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Abstract: This paper presents a shunt active power filter connected to the grid via an LCL coupling
circuit with implemented closed-loop control. The proposed control system allows selective harmonic
currents compensation up to the 50th harmonic with the utilization of a model-based predictive
current controller. As the system is fully predictive, it provides high effectiveness of the harmonic
reduction, which is proved by waveforms achieved in performed tests. On the other hand, the
control system is prone to loss of stability. Therefore, the paper is focused on the stability analysis
of the discussed control system with the additional outer control loop of the supply current with
predictive control of this current. The conducted stability analysis encompasses the assessment of
system stability as a function of the coupling circuit parameter identification accuracy, whose values
are implemented in the current controller, as well as parameters such as the sampling frequency
and proportional-integral (PI) controller coefficients. The obtained results show that the ranges of
the LCL circuit parameter identification accuracy for which the system remains stable are relatively
wide. However, the most effective compensation of the supply current distortion is achieved for the
parameters identified correctly, and the greatest impact on the compensation quality has the value of
L1 inductance.

Keywords: shunt active power filter; harmonic currents compensation; closed-loop control; stability
analysis; predictive control

1. Introduction

The active power filter (APF) is a proven tool for power quality problems as it provides
controllable and very effective harmonic currents compensation. On account of this, such a
device has become more and more popular, which is reflected by the numerous research
works on its control strategies published in scientific journals.

APFs can be classified into three types on the basis of their topology and connec-
tion to the power grid. The series APF, which is connected to the grid via a coupling
transformer, constitutes a controlled voltage source and is utilized to directly mitigate
voltage distortion [1,2]. However, the shunt APF, being connected in parallel between
the supply and non-linear loads via a passive circuit, compensates directly for current
distortion [3–30] and also, indirectly, the grid voltage. It acts as a controlled current source
and is characterized by more merits in comparison to the series APF, which has made it
widely used in industrial applications. The hybrid APF [31,32], holding the advantages of
both passive and active power filters, combines improved performance and cost-effective
solutions. There are two prominent configurations of the hybrid APF: a combination of
the series APF and a shunt passive filter and a combination of the shunt APF and a shunt
passive filter.

There are two main control strategies for the shunt APF in accordance with the
control theory: feedforward open-loop control [8,11,17,19,24–26] and feedback closed-loop
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control [3–7,9–12,15,16,18,21–23,30]. They are based on the selection of the current around
the point of common coupling (PCC), which is used in the control. The load current
measurement is used to determine the set current in the open-loop system, while the
supply current measurement is utilized in the closed-loop control. This control system
is more complex than open-loop control as it requires the use of an outer control loop of
the upstream current with simultaneous control of this current. It is less popular than the
open-loop control structure on account of the fact that it is more prone to loss of stability. On
the other hand, it ensures a higher level of harmonic currents compensation. Another less
common control strategy is based on the measurement of voltage in the PCC. The reference
current, which is proportional to voltage harmonic components, ensures compensation of
distortions regardless of whether they come from the load or the supply side [28,29].

Determination of current harmonics to be compensated is significant and established
on their detection with the utilization of the particular techniques in either the time or
the frequency domain. The former approach encompasses methods such as instanta-
neous reactive power theory (p-q theory) [8,13–15], stationary reference frame theory [12]
or synchronous rotational reference frame theory relying on Park’s transformation (d-q
transformation) [3,7,18,22,25], whereas the latter comprises Fourier transform techniques
(FFT, DFT) [11,20] as well as their variations [4–7,11]. Apart from this, harmonic currents
compensation can be broadband or selective, often comprising harmonic current orders
equal to 6k ± 1 as they are the most common existing in three-phase plants. There are also
new approaches for this issue, such as the one presented in [32], which shows a hybrid
APF defining the reference current on the basis of the sliding mode control. Another
interesting study case is presented in [18], which proposes rectifying the problem in the
electromagnetic compatibility of power electronics equipment by developing the APF’s
high control accuracy based on d-q control.

A crucial element of the APF control structure is a current controller due to the fact that
it determines the quality of the reference current tracking. There is a wide range of various
current controllers, among which one can distinguish a simple proportional-integral (PI)
controller [3,4,7,10,15,17,18], a proportional-resonance (PR) controller [13,16,23], a deadbeat
controller [12] and a model-based predictive controller (MPC) [8,20]. The challenges for
current controllers include maximizing the harmonic currents compensation, correction of
delays between the measurements and control and cooperation with the coupling circuit. In
APFs, an LCL circuit has to be used as a coupling circuit due to its facility to mitigate current
ripples resulting from the pulse modulation of the converter. However, it causes a resonance
hazard. One solution to this issue is applying the active damping method [16,23,33]. The
literature [16] presents the combination of using a current controller based on PR units
with phase compensation along with the inverter-side current feedback active damping to
attenuate the LCL resonance peak. Another approach for developing a current controller
is shown in [22], which presents a current controller consisting of n parallel-connected PI
controllers. There is a coupling circuit in the form of the inductance which does not cause
a risk of resonance, but it is less effective in attenuating the switching ripples. However,
although the mentioned solutions are well developed, they do not compensate the delays
resulting from the discrete control system. Achieving this is possible with the utilization
of a predictive current controller. The MPC of the control system proposed in this paper
not only compensates for the mentioned delays but also fully blocks the resonance of the
LCL circuit and is characterized by great dynamics of operation. Using this controller
with the additional outer control loop of the upstream current in a control system of an
APF is a novelty. Nevertheless, the application of the additional outer control loop for
the upstream current with the predictive control of this current implies the necessity of
applying prediction also when determining the reference current, which makes it more
complex. Another problematic issue resulting from this outer current feedback loop is its
proneness to loss of stability in the system. Therefore, defining the stability margins for
this control system is of high importance.
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The stability analysis of the proposed system has not been presented in the literature.
Generally, the stability analysis is an important issue in control systems which is why it is
shared by some researchers [8,22–24,28]. Not only does it present the impact of particular
parameters on the system stability but it also allows defining the range of their possible
changes in such a way as to avoid the loss of stability. There are very little papers focusing
on the stability analysis of an APF with external closed-loop control from the supply
current. Existing ones, such as [22,23], do not involve predictive solutions; therefore, such
an analysis seems to be important to introduce. Although the significance of such an
analysis is considerable, conducting it can be complicated. Therefore, the introduction of
some simplification is often demanded, especially in systems with complex structures.

The main subject of this paper is the stability analysis of a three-phase shunt APF with
an implemented control system with an additional predictive outer control loop of the
upstream current with predictive control of this current. This includes defining transfer
functions of the system and examining the impact of the sampling period value, control
system parameters and the accuracy of coupling circuit parameter identification on the
system stability.

The paper is divided into five sections. Section 2 presents a circuit structure, a descrip-
tion of the implemented control and the parameters of the discussed system. Then, sample
waveforms to illustrate the operation and a harmonic currents compensation level realized
by the proposed shunt APF are presented. Section 3 focuses on the stability analysis of
the system with the defining partial and overall transfer functions of the control system.
Section 4 depicts root locations as a function of the changes in the particular control sys-
tem’s parameter values and defines the margins of the system stability for this system. The
paper ends with a brief conclusion summarizing the significant contributions of the work
in Section 5.

2. Proposed Control System

The presented system is a shunt APF which is connected in parallel between the
supply and the load. Its circuit structure along with detailed parameters and proposed
control strategy is described below.

2.1. System Description

The system under study is a three-phase, three-wire low-voltage power grid with a
non-linear load connected to the grid via LL inductors. The load consists of a three-phase
rectifier with the RL load on the DC side of this converter. The implemented shunt APF
comprises a two-level voltage source inverter (VSI), which acts as a controlled current
source, connected to the grid between the source and the load in the PCC via a coupling
circuit. An LCL circuit was applied to ensure the attenuation of current ripples which are
caused by the impulse operation of the converter. The proposed main circuit topology,
which is a diagram of the tested system, is shown in Figure 1. The parameters in the figure
indicate the following: iu—upstream current, id—downstream current, i1—L1 current, i2
= ik—L2 current. The values of the circuit’s parameters along with the parameters of the
control are presented in Table 1.
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Figure 1. Main circuit structure. 

Table 1. Parameters of proposed system. 
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The proposed control system is a predictive closed-loop control of the shunt APF 

which utilizes the outer control loop of the upstream current with simultaneous realiza-
tion of the control of this current. Its main units include the uDC controller, which serves 
the superordinate function in the system, the predictive set current determination unit, 
the predictive current controller and the space vector pulse width modulation (SVPWM) 
modulator. The system’s block diagram is presented in Figure 2. 

Figure 1. Main circuit structure.

Table 1. Parameters of proposed system.

Parameter Value

Line to line grid voltage 3 × 400 V
Grid frequency f = 50 Hz
Grid inductance LS = 40 µH
Non-linear load 6-pulse diode bridge with RL load (R = 0.7 Ω, L = 1.0 mH)

Non-linear load inductor LL = 40 µH
LCL circuit L1 = 150 µH, L2 = 75 µH, C = 100 µF

APF rated power 120 kVA
Deadtime (uncompensated) 3.0 µs

IGBT voltage drop
(uncompensated) 1.5 V

Diode voltage drop
(uncompensated) 1.0 V

PWM carrier frequency f PWM = 8 kHz
Sampling frequency f s = 16 kHz

The selection of the LCL circuit parameter values as well as the value of the sampling
period was performed in accordance with the methodology proposed in [8].

2.2. Control Structure

The proposed control system is a predictive closed-loop control of the shunt APF
which utilizes the outer control loop of the upstream current with simultaneous realization
of the control of this current. Its main units include the uDC controller, which serves
the superordinate function in the system, the predictive set current determination unit,
the predictive current controller and the space vector pulse width modulation (SVPWM)
modulator. The system’s block diagram is presented in Figure 2.
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Figure 2. Block diagram of the control system.

The implemented control algorithm is developed in the orthogonal stationary refer-
ence frame projected on the complex plane α-jβ with the usage of the Clarke transform
with power invariance. The application of prediction demands the use of the predictive
current controller, which provides correction of delays between the feedbacks and control,
prediction of the supply voltage and prediction of the reference current.

The outer control loop of the upstream current is predictive and determines the APF
reference current in a selective manner. It was set to allow compensating harmonic currents
whose orders are equal to ±(6k ± 1), up to the 50th harmonic. The particular reference
harmonic current calculation, which is shown as a block diagram in Figure 3, includes the
discrete Fourier transform (DFT), PI control, inverse discrete Fourier transform (IDFT) and
prediction. The outer PI controllers, which are independent for each of the compensated
current harmonics, control the complex amplitudes of these current harmonics to be equal
to zero (separately, their orthogonal real and imaginary components), which are constant
for the quasi-steady state of the compensated non-linear loads. Therefore, the task of these
outer PI controllers is to completely eliminate the compensated current harmonics from
the upstream current thanks to the action of its integral parts. The dynamics of these
outer loop PI current controllers determine only the APF response time for changes in
the power of compensated loads. They substantially improve the APF current compensa-
tion effectiveness in quasi-steady states, regardless of the dynamics of the inner current
controller. Particular symbols appearing in the figure, not mentioned before, indicate:
ϕe,1—the instantaneous phase angle of the supply voltage fundamental harmonic, k—the
order of harmonic current to be compensated, r—prediction horizon, n—sample number.
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The resultant reference current is a superposition of the currents of individual harmon-
ics determined in accordance with the diagram shown in Figure 3. The applied prediction
horizon is equal to 3 on account of the fact that LCL is a third-order circuit. It means that
zero error of the set current is possible to achieve in a discrete control system in three
control steps, which corresponds to three sampling periods Ts.

2.3. Sample Waveforms

The discussed system, whose structure is presented in Figure 1, was examined in the
simulation tests conducted in the PLECS software. The control system, shown in Figure 2,
and the diagram for the outer control loop of the upstream current, determining the
APF’s reference current, which is depicted in Figure 3, were implemented as an algorithm
written in the C programming language. The simulation tests were conducted taking
into consideration the feedback path from the upstream current, delays between the
feedback and the control and the non-linearities resulting from the impulse operation of
the converter. The presented results, which are depicted in Figures 4 and 5, were achieved
for the system’s parameters given in Table 1. Figure 4 shows waveforms in the PCC when
there is no harmonic compensation in the system, whilst Figure 5 presents the transients
when the APF is enabled.

Energies 2021, 14, x FOR PEER REVIEW 6 of 17 
 

 

eϕ 1,eϕ 1,ekϕ

k
1,eje kϕ−

,e,predje kϕΔ

u ( 1)i n − u, ( 1)ki n −u,kI set
u, ( 1 )ki n r− +

 
Figure 3. Block diagram of the determination of the particular current harmonic to be compensated. 

2.3. Sample Waveforms 
The discussed system, whose structure is presented in Figure 1, was examined in the 

simulation tests conducted in the PLECS software. The control system, shown in Figure 2, 
and the diagram for the outer control loop of the upstream current, determining the 
APF’s reference current, which is depicted in Figure 3, were implemented as an algo-
rithm written in the C programming language. The simulation tests were conducted 
taking into consideration the feedback path from the upstream current, delays between 
the feedback and the control and the non-linearities resulting from the impulse operation 
of the converter. The presented results, which are depicted in Figures 4 and 5, were 
achieved for the system’s parameters given in Table 1. Figure 4 shows waveforms in the 
PCC when there is no harmonic compensation in the system, whilst Figure 5 presents the 
transients when the APF is enabled. 

  
(a) (b) 

Figure 4. Harmonic compensation disabled: (a) voltage waveform in the PCC; THDu = 5.11%; (b) upstream current 
waveform in the PCC; THDi = 23.42%. 

  
(a) (b) 

Figure 4. Harmonic compensation disabled: (a) voltage waveform in the PCC; THDu = 5.11%; (b) upstream current
waveform in the PCC; THDi = 23.42%.

The above results prove that the proposed control strategy provided a high level of
harmonic current limitation, which resulted, consequently, in voltage harmonics mitigation.
THDi decreased about twenty-seven times, whereas THDu decreased almost four and a
half times. Moreover, waveforms depicted in Figure 5c,d reflect the effect of the influence
of the LCL circuit on the system. The ripples contained in the APF current observed in
Figure 5c and related to pulse modulation were reduced almost completely, which can be
noticed in Figure 5d.
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Figure 6 shows examples of waveforms obtained for the laboratory model. They
illustrate the effectiveness of the predictive controller along with the current and voltage
prediction algorithms. The presented laboratory system is a three-phase low-voltage power
network (400 V, 50 Hz) and a non-linear load of apparent power equal to 10.3 kVA, in the
form of a diode rectifier with an RC load on the DC side. A shunt active power filter with
rated power equal to 10 kVA was connected between the supply network and the load via
an LCL circuit with the following parameters: L1 = 2.0 mH, L2 = 1.4 mH, C = 10 µF.
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The value of the THDi coefficient of the upstream current was equal to 44% with
disabled compensation in the system. The results achieved when the APF was enabled
show that the upstream current distortion was compensated to THDi = 2.5%, whilst the
value of the THDu coefficient was compensated to 1.69%.

3. Stability Analysis

The subject of the stability analysis is the control system with the outer closed-loop
current reference control, inner model-based predictive current controller and an object in
the form of an LCL coupling circuit, an ideal grid voltage source and a current source-based
load. The current controller requires both the information about state variables of the
LCL circuit and the reference current signal for proper operation. Such a system is prone
to the loss of stability in case of operating with an improper control sampling frequency
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and poor identification of the LCL circuit parameters required by the MPC controller. The
presence of the outer control loop results in additional roots of the characteristic equation
of the system. As the proposed control system is not designed to be adaptive, its important
quality factor is the robustness. Due to the relatively high complexity of the system, certain
simplifications were adopted for the need to perform this analysis. Performing the stability
analysis demanded defining particular transfer functions of the system first and then
determining their generalization. These operations as well as the stability analysis were
performed with the utilization of MATLAB software with the following toolboxes: System
Identification Toolbox, Control System Toolbox and Symbolic Math Toolbox.

3.1. Assumptions

The stability analysis was conducted with the presumption that the grid is ideally
stiff, and thus operation under conditions of a weak grid is not considered in this paper.
The discussed system is based on the discrete-continuous model, in which the applied
predictive current controller is the discrete part, and the continuous parts are the voltage
inverter and the LCL circuit. Therefore, the stability analysis of the entire system is possible
only when it is reduced to either a continuous or a discrete form. However, reducing it to
the discrete form allows the stability analysis as a function of the sampling frequency, which
constitutes an essential parameter of the system as it affects the stability of the control
system. On account of that, continuous parts were discretized and the whole system
was examined in the z-domain. Furthermore, the model of the inverter was linearized
and simplified. Assuming an unlimited uDC voltage and neglecting the inverter’s non-
linearities, there is an opportunity to adopt a linear model of the inverter as a zero-order
hold (ZOH).

3.2. Overall and Partial Transfer Functions

Figure 7 presents the z-domain block diagram of the proposed system with com-
pensation for a particular harmonic current. This scheme contains all considered partial
transfer functions, whilst equivalent block diagrams with generalized transfer functions
are depicted in Figure 8. All symbols utilized both in diagrams and transfer functions are
consistent with those used in the previous figures, tables and text.
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where Ts denotes the sampling period.
The discrete transfer function matrix of the LCL circuit (analog part of the system)

results from the cascade connection of the ZOH, which reflects the pulse operation of the
APF inverter, and the LCL continuous transfer function matrix derived from differential
equations of the LCL coupling circuit outlined in [8]. Therefore, the GLCL(z) matrix is
described by the following equation:

GLCL(z) =

 GLCL,u→i1(z)
GLCL,u→i2(z)
GLCL,u→uc(z)

 =


L1ωrTs(z2−2 cos(ωrTs)z+1)+L2 sin(ωrTs)(z2−2z+1)

L1ωr(z−1)(L1+L2)(z2−2 cos(ωrTs)z+1)
ωrTs(z2−2 cos(ωrTs)z+1)−sin(ωrTs)(z2−2z+1)

ωr(z−1)(L1+L2)(z2−2 cos(ωrTs)z+1)
L2(1−cos(ωrTs))(z+1)

(L1+L2)(z2−2 cos(ωrTs)z+1)

, (2)

where ωr is the LCL resonant angular frequency:

ωr =

√
L1 + L2

L1L2C
, (3)

while the resonant frequency is expressed by

fr =
ωr

2π
=

1
2π

√
L1 + L2

L1L2C
, (4)

which in the discussed system is equal to f r = 2.25 kHz.
GCL(z) is the set current transfer function. Determining the reference current in the

presented circuit requires transforming the signal into the frequency domain with the
usage of the DFT. From a mathematical point of view, this operation is identical to the Park
transform, where the angle of rotation is the product of the order of a given harmonic and
the instantaneous angle of the grid voltage obtained from the phase-locked loop (PLL),
followed by low-pass filtering. The next steps consist of PI control, prediction and the IDFT,
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which is the same as the inverse Park transform. Bearing this in mind, the GCL(z) matrix
derives from the following equation:

GCL(z) =
[

cos(ϕk) sin(ϕk)
− sin(ϕk) cos(ϕk)

]
·
[

GLPF(z) 0
0 GLPF(z)

]
·
[

GPI(z) 0
0 GPI(z)

]
·

·
[

Gpred(z) 0
0 Gpred(z)

]
·
[

cos(ϕk) − sin(ϕk)
sin(ϕk) cos(ϕk)

]
(5)

where ϕ and k denote the instantaneous phase angle of the supply voltage fundamental
harmonic and the order of the compensated harmonic current, respectively.

In the case where the matrices between the Park transforms are diagonal with the same
coefficients on the main diagonal, the Park transform matrices do not affect the value of
the resultant matrix. This is because the product of Park transform matrices is the identity
matrix: [

cos(ϕk) sin(ϕk)
− sin(ϕk) cos(ϕk)

]
·
[

cos(ϕk) − sin(ϕk)
sin(ϕk) cos(ϕk)

]
=

[
1 0
0 1

]
(6)

Therefore, the final transfer function can be expressed by

GCL(z) = GLPF(z) · GPI(z) · Gpred(z), (7)

and is represented as follows:

GCL(z) =
a(Kp · z− Kp + KiTs)

z2 · (z− 1)(a + z− 1)
, (8)

where a is the coefficient of the low-pass filter, while Kp and Ki denote proportional and
integral coefficients of the PI controller.

The whole system is reduced to the single-input, single-output (SISO) form, as it is
shown in Figure 8. On account of that, the overall transfer function is represented as

G(z) =
GCL(z) · GC,iset

2 →u(z) · GOL(z) · GLCL(z)

1− GCL(z) · GC,iset
2 →u(z) · GOL(z) · GLCL(z)

, (9)

with GOL(z) expressed by the following equation:

GOL(z) =
GPWM(z)

1− GPWM(z) · GCO(z)
=

1
1− GCO(z)

, (10)

where the minus in the denominator results from taking into account the negative feedbacks
in the transfer function of the current controller.

4. Results

The stability of the considered control system results from the root locations of the
characteristic equation of the G(z) transfer function on the z-plane. In the discussed APF
circuit, it is conditioned by the value of the sampling period, the Kp and Ki coefficients
and the identification accuracy of the LCL coupling circuit parameters. The latter aspect
is especially significant when the applied current controller is predictive. To examine
the impact of this factor on stability, the exact parameters L1, L2 and C in the predictive
controller transfer function GC(z) were replaced with the identified (measured or estimated)
values L1c, L2c and Cc, respectively. This results from the fact that parameters of the LCL
circuit implemented in the control algorithm (L1c, L2c, Cc) constitute the parameters of the
current controller. Changes in their values, which determine the percentage accuracy of
their compliance with the parameters of the LCL circuit, as well as the range of values of
changes in the Ts, Kp and Ki parameters, define the area of stable operation of the system.

Root locus analyses of the APF feedback control system as a function of the above-
mentioned parameters are presented in Figure 9. Red crosses in each figure indicate the
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pole locations of the discussed system for the following parameters: L1c = L1 = 150 µH, L2c
= L2 = 75 µH, Cc = C = 100 µF, Ts = 6.25�10−5 s, Kp = 0.02, Ki = 10.0. The presented results
were obtained from tests conducted in MATLAB software.

The spans of the permissible changes in the Kp and Ki coefficients in the area of system
stability are below 1.08 and above 120, respectively, when the other parameter remains
unchanged. This control system was not tested under the conditions of changes in both
coefficients simultaneously.

The control system is stable in terms of the sampling period value being below
7.38�10−5 s and in the range from 1.35�10−4 s to 1.5�10−4 s. These values correspond to the
sampling frequency between 6.67 and 7.46 kHz and above 13.55 kHz. The relation between
the sampling frequency f s and the modulation frequency f PWM in the proposed system is
as follows:

fs = 2 fPWM, (11)

and thus the system remains stable when the modulator pulsation frequency is in the range
from 3.33 to 3.73 kHz and above 6.77 kHz. This means that the minimum sampling frequency
within the stable area is approximately 1.5 times the LCL circuit resonant frequency: f PWM =
1.5 f r. However, a relatively large margin of stability can be obtained when f PWM > 3 f r.

As far as the changes in the identification accuracy of the LCL coupling circuit param-
eters are concerned, the feedback control system remains stable for the given inductance
value L1c in the range from 88% to 136% of the exact value (L1), for the inductance L2c
above 64% of the exact value (L2) and for the capacitance Cc in the range from 74% to
290% of the exact value (C). Not only do these ranges far exceed the practical tolerances of
the choke and capacitor parameters but they are also beyond the achievable accuracy of
measurements of these quantities.
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Simulation tests were conducted in PLECS to define the values of the considered
parameters, for which the loss of stability is observed in the control system. The simulated
control system is stable when the value of the L1c parameter is within the range from 89%
to 136% of the exact value (L1), the value of L2c is above 64% of the exact value (L2) and
the value of Cc is between 74% and 325% of the exact value (C). The loss of stability occurs
when the sampling period is above 1.49�10−4 s and in the range from 1.29·10−4 to 7.38�10−5

s. The obtained values are almost completely consistent with the values achieved in the
stability analysis conducted in MATLAB, which makes the results reliable.
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Further tests performed for the determinants of the experimental system provided
results which show that the stability regions for the examined parameters are wider than
those obtained in the stability analysis. This is due to limits of the control signals which
result from the value of the uDC voltage (and, consequently, the range of the inverter AC
voltage) as well as the value of the APF’s maximum current. However, a relatively high
consistency is obtained for the Ts parameter. It is an important issue on account of the
fact that this parameter determines the value of the inverter modulation frequency f PWM,
and in consequence, due to switching losses, the maximum rated power of the single-
inverter-based APF. Although the system remains stable in a wide range of the mentioned
parameter value changes, the compensation effectiveness beyond the stability region is
noticeably lower, which is shown further in the paper. The comparison of the results
obtained on the basis of the simulation tests, the stability analysis and tests performed for
the determinants of the experimental system is presented in Table 2.

Table 2. Comparison of analytical and simulation stability limits of the system.

L1c Parameter L2c Parameter Cc Parameter Ts Parameter

Stability analysis
performed in

MATLAB

88% ÷ 136% of
L1

>64% of L2 74% ÷ 290% of C 150 ÷ 135 µs
and <73.8 µs

Simulation tests
conducted in

PLECS

89% ÷ 136% of
L1

>64% of L2 74% ÷ 325% of C 149 ÷ 130 µs
and <73.8 µs

Tests performed
for the

determinants of
the experimental

system

13% ÷ 214% of
L1

>16% of L2 24% ÷ 315% of C <150 µs

Presented results prove that the stability margins obtained by the analytical method
ensure the stability in actual systems.

Sample waveforms of the APF current, measured on L1 and L2 inductances, illustrating
the loss of stability are shown in Figure 10. The values of parameters L2c and Cc are equal to
parameters L2 and C, respectively, given in Table 1. The value of parameter L1c is changed
in the time equal to 0.5 s from the value L1c = 136% of L1 to the value L1c = 137% of L1,
which is the same as exceeding the stability limit shown in Table 2. The waveforms up
to time t = 0.5 s present stable operation of the system, whilst the waveforms in the time
ranges from 0.5 to 0.6 s depict the system’s operation in case of loss of stability. The choice
of the L1c parameter to represent the system stability loss results from the fact that the value
of this parameter has the greatest impact on the system stability, which will be presented
later in the paper.

The obtained results show that the greatest effects of the loss of stability in the control
system are visible on the waveforms of currents i1 and iC as they reached very high values.
The value of the current i2 is smaller due to the secondary influence of the resonance
formed in the circuit L1-C.

Figure 11 presents values of THDi in the PCC as a function of the LCL circuit parameter
identification. It completes previous results and shows the effectiveness of compensation
performed by the APF in case of introducing LCL parameters inaccurately in the control
system. The presented characteristics are an approximation of the points obtained on the
basis of a series of simulations, assuming that only one of the parameters is changed while
the others are identified correctly and remain unchanged. The discussed parameters were
tested within the following identification accuracy ranges: L1c: 30% ÷ 200% of L1, L2c: 30%
÷ 250% of L2, Cc: 50% ÷ 200% of C.
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The obtained results show that the optimal values of the current controller parameters
(L1c, L2c, Cc), from the point of view of the compensation effectiveness determined on the
basis of the THD coefficient, are the exact values of the LCL circuit. It is also noticeable
from the characteristics that the correctness of determining the value of inductance L1 has
the greatest impact on the quality of compensation.
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Figure 11. THDi value changes as a function of the accuracy of LCL circuit parameter identification.

5. Conclusions

The obtained simulation results confirm a great level of grid harmonic currents com-
pensation of an LCL-based shunt APF with predictive closed-loop control. Along with the
high effective filtering performance, a simultaneous high reduction in filter current ripples
associated with the pulse width modulation (PWM) modulation was achieved.

The presented stability analysis included the determination of overall and partial
transfer functions of the discussed control system and defining the boundaries of particular
parameter changes for which the control system remains stable. The APF stability region,
obtained by the analytical method, is determined by the values of the parameters L1c, L2c,
Cc, Kp, Ki and Ts in the following ranges: L1c = 88% ÷ 136% of L1, L2c > 64% of L2, Cc = 74%
÷ 290% of C, Kp < 1.08, Ki > 120, Ts < 7.38�10−5 s and Ts =1.35�10−4 ÷ 1.5�10−4 s, which
correspond to the sampling frequency f s = 6.67÷ 7.46 kHz and f s > 13.55 kHz. The achieved
results show that there is a wide range of the LCL circuit parameter identification accuracy
for which the system is stable. This is very important in control systems with predictive
current controllers. The stability range for the LCL circuit parameter value changes achieved
by tests conducted for the determinants of the experimental system is even wider. From a
practical point of view, this means that introducing the values of the parameters L1, L2 and
C to the system on the basis of their rating plates, which are given with certain tolerances,
ensures the system’s robustness to a sufficient degree. Furthermore, the obtained range of
the switching frequency proves the possibility of the application of this APF in a system
which requires a low switching frequency of the power transistors. Results acquired in the
stability analysis performed in MATLAB were confirmed by simulation tests conducted in
PLECS. Parameter values for which the control system lost its stability, obtained in both the
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stability analysis and simulation examinations, were consistent. Further analysis showed
that the value of inductance L1 implemented in the control system (L1c) was the most
influential regarding the effectiveness of compensation expressed by the value of the THDi
coefficient. It was also noticed that the accuracy of LCL parameter identification affects
the compensation quality realized by the APF. The greatest level of harmonic currents
compensation was obtained for the values implemented in the current controller equal to
the actual values of the coupling circuit.

Further research will focus on considering other factors influencing the stability of
the system, such as the value of the grid impedance, as well as the type of load and its
voltage susceptibility.
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