Lastly, the study compared a spar buoy type platform with loose mooring,
which had natural frequencies of 0.0324 Hz for heave, 0.0080 Hz for surge, and 0.0343 Hz
for pitch [25]. The damping ratios in this study for the floating platform motion ranged
from −0.02 to 0.06 [25].

Our review of the literature has not revealed any experimental studies similar to that
described herein which considers the effects of extreme weather events on the motions of a
multi-purpose light duty floating platform with multiple mooring line variations. Platforms
were subjected to harsh wind conditions characteristic of those found in tornadoes, extreme
thunderstorms, downbursts, and other strong windstorms. Introductory insights into these
dynamics may serve as a starting point for additional studies and improved perspective
on stability, safety, energy efficiency and suitable applications for these platforms.

Tornadoes and downbursts are local wind systems usually associated with severe
thunderstorms [26]. More formally, tornadoes are defined as strongly rotating columns
of air that emerge from a thunderstorm and connect with the surface. The diameter of a
tornado vortex is usually between several dozens to a few hundreds of meters and they
typically last below 1 h. Tornados produce the highest near-surface winds in the Earth’s
atmosphere with the velocities in the strongest tornadoes exceeding 90 m s−1. Tornadoes
that form above water surfaces are called waterspouts. While there might be a difference
in the formation of some tornadoes above land and waterspouts [27], the dynamics of
formed tornado-like vortex is the same in both cases. Downbursts are negatively buoyant
columns of cold air (around 1 km in dimeter) that emerge from a thunderstorm and create
a radially advancing outflow upon hitting the surface. While the many aspects of tornado
genesis are still unknown, the main contributors for downburst development are the
evaporation and melting of hydrometeors in and underneath the cloud. Precipitation
loading and the drag exerted by the falling precipitation on the air can additionally amplify
the downdraft. Near-surface winds in the strongest downburst outflows can exceed
70 m s−1 [28]. In many regions around the world, including North America, these two
wind systems are responsible for the major damages to the built environment [29]. While
the observational data of tornadoes and downbursts above large water surfaces are rare,
Solari et al. [30], Burlando et al. [31–33] and Zhang et al. [34] demonstrated the high
occurrence of downbursts in the Mediterranean Sea. However, the interaction between
these high-impact winds and offshore structures is mostly unknown.

2. Materials and Methods

All experiments in this study were performed in the Wind Engineering, Energy and
Environment (WindEEE) Dome at Western University. This facility is a three-dimensional
large-scale wind simulator designed to produce various types of flows including the
atmospheric boundary layer (ABL) winds, tornadoes, and downbursts [29,35]. The testing
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chamber of this simulator is 25 m in inner and 40 m in outer diameter with the height of
approximately 3.8 m. The simulator has 100 fans installed along six peripheral walls of the
test chamber. Out of these, 60 fans are installed on one of the walls (i.e., the 60-fan wall)
and used for the generation of different types of ABL and shear flows; [35,36] (Figure 1).

Figure 1. WindEEE Dome chamber showing the 60-fan wall and bell mouth (Hangan et al., 2017) [35].

Wind Profiles

Within this experiment, the floating structures are subjected to three different wind
profiles, an open water ABL straight-line wind test, Tornado-Like Vortices (TLVs), and
downburst-like (DB) outflows. The set-up for experiments with each wind profile can be
seen in Figure 2.

Figure 2. Experimental set up for (a) TLVs (b) DB outflows (c) ABL winds.

An open water ABL wind profile (roughness length, z0, of 0.003 m) at the geometric
scale 1:150 was used for the straight-line wind tests in this study [37]. In this Configuration
(Figure 2c), the roughness elements in front of the model were raised at 25% of their nominal
height of 0.3 m. No spires, flow contraction devices or trips were used in the generation of
ABL winds. The fans in each of the four rows of the 60-fan (Figure 1) wall were operated at
70% (bottom row), 75%, 70% and 70% (top row) of their nominal revolution per minute
(rpm) of 3200 rpm. The matching of the generated velocity profile against the ESDU
(Engineering Sciences Data Unit) profiles for large expansion of water was reported in [35].

The tornado-like vortices (TLVs) in the WindEEE Dome are produced by employing 6
large fans situated in the upper plenum to generate updraft and the system of peripheral
louver vanes to create swirl in the inflow [38,39] (Figure 2a). The upper plenum and the
test chamber are connected through a bell mouth with a diameter of 4.5 m. The depth
of the inflow that enters the testing chamber through the louver vanes is 0.8 m. The
angle of louvers was set at 15◦. The geometric scale of the produced TLVs in this study
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is ~1:150 [39]. The TLVs were translated over the model at the velocity of 0.5 m s−1

using the guillotine system that moves the bell mouth over a 5 m distance (Figure 2a).
In addition, the generated TLV corresponded to an EF1-rated [40] real tornado in the
atmosphere (e.g., validated against the Goshen County, Wyoming, tornado in [39]). This
TLV is a two-cell vortex with the swirl ratio between 0.5 and 0.8 [41]. The swirl ratio
represents the relationship between the circulation the updraft intensity. Lastly, these TLVs
are characterized by a maximum tangential velocity of 11.6 m s−1 at 20 cm above the floor
and 45 cm radially away from the center of the vortex [39]. No roughness elements or
peripheral fans were used for these tornado tests.

The WindEEE Dome produces various downburst-like outflows by using an impinging
jet approach. The event is initiated with the bell mouth louvers closed while the upper
6 fans are used to pressurize the upper plenum (i.e., reversed mode from the one used
in TLV generation). Once the pressure difference between the upper plenum and the
test chamber reach the target value, the bell mouth louvers are instantly opened and a
downdraft impinges onto the testing chamber floor (Figure 2b) [42,43]. Junayed et al. [34]
and Romanic et al. [35] reported that the downburst-like outflows in the WindEEE Dome
are characterized by geometric scales that vary between 1:100 and 1:200. Here, a scale of
~1:150 was chosen as it was demonstrated by Burlando et al. [36] to be characteristically
representative of downbursts that have been observed recently in the Mediterranean
Sea [31,34,44]—home to several experimental multipurpose platforms. The centerline
downdraft velocity was 8.8 m s−1 [43]. The downbursts impinged on the bare floor without
any roughness elements. The results shown within this paper were conducted at a radial
location of r/D = 1, where r is the radial distance from the center and D is the diameter of
the downburst jet. Accordingly, the radial distance from the center is 1.6 m, as the diameter
of the downburst is 1.6 m. At r/D = 1 the flow reaches a maximum velocity [45], and
maximum lateral spread [46].

3. Experimental Set-up
3.1. The Water Tank

The experiments completed in this study were conducted in a chemically water-
proofed, expanded polystyrene foam tank of water, seen in Figure 3, with a testing area
of 1 m in diameter and 0.4 m deep. This translates to a full-scale (considering a scale of
1:150) water depth of 60 m, which could be considered “deep-water” in different offshore
applications [47]. The water tank also included a 9.5◦, or 1:6, slanted edge along the full
diameter of the tank (1.7 m) to reduce wave reflections. The tank was placed flush with the
chamber floor within the test chamber, as shown in Figure 4.

Figure 3. CAD model of water tank assembly. The lines represent the adhered and chemically sealed
layers of expanded polystyrene foam.
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Figure 4. Water tank installed flush with chamber floor in WindEEE testing dome.

3.2. Floating Platform Design

The base platform was designed to be a simple, generic floating platform. The design
of this model was initially inspired by the DeepCwind tested prototype designs [19,20],
then modified to suit materials, test components, and facility size. The geometry represents
a simple light duty, multi-purposed platform, which could host many different offshore
applications. The base platform, shown in Figure 5, is a 0.3 m × 0.3 m multi-column
stabilized platform, where the platform legs provide buoyancy and stability. The 4 main
column legs located at each corner of the base, can be filled with water to assess ballasting
effects on the platform movement in different Configurations. At the center of the platform
there is a smaller column which provides further stability and buoyancy.

Figure 5. CAD model of the “base” Configuration of the floating platform.

Froude Scaling

Froude Scaling is used to determine the relationship between factors of the model
within this study and its full-scale counterpart. A scaling factor of 1:150 was used here,
denoting λ = 150.

Since : λ =
LFS
LM

(1)

FS = Full Scale
M = Model

It is important to consider scale factors to determine which characteristics will change
by how much when converted from the model to the full-scale system [48]. Commonly
considered scale factors for Froude scaling are shown in Table 1.
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Table 1. Froude Scaling Common Ratios.

Variable Dimensions Units Scale Ratio Full-Scale
Multiplier

Length L m λ 150

Acceleration L/T2 m/s2 1 1

Mass M kg λ3 1503

Angle - deg 1 1

Wave Height L m λ 150

Wave Period T s
√
λ

√
150

Time T s
√
λ

√
150

When Froude scaling is applied, it should be noted that Reynolds number scaling is
not guaranteed. Within this study the discussions consider the scale model only and focus
mainly on the acceleration and rotational movements the platforms are subjected to.

3.3. Platform Configurations

Four Configurations of the floating platform were tested to evaluate the effects of
extreme weather conditions on floating structures in different conditions of stability. The
four platform Configurations (Figure 6) were: (1) Base platform with loose mooring, (2)
Base platform with taut mooring, (3) The base platform with ballast added into the legs,
and (4) The base platform with ballast added to the legs and weight added to the deck.
ABL, tornado and downburst wind profiles were tested for each experiment.

Figure 6. 2D schematic of each Configuration of the floating platform model showing the location of
the center of mass and center of buoyancy measured from the line of reference at the bottom of the
structure legs (a) Configuration 1 (b) Configuration 2 (c) Configuration 3 (d) Configuration 4.

Each type of mooring line is attached at the bottom of the system’s four main column
legs. Adjusting the tension within the mooring lines restricted how freely the structure
could move. The loose mooring lines in Configurations 2, 3 and 4 hung loosely in a catenary
shape and laid on the floor of the water tank allowing the platform to move relatively
freely. Loose mooring lines allow the platform to move freely in the water since they only
restrict the motion when the structure reaches the limit of the mooring line. In applications,
loose mooring lines are easier to install, and can be used in areas of greater water depth,
or where tide is a concern. However, tight mooring lines generally restrict the movement
of a system more greatly since they anchor the platform to the waterbed by pulling down
on it. This consequently generates a higher buoyancy force of the system which assists in
more quickly correcting the platform motions caused by external forces. The tight mooring
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lines were attached to a spring and pulled the system into the water to generate a draft of
100 mm. This restricted the movement of the platform and increased the center of buoyancy
of the system in Configuration 2.

Configuration 3 was the base platform with the addition of 140 grams of water
ballast into each of the four corner legs of the platform, pulling the platform into the
water to generate a draft to 55% of the platform legs. This lowered the center of mass
and raised the center of buoyancy. Adding ballast to a system also increases the overall
mass of the system, making it harder for external forces to cause movement. Due to time
and budgetary restrictions of this experiment, only one measure and type of ballast was
considered, however, it is important to note that different ballast designs including changes
in weights, material type, or location of the ballast can change the effect on a system.

The addition of weight to the platform deck in Configuration 4 increased the center of
mass more than Configuration 3, and also increased the center of buoyancy as the platform
was lowered further into the water, creating a draft 95% of the way up the structure legs,
which is just below the platform deck. A summary of the locations of the center of mass
and buoyancy along the centerline of the structure for each of the four Configurations is
found in Table 2.

Table 2. Comparing the Center of Mass and Center of Buoyancy of each Configurations. All
measurements are taken from the bottom of the platform legs.

Platform
Configuration

Center of Mass
(mm)

Center of Buoyancy
(mm)

D [Center of
Mass—Center

of Buoyancy] (mm)

1 101 23 78

2 101 45 56

3 76 34 43

4 109 47 62

Hand calculations and SolidWorks were used to determine the center of gravity and
center of buoyancy shown in Table 2. The total mass of each component was weighed and
entered into each SolidWorks part file. The center of buoyancy was calculated using the
“Mass Properties” tool in SolidWorks for each configuration.

xcm = ∑
i

mixi
mi

The total mass of each configuration was then used to calculate the total volume of
water displacement using:

vwater displaced =
mplat f orm

ρwater

A plane in SolidWorks was used to cut through the platform, and the total volume
under the plane was quantified as equal to the total volume of water displaced.

The buoyancy force is equal to density of water multiplied by the gravitational accel-
eration and volume of water displaced.

Fbuoyancy = ρwatergVwater displaced

The center of buoyancy was calculated using the “Mass Properties” tool in SolidWorks
by finding the center of gravity of the portion of the platform that was under water.

3.4. Instrumentation

Experimental data were obtained using various instrumentation to record the six
degrees of freedom of the floating platform, as well as the wind profile characteristics for
each test. The set-up of this instrumentation can be seen in Figure 7. The sampling interval
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for ABL winds was 180 s, while the duration of TLV and downburst flows was 90 s and
120 s, respectively.

Figure 7. Instrumentation Set-up: (1) Cobra Probes, (2) Resistance wire wave probe (3) Floating
platform with the IMU and accelerometers. The ABL wind is coming from left.

A resistance wire wave probe (labelled as 2 in Figure 7) was placed near the platform
location to measure the wave heights at a single location. An accelerometer was placed on
the top center of the platform. The accelerometer tracked the acceleration of the platform
in the X, Y, and Z directions at a sampling rate of 1250 Hz. An Inertia Measurement Unit
(IMU) device [49] was connected to a microcontroller board with LoRa radio transmission
and centered on the platform deck within a waterproof hardware case (labelled as 3 in
Figure 7). This assembly was able to wirelessly transmit pitch, roll and yaw rotations of the
platform in degrees. This device had a lower sampling rate of approximately 6 Hz, but still
provided a usable representation of the movement of the structure.

Four-hole Cobra probes developed by Turbulent Flow Instrumentation Pty Ltd. were
used for all wind velocity measurements in this study. The applicability of the Cobras
to measure highly turbulent flows—with the turbulence intensity reaching 35%—was
demonstrated in [50]. In comparison to hot-wires, the Cobras are robust, insensitive to
temperature variations inside the wind simulator, capable of measuring flows that are
seeded with particles, and easy to use. The probes can measure the incoming flow with the
yaw and pitch angles up to 45◦. The manufacturer’s reported accuracy of the Cobra probes
is within ±0.5 m s−1 and ±1◦ of pitch and yaw angles for turbulence intensity below 30%.
The Cobra probes were also used in [38,41] for measuring flows in TLVs, and in [42–44,51] to
measure downburst-like outflows in the WindEEE Dome. Their studies have demonstrated
the applicability of these pressure-based probes in tornadic and downburst flows.

A total of 8 Cobra probes were installed on a vertical mast with the steel base. The
probes were mounted at 3, 7, 10, 15, 20, 30, 50 and 70 cm above the floor. The Cobra probe
mast is labelled as number 1 in Figure 7. The Cobras sampling frequency was set at 1250 Hz
in all experiments to match the acquisition frequency of the accelerometer installed on the
platform.

4. Results

Here, we examine the motions affecting the stability of the platform by studying the
surge, heave, and pitch. Given the square profile of the structure and even weight distribu-
tion, rotations about the x and y-axes are easily related, so only the pitch is compared in the
data shown. Similarly, the accelerations in the x and y-directions were comparative to one
another, so again, only the surge is shown in the results. The heave and surge accelerations,
as well as pitch rotations, are depicted for each of the platform Configurations. Each
acceleration and rotational data set is depicted separately and compared. Within each of
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the graphs, the movements of the platforms driven by the different wind conditions—ABL,
TLV and DB—are graphed together. Figures containing all four Configurations together for
each of the motion and wind types can be found within Appendix A for further comparison.
Additionally, in Appendix A is a summary table, Table A1, containing the maximum and
minimum heave, surge, and pitch values for each wind type. The table also summarizes
the time it took for the structure to return to equilibrium after the end of the downburst
and after the TLV reached the end of its translation.

Figure 8 shows the vertical profile of the normalized peak downburst velocity, the
mean atmospheric boundary layer velocity and peak horizontal tornado velocity at each
Cobra probe height normalized with the platform height from the water surface for con-
figuration one. The classical profile of the atmospheric boundary layer flow in which the
velocity continuedly increases with the height is not observed in the case of downburst and
tornado flows. Both the downburst and tornado flows produce a “nose” shape profile with
the maximum velocity close to the surface. However, the tornado flow is characterized by
the highest wind speeds at a lower location, near the platform height, while the downburst
peak is observed at the height that is approximately twice the maximum velocity height in
the tornadic flow.

Figure 8. Normalized profiles of peak downburst velocity, the mean atmospheric boundary layer
velocity and peak horizontal tornado velocity at each Cobra probe height. The height is normalized
with the platform height.

Each of the DB and TLV tests were run multiple times, and the ABL test was conducted
for an extended period to ensure the reactions of the platform were similar in each repeated
test. The different DB runs can be seen within the graphs and are clearly similar in
magnitude between each run. As for the TLV profile runs, only one of each test is shown
below. The largest difference in the means of surge, heave, and for pitch for all tornado
runs was 0.27 m s−2, 0.02 m s−2, and 0.75◦, respectively. Comparing the results of each
repeated test, it was observed that the shapes of the graphs were similar between runs.
This suggested that the reactions to the wind profiles were similar between the repeated
experiments.

For each of the configurations and motion types, the times in which the downburst
began and ended are labelled on the graphs. When the floating system was subjected to
the TLV winds, the location that the tornado was at in respect to the platform is shown for
each configuration. As previously stated, the tornado translated across the wind chamber,
by the bell mouth, a distance of 5 m. The platform was placed in the center of the wind
chamber, at 2.5 m, and this has been labelled on the figures.

Within this study we are examining the differences in movement between identical
floating platforms with different Configurations. Firstly, we examine a basic floating
platform loosely moored, and then tightly moored. Following this, we examine the effect
of adding ballast to the legs of the loosely moored platform to lower the center of mass of
the structure, and then adding weight to the top to generate a top-heavy Configuration.

To improve understanding while discussing the findings in this paper, the magnitudes
of the motions examined have been defined as follows: Within this paper the surge
acceleration is considered small when the peak-to-peak amplitude is less than 11.5%
of the maximum peak to peak amplitude (0.6 m s−2), medium when the peak-to-peak
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amplitude is between 11.5%–23.2% (0.6 m s−2–1.2 m s−2), and large when the peak-to-peak
amplitude is above 23.2% (1.2 m s−2). The heave acceleration is considered small when the
peak-to-peak amplitude is less than 10% (1 m s−2) of the maximum peak to peak amplitude,
medium if the peak-to-peak amplitude is between 10.0%–20.1% (1 m s−2–2 m s−2), and
large if the peak-to-peak amplitude is greater than 20.1% (2 m s−2). The motions of the
platform were significantly smaller in all degrees of freedom (DOF) when the structure
was subjected to the ABL flow, in comparison to the TLV or DB flows for Configurations 1
and 2.

While the floating structure was loosely moored with only the base platform (Configu-
ration 1), the maximum values of platform movement based on wind profiles was ordered:
TLV > DB >> ABL for all motion directions (Figure 9a–c). When the tornado passed
over the structure, it caused similar responses in both the heave (Figure 9a) and surge
(Figure 9b). The suction (i.e., negative pressure) within the TLV lifted the platform from
the water, and consequently, the platform experienced a large positive surge and heave
acceleration. It was then proceeded by a negative acceleration as the tornado passed over
and into the surrounding water. The movements of the platform influence one another and
since the loosely moored platform is free to move in many directions, the surge and heave
movements have similar profiles. The drop in surge acceleration was of similar magnitude
to the initial large rise, when the tornado was over the platform (Figure 10). While the
drop in heave acceleration was larger than its initial peak, as the tornado was able to push
the platform down into the water as it passed overtop, and past the platform (Figure 10).
Following the drop in acceleration, both the heave and surge accelerations experienced
small and then medium oscillations before completely settling at a new equilibrium of
−1 m s−2, when the tornado ended (Figure 10).

Figure 9. (a) Heave acceleration, (b) Surge acceleration, and (c) Pitch rotation of Configuration 1-Loosely moored base plat-
form.
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Figure 10. Heave and Surge accelerations and bell mouth distance (Tornado location) for configura-
tion 1.

The surge and heave motion responses of the platform during the DB test on the loosely
moored base platform system does not show similar patterns. However, the maximum
and minimum acceleration values do occur at the same time. Just before the downburst
hits the platform, there is a positive acceleration followed by a quick drop as the structure
is forced down by the wind flow. The surge acceleration consists of large, high frequency
vibrations of the platform back and forth between the starting position throughout the
duration of the experiment. The heave acceleration experiences medium amplitude and
high frequency oscillations around a temporary zero of approximately −3 m/s2 before
quickly accelerating upwards as the downburst concludes and then settling at the initial
state.

The TLV flow caused significantly larger magnitudes of acceleration, which ultimately
generated a larger force on the mooring system and platform components. This subjection
to large forces on improperly designed, weak, or damaged systems could result in a
yielding failure due to the large stress subjected to the structure. The repeated fluctuations
caused by the DB flow are more likely to result in fatigue failure due to the recurring stress
subjected to the system throughout the wind flow.

Figure 9c shows the pitch rotations subjected to the loosely moored base platform
system during each of the three wind types. When subjected to the DB flow, the system
experienced a large pitch rotation of 19.8◦ when the flow hit and then remained at an angle,
rotating slightly about this position for approximately four seconds before returning to
equilibrium as the downburst was completed. The floating structure was able to be kept
on an angle here because of its light weight, and the freedom of movement allowed by
the loose mooring lines. During the tornado flow test, the structure experienced a large
rotation of 13◦ in the negative direction, followed by a larger positive rotation of over
28◦. For the loosely moored system, it appears that both TLV and DB flows could cause
significant rotations to a possibly dangerous degree.

For the tightly moored system, the maximum values of surge acceleration (Figure 11b)
and pitch rotation (Figure 11c) were ordered: TLV > DB >> ABL. However, the maximum
heave acceleration for the tightly moored system (Figure 11a) was caused by the downburst,
followed by the tornado and then was much smaller during the ABL wind profile (DB >
TLV >> ABL). As expected, the tension in the mooring lines produced restriction in the
structure’s dynamics, causing the absolute maximum of any motion to be lower than that of
the loosely moored system of the same design (base platform, no ballast as in Configuration
1). The ABL wind profile generated movements resulting in extremely small oscillations
around the equilibrium position compared to the DB or TLV flows. Therefore, the dynamic
responses to the TLV and DB flows are studied in more detail.
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Figure 11. (a) Heave acceleration, (b) Surge acceleration, and (c) Pitch rotation of Configuration 2-Tightly moored base plat-
form.

The tightly moored system generated similar magnitudes of acceleration during the
downburst and tornado flows because the tight mooring lines helped to restrain the motion.
While tightly moored, the TLV flow, again, caused a similar response to that of the other
Configurations in surge and heave accelerations beginning with a large spike in surge
acceleration. The heave acceleration of the tightly moored system (Figure 11a) during the
TLV flow began with a negative acceleration when the tornado was over top of the water
beside the platform (Figure 12), significantly lower in magnitude to the loose system of
Configuration 1 (Figure 9a). The lack of initial positive spike in surge and heave acceleration
was due to the restrictions of the tight mooring lines, preventing the platform from being
pulled upwards far out of the water due to the tornado. Following the initial negative
spike in surge and heave acceleration, after the tornado passed over, and was over the
open water (Figure 12), the platform experienced a few additional large oscillations which
afterwards clearly dampened to medium and then small oscillation before ending in the
equilibrium state. The dampening of the tightly moored platform, after the tornado had
fully passed the platform (Figure 12), is much more controlled than the loosely moored
system of Configuration 1, due to the tight mooring lines pulling the platform back to the
equilibrium position. The lower magnitudes of acceleration may reduce the likelihood of
ultimate strength failure in the platform’s components.

Figure 12. Heave and Surge accelerations and bell mouth distance (Tornado location) for configura-
tion 2.

During the tightly moored experiment the magnitudes of rotation were similar for
the DB and TLV flows, while the profiles of the rotations were not. The downburst caused
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a small negative rotation of 5.8◦ which climbed back up into the positive direction very
slightly, as the tension in the mooring lines allowed the system to correct its position, before
settling down to the equilibrium level. The tight mooring lines kept the rotation during
the TLV test between +3◦ and −6◦, with only 3 large rotations followed by settling of the
system. Compared to all other Configurations studied, the rotations during both the TLV
and DB tests were significantly reduced with the use of tight mooring lines. These results
are comparable to [22]. The comparable study tested three different types of platforms
which were different in design, but the characteristics chosen for comparison were similar
to the Configurations compared in this present study. In [22] the TLP was comparable to
Configuration 2, as both consider the effects of taut mooring lines on the stability of the
system, the semi-submersible platform is comparable to Configuration 3 as they both were
chosen for their lowered center of mass, and the spar buoy is comparable to Configuration
4, as they both consider the effects of low center of mass and larger differences between
the center of mass and center of buoyancy. Their study also found that the TLP with tight
mooring lines experienced significantly lower pitch values in comparison to the spar and
semi-submersible studied.

Next the effects of adding water ballast to the legs of the floating platform (Configura-
tion 3), and then further, generating a top-heavy deck (Configuration 4) with loose mooring
lines, are examined. Since floating offshore multi-purposed platforms can be considered
for implementation in deep waters, it is important to consider possibilities of implementing
these systems in areas where taut mooring lines may not be possible.

The dynamics of Configuration 3; the floating system with ballast added to the legs
of the platform with loose mooring lines, are displayed in Figure 13a–c. The absolute
maximum values for the platform movements of this system were ordered: TLV > DB >
ABL, for both the heave acceleration (Figure 13a) and pitch rotations (Figure 13c). For the
surge acceleration (Figure 13b) it was ordered: ABL > TLV > DB.

Figure 13. (a) Heave acceleration, (b) Surge acceleration, and (c) Pitch rotation of Configuration
3-Loosely moored ballasted platform.
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Configuration 3, similarly to the other Configurations, experienced a large initial spike
when the downburst and tornado first hit the platform. Following this initial spike, the
heave accelerations were greatly reduced in comparison to Configurations 1 and 2, due to
the effect of ballast causing a larger force to be necessary to move the structure. However,
the surge accelerations were not reduced. Due to the use of water as a ballast material
here, the free motion of the water within the structure legs caused this large back and forth
movements of the platform. During all three wind profiles, Configuration 3 experienced
many large, high frequency surge accelerations.

During the TLV wind profile, the response in acceleration generates a graph with
a similar shape to the results generated from Configuration 1 (base platform, loosely
moored), however at different magnitudes. The system experienced a spike in acceleration
when the tornado was over top of the platform (Figure 14), and then experienced negative
acceleration as the tornado moved across and passed over the platform. Following these
initial peaks, the platform experienced one more large surge positive acceleration and
then experienced a negative acceleration when the tornado continued into the open water
(Figure 14). This was likely caused by the sloshing effects of the water ballast within the
system’s legs. A small rise and fall can be seen in the heave acceleration corresponding to
this reaction since, the heave and surge accelerations are correlated. Subsequently, both the
heave and surge accelerations continued at relatively low-frequency, and medium sized
oscillations before settling back to a stable position.

Figure 14. Heave and Surge accelerations and bell mouth distance (Tornado location) for configura-
tion 3.

The downburst generated a large negative acceleration of the system in the surge
direction upon its execution, followed by many more large and high frequency oscillations
for around 15 s, which would be 184 s at full scale (for all subsequent instances of presenting
times analyzed throughout these experiments the full-scale values will be presented in
brackets following the experimental values). This Configuration took the greatest amount
of time to settle from the large surge oscillations compared to all other Configurations.
This is likely because the water ballast within the platform legs continued to slosh back
and forth even after the downburst winds ended, causing the structure to continue to
experience a surge acceleration for some time.

The pitch rotation experienced by Configuration 3 when subjected to the TLV flow
also generate graphs similar in shape to those of the pitch motions seen in Configuration 1,
however, at different magnitudes. Configuration 1 had a maximum rotation of 28.38◦ which
decreased to a maximum of 10.5◦ in Configuration 3, an almost three-fold difference. A peak
in negative rotation and then positive rotation was experienced, followed by additional
medium sized rotations before settling to the equilibrium position. The downburst caused
two large rotations back and forth as the wind profile hit the platform, followed by many
high frequency medium sized rotations for a period of approximately 30 seconds. This
result is different from Configuration 1, where the platform was held on an angle during
the downburst flow. In Configuration 3, it can rotate back from the initial response of
the downburst hitting the platform, but consequently experiences more sharp, higher
frequency rotations than seen before. Again, the absolute maximum rotation caused by the
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downburst was significantly reduced by the addition of the ballast. The ABL flow caused
small, relatively controlled rotations with a maximum value of 1.38◦.

For the test conducted in Configuration 3 the wave heights would correspond to full
scale peak-to-peak wave heights of 0–7.5 m. Within [17] by Naqvi et al., the corresponding
full scale wave heights were 0–7 m, which is comparable to the Configuration 3 in ABL
wind test conducted in this study. In the Naqvi study the motion response of a ballasted
tension leg platform and spar buoy in controlled wave and wind conditions was examined.
It was found that the surge accelerations dominated the heave accelerations, which was
also discovered for both ballasted systems (Configuration 3 and 4) tested in the present
study. The surge acceleration generally resonated between ±0.1 g, with the maximum
surge being approximately 0.98 m s−2. The pitch rotations generated from this test were
between approximately −0.75 to 1.75 degrees. Examining the graph of the Configuration
3 motion response to the ABL wind, it can be seen that most of the surge responses were
within ±1 m s−2, although the maximum values are higher at some periods within the
test. The major difference between these two experiments is that within Naqvi’s study
the system is a tension leg platform while Configuration 3 is a loosely moored system.
However, due to the comparable wave generations and subjection to straight wind flows it
seems helpful to compare the two findings and to consider the cause of any differences. It is
likely that the spikes in surge acceleration within Configuration 3 could have been avoided
with more taught mooring lines, as used in [17]. The pitch rotations of Configuration 3
subjected to the ABL flow were between −0.56◦ and 1.34◦, which again is comparable to
the findings in Naqvi’s study [17].

The findings for Configuration 3 in this study are similar to the findings of the semi-
submersible in [22], due to both of these studies being compared for their lowered center of
mass. In this compared study it was found that the semi-submersible platform experienced
the highest surge response out of all three types studied [22]. In the present study, the surge
motions of Configuration 3 were the greatest in both magnitude and frequency, compared
to that of the other Configurations compared here as well. Again, this was likely cause by
the sloshing effects of the water ballast within the platform legs.

For the platform with additional top-heavy weight added to the system deck (Con-
figuration 4), the order of maximum values of heave acceleration (Figure 15a) and pitch
rotation (Figure 15c) were: DB > TOR >> ABL. The maximum values of the surge accelera-
tion (Figure 15b) were of the order: TOR > DB >> ABL.

Figure 15. (a) Heave acceleration, (b) Surge acceleration, and (c) Pitch rotation of Configuration 4-Loosely moored ballasted
platform with added top-heavy weight.
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During the TLV flow, Configuration 4 experienced an increase in both heave and surge
acceleration as the tornado was over top of the platform (Figure 16). The tornado slightly
lifted the platform and then passed into the surrounding water. This was followed by small
oscillations which very quickly settled to the equilibrium position after the tornado had
ended (Figure 16). When this top-heavy platform was subjected to the DB flow a sharp
change in acceleration was generated as the downburst hit the platform. This was followed
by small heave accelerations and medium sized surge accelerations for approximately 10
s before the system steadied out to the equilibrium position. The oscillations following
the initial peaks generated from the DB and TLV, but before the system settled to the
equilibrium position, were significantly smaller in magnitude than those of Configurations
1 and 2 for the heave acceleration, and Configurations 1, 2 and 3 for the surge acceleration.
Configuration 4 has the most obvious stability in the heave direction compared to any of
the other Configurations.

Figure 16. Heave and Surge accelerations and bell mouth distance (Tornado location) for configura-
tion 4.

The period it takes for the motion to settle back to its equilibrium position following
the downburst or tornado hitting the platform is shortest in Configuration 4. The reduction
in time needed to return to equilibrium for Configuration 4 is most significantly reduced,
by 30–50 s (367–612 s at full scale) during the TLV wind profile compared to Configurations
1, 2 and 3. The ABL flow caused extremely small accelerations in both the heave and surge
directions.

Comparing the pitch rotations of each Configuration, the tightly moored platform
of Configuration 2 experienced, by far, the lowest and most controlled rotations. For the
loosely moored systems, the addition of ballast in the legs of the platform significantly
reduced the maximum pitch rotations of the platform, however it caused more sharp back
and forth rotations during the settling of the platform after the downburst and tornado
was completed. This longer time necessary to settle could again be caused by the water
sloshing effects of the ballast within the legs. Further, the addition of a top-heavy deck on
the floating platform in Configuration 4 increased the absolute maximum rotation during
the DB from 8.88◦ to 9.44◦. The TLV absolute rotation decreased from 10.5◦ to 6.88◦. A
study completed by Yang et al. found that with increasing water depth, the pitch rotation
decreases [23]. In deeper waters taut mooring lines become less realistic, and platforms
will likely be freer to move such as the ones in the present paper represented by the loose
catenary mooring. The stability of the pitch rotation for configurations 3 and 4 could be
dampened further in a deep-water application, generating a more stable platform.

Comparing these results to the findings of [22], the spar system is comparable to
Configuration 4, due to the characteristics of both systems being a low center of mass
and large difference between the center of mass and center of buoyancy. The results
of [22] found that the surge of this Configuration was lowest in comparison to the other
configurations in the study. In the study presented here, Configuration 4 did still experience
large spikes in acceleration when the wind profiles first hit the platform, however, the
motions following those peaks were the lowest of all other configurations.
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5. Conclusions

Four Configurations of scaled models of a floating offshore multi-purpose platform
were developed and experimentally tested with two types of mooring lines to examine
the dynamic responses and stability when subjected to 1:150 scaled Atmospheric Bound-
ary Layer (ABL), Tornado-Like Vortices (TLV) and Downburst (DB) wind flows. The
experiments conducted within this study repeatedly resulted in large peaks and sharp
movements caused by the TLV wind profile, followed by smaller but significant oscillations
before the motions were able to return to equilibrium. The DB profile generated repeated
high frequency accelerations throughout its duration. The ABL wind profile produced very
small accelerations and rotations for all tests except the surge acceleration of Configuration
3 (loosely moored and ballasted platform).

The tightly moored system in Configuration 2 experienced reduced motions com-
pared to the loosely moored base platform of Configuration 1. The tight system absolute
maximum values of acceleration were lower than the loose system, and the rotations were
the lowest of all Configurations studied. Considering only the rotational response of the
systems, the tightly moored system has by far the greatest stability.

Configurations 3 (ballast addition) and 4 (ballast and top-weight addition) did still
experience large peaks when the tornado and downburst first hit the structure. Configura-
tion 4 provided insight to the effect of raising the center of buoyancy of the system, with
the loosely moored, ballasted, and top-heavy system. This system experienced very low
accelerations following these peaks in comparison to the other loosely moored systems
(Configurations 1 and 3) and even the tightly moored system (Configuration 2). The heave
of Configuration 4 is significantly dampened, even at the peaks, resulting in Configuration
4 experiencing the greatest heave stability of all the tests. However, the peaks of the surge
acceleration were high for this system, which was likely caused by the sloshing effects of the
water ballasting material. The ballasted system without top-heavy weight in Configuration
3 experienced even greater peaks for the surge acceleration, again due to the water ballast
sloshing effects, resulting in the highest absolute surge maximum of all the systems.

Additionally, the platform was forced on an angle for the entire duration of the
downburst wind flow when loosely moored with no ballast. The addition of ballast in
Configurations 3 and 4 generated lower maximum rotations compared to Configuration
1. However, the ballasted systems experience a higher frequency of sharp back and forth
rotations during the downburst test and following the TLV.

Overall, the downburst caused higher frequencies and large magnitudes of oscillations
of the floating system that lasted the entire duration of the downburst. This caused repeated
stress on the structure’s components that over time may result in higher fatigue loading of
the system. The tornado generated very large platform movements with less significant
oscillation, and thus likely producing a greater tendency to experience higher yield stress
or potentially ultimate strength failure of system components. The long period of rotation
subjected on the platform by the DB flow could also be detrimental to the platform and
systems on top of it. If a floating structure were to be implemented within an area prone
to these extreme winds, design considerations should especially focus on reduction in
rotations of the structure.

The loose mooring line systems are freer to move in any direction, which caused them
to move more sporadically. This was especially obvious comparing the pitch rotations
of Configurations 1, 3 and 4 to Configuration 2 with the tight mooring lines. The tight
mooring line system was able to oscillate more closely and cleanly around the equilibrium
point due to the forces from the mooring lines and the added buoyancy force from the
platform displacing more water. The tightly moored system faced lower magnitudes of
motion in all tests compared to the loosely moored system with no ballast. The tightly
moored system did, however, experience a longer period of high frequency oscillations of
acceleration during the DB flow subjection, compared to that of Configuration 1, with the
loose mooring lines.
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Considering the findings of this study, it can be suggested that the tight mooring
lines allow for more predictable dynamic motions of a structure, and the lowest maximum
accelerations and rotations. In projects where location and design conditions would allow,
tightly moored systems may be a desirable option to reduce the risk of major movement
or damage from a storm. However, it must be kept in consideration that this type of
system could still experience very high frequency motions during a major wind event. In
comparison to the loosely moored, unballasted and unweighted system of Configuration 1,
however, the reduction in extreme rotation of the structure by using tight mooring lines is
desirable.

In areas where the waters are very deep, or tide must be taken into consideration,
tightly moored systems may not be a viable option, and loose mooring lines may be chosen.
Other reasons for loose mooring lines to become desirable could include ease of installation,
or project specific benefits such as the need for high wind speeds far offshore (in deeper
waters) for an offshore wind turbine application. The findings in this study provide insight
to some methods of improving the design of offshore floating systems with loose mooring
lines, with a ballast addition and top-heavy weight system. The major changes in structure
dynamics with these different design considerations when subject to extreme wind events
is shown within these findings.

The results of these experiments show that the stability of floating structures is much
more varied under TLV and DB flows than it us under ABL winds and the dynamic motions
are much larger. Clearly, further studies of light-duty floating platforms under extreme
winds and environmental conditions should be considered to advance design efficiencies
and overarching safety concerns in this nascent segment of the offshore sector.
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Appendix A

Please also consider the following figures to compare the heave, surge and pitch
motions of each Configuration during the three different wind types. Within each of
these figures Configurations 1–4 are plotted together. The heave, surge and pitch are
plotted separately for each of the Atmospheric Boundary Layer (ABL), Downburst (DB)
and Tornado-Like Vortex (TLV) winds.

https://uwin365-my.sharepoint.com/:f:/g/personal/nicho11b_uwindsor_ca/EgKT6r4CIllFvyBeKxoH6oMBjOwQpUl4ulOld28TPcZHVg?e=qnCgs6
https://uwin365-my.sharepoint.com/:f:/g/personal/nicho11b_uwindsor_ca/EgKT6r4CIllFvyBeKxoH6oMBjOwQpUl4ulOld28TPcZHVg?e=qnCgs6
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Figure A1. ABL wind heave accelerations for all configurations.

Figure A2. ABL wind surge accelerations for all configurations.

Figure A3. ABL wind pitch rotation for all configurations.

Figure A4. Tornado heave accelerations for all configurations.

Figure A5. Tornado surge accelerations for all configurations.
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Figure A6. Tornado pitch rotations for all configurations.

Figure A7. Downburst heave accelerations for all configurations.

Figure A8. Downburst surge accelerations for all configurations.

Figure A9. Downburst pitch rotations for all configurations.

For further comparison and clarification please consider this table summarizing the
maximum and minimum motions that each configuration was subjected to by the different
wind profiles, and the time it took for the system to settle back to equilibrium. The time for
the system to settle to equilibrium was calculated as the time necessary to settle after the
end of the downburst winds and the end of the TLV translation across the wind chamber.
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Table A1. Summary of the maximum and minimum heave, pitch and surge accelerations, as well as the time it took for the
structure to result to the equilibrium position after the completion of the downburst wind subject, and end of the tornado
translation.

ABL DB TVL

Configuration 1:
Loose Mooring

Surge

Max
→
a (m/s2) 0.41 1.98 2.43

Min
→
a (m/s2) −0.45 −2.45 −2.75

Time to settle to
equilibrium (s) - 18.38 5.14

Heave

Max
→
a (m/s2) 1.53 2.945 4.13

Min
→
a (m/s2) −1.45 −5.48 −5.82

Time to settle to
equilibrium (s) - 12.80 11.16

Pitch
Max rotation (deg) 1.06 19.88 28.38
Min rotation (deg) −1.69 −6.44 −13.06

Time to settle to
equilibrium (s) - 14.18 11.65

Configuration 2:
Tight Mooring

Surge

Max
→
a (m/s2) 0.33 1.63 1.15

Min
→
a (m/s2) −0.32 −2.02 −2.48

Time to settle to
equilibrium (s) - 17.89 43.93

Heave

Max
→
a (m/s2) 0.72 3.56 2.99

Min
→
a (m/s2) −0.72 −2.5 −3.05

Time to settle to
equilibrium (s) - 9.92 41.75

Pitch
Max rotation (deg) 0.94 3.56 2.75
Min rotation (deg) −0.31 −5.81 −6.13

Time to settle to
equilibrium (s) - 6.48 4.53

Configuration 3:
Ballast Loose

Mooring

Surge

Max
→
a (m/s2) 3.17 1.92 2.08

Min
→
a (m/s2) −2.81 −3.06 −2.27

Time to settle to
equilibrium (s) - 7.33 7.37

Heave

Max
→
a (m/s2) 1.24 3.09 3.16

Min
→
a (m/s2) −0.5 −1.68 −2.31

Time to settle to
equilibrium (s) - 2.92 10.88

Pitch
Max rotation (deg) 1.38 8.88 10.50
Min rotation (deg) −0.94 −8.75 −5.25

Time to settle to
equilibrium (s) - 3.69 10.61

Configuration 4:
Ballast Weight
Loose Mooring

Surge

Max
→
a (m/s2) 0.24 0.88 2.72

Min
→
a (m/s2) −0.26 −2.11 −0.83

Time to settle to
equilibrium (s) - 6.32 9.63

Heave

Max
→
a (m/s2) 0.33 1.88 2.17

Min
→
a (m/s2) −0.32 −3.35 −1.21

Time to settle to
equilibrium (s) - 2.81 9.36

Pitch
Max rotation (deg) 0.88 7.00 3.13
Min rotation (deg) −2.00 −18.13 −6.88

Time to settle to
equilibrium (s) - 3.38 5.73
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