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Abstract: Short-term load forecasting is an important part of load forecasting, which is of great
significance to the optimal power flow and power supply guarantee of the power system. In this paper,
we proposed the load series reconstruction method combined improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN) with sample entropy (SE). The load series is
decomposed by ICEEMDAN and is reconstructed into a trend component, periodic component, and
random component by comparing with the sample entropy of the original series. Extreme learning
machine optimized by salp swarm algorithm (SSA-ELM) is used to predict respectively, and the
final prediction value is obtained by superposition of the prediction results of the three components.
Then, the prediction error of the training set is divided into four load intervals according to the
predicted value, and the kernel probability density is estimated to obtain the error distribution of the
training set. Combining the predicted value of the prediction set with the error distribution of the
corresponding load interval, the prediction load interval can be obtained. The prediction method
is verified by taking the hourly load data of a region in Denmark in 2019 as an example. The final
experimental results show that the proposed method has a high prediction accuracy for short-term
load forecasting.

Keywords: load forecasting; load series; mode decomposition; extreme learning machine; kernel
density estimation

1. Introduction

With the development of industry and the economy, the conflict between supply and
demand for energy is becoming increasingly acute. Among them, electric energy is not
only closely related to people’s lives, but also closely related to industrial production.
Therefore, the balance between the supply and demand of electric energy is of particular
concern. At present, the main power generation model in the world is still coal combustion
power generation, which will cause air pollution. To ensure the sustainable development
of economy, countries all over the world are vigorously developing new energy [1]. With
the development of electric energy conversion technology and electric energy storage
technology [2,3], photovoltaic power generation, wind power generation, tidal power
generation, and geothermal power generation are more and more incorporated into the
power grid, which not only alleviates the energy shortage but also introduces a large
number of random power flows. This poses a new severe challenge to the stability and
load balance of the power grid.

In the power system incorporating a large number of new energy sources, power
needs to achieve a two-way balance between supply and demand. However, due to the
uncontrollability of the power generation on the supply side being affected by a variety
of influencing factors, the power consumption behavior of users on the demand side also
has certain randomness. The interaction between supply and demand increases more
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uncertain factors for the load flow of the system, and accurate short-term load forecasting is
of great significance to ensure the balance of the power system [4]. On the other hand, since
September 2021, China has notified many places to limit the power load, which has had a
certain impact on the lives of some people and the production of enterprises. Therefore,
accurate prediction of power load is a major demand for social development. Finally, with
the construction of the smart grid [5], it is not only to improve the stability and energy
utilization of the system, and reduce the power generation cost, but also an important goal.
Accurate prediction of power demand in various regions is helpful to realize the economic
operation of a power system [6].

Load forecasting can be divided into point forecasting [7,8] and probability forecast-
ing [9,10] according to the forecasting results. At present, most load forecasting is mainly
point forecasting of load, and the forecasting result is the single point expectation of load at
a certain time in the future. Power load is nonlinear and time-varying, so point prediction
is difficult to reflect the fluctuation range of load change. The estimation of some uncertain
factors in power market by probabilistic prediction method is helpful to the control and
stable operation of power grid [11].

According to whether the prediction object or the distribution type of prediction error
presupposes, probability prediction can fall into parametric probability prediction [12] and
nonparametric probability prediction [13,14]. Using the parametric methods for probability
density estimation requires the object is estimated to conform to a specific distribution,
which has limitations in the present situation where more and more new energy generation
is being integrated into the grid. The a priori assumptions avoided by the non-parametric
method and the absence of excessive human intervention make it easier to approach the
actual distribution.

In most decomposition and integration models, the load series is decomposed into
several components by decomposition method. Then, predicting each component, the
number of models is large, and the training time is long. In order to solve this problem,
we use improved complete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN) combined with sample entropy to reconstruct the load series into three parts:
random component, periodic component, and trend component, which reduces the number
of models. In this way, the number of prediction models can be reduced to three and the
training time can be shortened. For most load forecasting, point forecasting is used, which
is difficult to reflect the load variation range. We use point forecasting combined with
probability forecasting to predict the load interval. The error interval of the prediction set
is obtained by combining the probability distribution of the error of the training set with
KDE, and the final prediction interval can be obtained by combining the predicted value
of the point. Finally, under the 90% confidence interval, the prediction intervals coverage
probability (PICP) reached 0.919, indicating that 91.9% of the prediction set data fell within
the prediction interval. On the other hand, the prediction intervals normalized averaged
width (PINAW) on the cover is 0.112, which shows that we do not improve the prediction
accuracy by increasing the bandwidth. In conclusion, we can draw a conclusion that the
method proposed in this paper has good prediction accuracy and has a good application
prospect in the field of load probabilistic forecasting.

The rest of this paper is structured as follows. The second section introduces the current
research work of load forecasting. The third section introduces the relevant methods used
in this paper. The fourth section mainly introduces the realisation process of the model and
evaluation indicators. The fifth section is the experimental results and analysis. The sixth
section is the summary of this paper.

2. Literature Review

At present, load forecasting methods are mainly divided into traditional methods
and artificial intelligence methods. Artificial intelligence methods mainly include deep
learning methods represented by the short-term memory network (LSTM) [15,16] and the
convolutional neural network (CNN) [17,18], and machine learning methods represented
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by support vector regression (SVR) [19,20] and the artificial neural network (ANN) [21,22].
The deep learning method has the characteristics of a good prediction effect and high fault
tolerance to input, but the model spends a lot of time in training. At present, decomposition
and integration models have made preferable effects in load forecasting and other energy
forecasting fields, but these models often predict all decomposed components one by
one and then superimpose the results, so the training time is usually long. In addition,
there is a direct relationship between the decomposition and the prediction accuracy of
the integrated model and the decomposition method. The phenomenon of mode aliasing
may occur in empirical mode decomposition (EMD) [23]. The amplitude and iteration
number of white noise added by ensemble empirical mode decomposition (EEMD) [24]
depends on the human experience setting. When the numerical setting is not set, it may
be unable to overcome the phenomenon of modal aliasing. These factors may affect the
prediction results.

At present, most load forecasting still takes the determined load value as the forecast-
ing goal. Ge et al. [25] achieved good accuracy in industrial load prediction using reinforce-
ment learning combined with least squares support vector machines for particle swarm
optimisation. Zhang et al. [26] used complete ensemble empirical mode decomposition
with adaptive noise combined with support vector regression with dragonfly optimization
to forecast the electric load, which also had good prediction results. Rafi et al. [27] used
convolutional neural networks combined with long- and short-term memory networks to
construct a prediction model for short-term electricity load forecasting and achieved good
prediction reliability. Wang et al. [28] used a long- and short-term memory network to
forecast short-term residential loads with consideration of weather features. Phyo et al. [29]
used classification and regression tree and the deep belief network for 30-min granularity
load forecasting.

On the other hand, deterministic forecasting is difficult to fully reflect the load infor-
mation. Therefore, using the probability forecasting method to predict the load change
range is helpful to provide strong support for the production, dispatching, operation, and
other links of the power grid system.

In addition, the prediction accuracy of decomposition and the integrated model is
directly related to the decomposition method, and the phenomenon of mode aliasing may
occur in empirical mode decomposition. On the other hand, most decomposition and
integration models build prediction models for each component. Although the prediction
accuracy is high, the number of models is large and the training time is long.

In this paper, we first carry out point prediction, and then analyze the training set
error to obtain the distribution of prediction error in different load intervals to realize load
probability prediction. The improved complete ensemble empirical mode decomposition
with adaptive noise (ICEEMDAN) [30] effectively solves the problem of mode mixing in
empirical mode decomposition (EMD) and avoids the residual noise in decomposition
ensemble empirical mode decomposition (EEMD), which helps to improve the prediction
accuracy of the model. Firstly, the ICEEMDAN combined with sample entropy is used to
reconstruct the load series, which is decomposed into three parts—random component,
periodic component, and trend component—which effectively reduces the number of
prediction models and shortens the prediction time. Since the extreme learning machine
(ELM) algorithm was proposed, it has achieved good results in many fields, such as fault
diagnosis [31,32], coal mine safety [33], and so on. The accuracy of the prediction results
can be effectively improved by using the salp swarm algorithm (SSA) to optimize the ELM.
Then, the kernel density estimation method is used to analyze the training set error, obtain
the probability density curve of the training set error, and then estimate the error interval
of the prediction set to obtain the final interval prediction result.
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3. Methods
3.1. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (ICEEMDAN)

Improved complete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN) is an algorithm based on empirical mode decomposition (EMD) proposed
by Colominas et al. [34]. ICEEMDAN can effectively solve the mode mixing problem of
EMD and the residual noise problem of EEMD. The decomposition process is as follows:

(1) Calculate the local mean of S(i) = S + λ0C1

(
α(i)
)

by EMD to obtain the first-order
residue R1 and corresponding intrinsic mode function (IMF) IMF1.

R1 =
(

M
(

S(i)
))

(1)

IMF1 = S− R1 (2)

where i ∈ {1, 2, 3 . . . M}, S is the original signal; λ is the signal-to-noise ratio; α(i) be
a realization of zero mean unit variance white noise; Cj(·) is the operator represents
the jth order intrinsic mode function obtained by EMD; and M(·) is the operator
represents the local mean of the resulting signal.

(2) Calculate the local mean of R1 + λ1C2

(
α(i)
)

by EMD to obtain the second-order
residue R2 and corresponding intrinsic mode function IMF2.

R2 =
(

M
(

R1 + λ1C2

(
α(i)
)))

(3)

IMF2 = R1 − R2 (4)

(3) Repeat the process until the signal cannot be decomposed.

Rl =
(

M
(

Rl−1(t) + λl−1Cl

(
α(i)
)))

(5)

IMFl = Rl−1 − Rl (6)

where l = 2, 3, . . . L, L are the total numbers of IMF.

Finally, the original signal is decomposed into S =
L
∑

j = 1
IMFj + RL.

3.2. Sample Entropy SE

Sample entropy (SE) [35] is a method to measure the complexity of unstable time
series. Compared with the general method, the sample entropy method does not depend
on the data length and has a better consistency. The value of sample entropy is positively
correlated with the degree of sequence self-similarity. The sample entropy is calculated
as follows:

(1) For the time series x(i) with sample size N, the following vectors are obtained accord-
ing to the order of m dimensional vectors of the time series:

X(i) = [x(1), x(2), . . . , x(N −m + 1)] (7)

where, i = 1, 2, 3 . . . N −m + 1.
(2) C group optimization algorithm proposed by Mirjaln Xm(i) whose distance from

Xm(j) is less than r in Xm(i). Define this number as Bi. The ratio of Bi to the total
number of vectors is denoted Bm

i .

dm = [Xm(i), Xm(j)] = max
0≤k≤m−1

|x(i + k)− x(j + k)| (8)
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Bm
i (r) =

Bi
N −m + 1

(9)

Bm(r) =

N−m
∑

i = 1
Bm

i

N −m
(10)

(3) Increase the dimension to m + 1, and repeat the step to calculate the Bm+1(r)
(4) Calculate sample entropy SE.

SE = − ln
[

Bm+1(r)
Bm(r)

]
(11)

3.3. Salp Swarm Algorithm (SSA)

The Salp Swarm Algorithm (SSA) is a heuristic group optimization algorithm proposed
by Mirjalili et al. [36] in 2017. The SSA algorithm mimics the swarm behaviour of salp on
the seabed to find the optimal parameters. In the sea, the salp group is in a chain shape;
the frontmost salp is responsible for guiding the whole swarm, and the following salps
are responsible for searching the global situation according to the forward direction. The
specific process of the SSA is as follows:

Initialize all parameters, the number of salp is M, the maximum number of iterations
is I, and [lb, ub] is the search range. d is the dimension of the parade target.

(1) Population initialization. SSA initializes the population by generating random numbers.

XM×d = lb + rand(M, d)× (ub− lb) (12)

(2) Calculate the fitness of each salp. Save the salp coordinates with the highest fitness.
(3) Calculate variable c1.

c1 = 2e−(
4i
I )

2
(13)

In the Equation (13), i is the current iteration number; and I is the maximum itera-
tion number.

(4) Update the first salp’s position. The first is responsible for searching for food to lead
the movement direction of this salp population. The update equation the position of
the first salp is:

x1
d =

{
Pd + c1((ubd − lbd)c2 + lbd), c3 ≥ 0.5
Pd − c1((ubd − lbd)c2 + lbd), c3 < 0.5

(14)

where, x1
d denotes the position of the leader of the salp in d dimensional space; ubd and

lbd are upper and lower bounds of d dimensional space, respectively. Pd is the position
of food source in d dimensional space; c2 and c3 are random numbers uniformly
generated within the range of [0, 1].

(5) Update the location of the follower, update the equation is:

xm
d =

1
2

[
xm

d + xm−1
d

]
(15)

where, m ≥ 2, xm
d is the position parameter of the mth salp in the d dimensional space.

(6) Calculate the fitness of each salp. Save the salp coordinates with the highest fitness.
Update iteration number i = I + 1.

(7) If the i > I, then output the coordinates of the salp with the optimal fitness. Otherwise
skip to step (3).

3.4. Extreme Learning Machine (ELM)

Extreme learning machine (ELM) [37] is proposed by Huang et al. It is a supervised
learning method for a single hidden layer feedforward neural network. The input weight
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matrix and hidden layer threshold of ELM are randomly generated, which has the advan-
tages of fewer training parameters and a short training time.

The mathematical model of ELM is as follows:

yi =
l

∑
j = 1

g
(
ωj·xi + bj

)
·β j (16)

In the Equation (19), i = 1, 2, . . . , N; xi is the input vector; yi is the output vector; g(x)
is the incentive function; ωj is the input weight matrix; bj is the hidden layer threshold; β j
is the output weight matrix; l is the number of hidden layer nodes; and N is the number
of samples.

3.5. Kernel Density Estimation (KDE)

Kernel density estimation (KDE) [38–40] is proposed by Parzen, mainly by using
differentiable kernel function to estimate the probability density function.

f̂ (x) =
1

Mw

M

∑
i = 1

F
(

x− xi
w

)
(17)

In the formula, M is the number of samples; F(x) is a kernel function, which includes
Normal kernel, Box kernel, Triangle kernel, Epanechnikov kernel; w is the window width.

4. Realisation Process and Evaluation Index
4.1. Realisation Process

Although the traditional decomposition “model and ensemble” prediction model has a
good prediction effect, it also needs to establish forecasting models for all components sepa-
rately, which requires a lot of training time. In this paper we reconstructed the ICEEMDAN
decomposed components by combination with sample entropy and load characteristics.
Specifically, the load is divided into a stochastic component, a periodic component, and
a trend component. Then, the three components are predicted respectively, and the final
point prediction result is obtained by superimposing the prediction results of the three
components. The specific prediction process of the model is as follows:

(1) Decomposition of load data. ICEEMDAN is used to decompose the original load
series to obtain some IMF. Then, calculate the sample entropy of the original series
and each IMF.

(2) Reconstruction of load data. The IMF with sample entropy greater than 0.5 is recon-
structed as the random component, the IMF with sample entropy less than 0.04 is
reconstructed as the trend component, and the remaining IMF is reconstructed as the
periodic component.

(3) Forecasting of load values. The data set contains 8760 load data. The training set and
prediction set are divided according to 4:1. The first 7008 load data are used as the
training set, and the remaining data are used as the prediction set. Use SSA-ELM to
establish models for random component, periodic component, and trend component
respectively for prediction. Take the load value two hours before the prediction time
as input to obtain the prediction results of each component, and overlay the three
results to get the final point prediction results. SSA searches the number of hidden
layer neurons and hidden layer threshold of ELM group optimization to improve the
prediction performance of ELM.

(4) Normalisation of error data. To avoid the effect of predicted value size on the error
estimates, the error values were normalised using the maximum actual value of the
load in the training set.

(5) Calculate the upper and lower limits of error. Several error intervals are divided
according to the prediction results of the training set. The kernel density estimation
is used to obtain the probability density function of each interval training set error.
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Select the appropriate kernel function by fitting the probability density function image
and real error data fitting. Combined with interval confidence, the upper and lower
error limits are obtained.

(6) Obtain the final prediction interval by superimposing the load value of the prediction
set with the corresponding upper and lower limits of error.

4.2. Evaluation Index

To evaluate the point prediction results of the proposed model, we use the mean
absolute percentage error (MAPE), mean absolute error (MAE), and mean square error
(MSE) to evaluate the accuracy of the prediction results. The equations are as follows:

MAPE =
1
M

M

∑
i = 1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (18)

MAE =
1
M

M

∑
i = 1
|yi − ŷi| (19)

MSE =
1
M

M

∑
i = 1
|yi − ŷi|2 (20)

In the above equations, M is the number of samples; yi is the actual load value; and ŷi
is the predicted load value.

To evaluate the interval prediction results, PICP and PINAW are introduced. The
equations are as follows:

PICP =
1
M

M

∑
i = 1

ci (21)

PINAW =
1

MR

M

∑
i = 1
|Ui − Li| (22)

In the formula, M represents the number of samples; when the prediction result is in
the interval, ci = 1; when the prediction result is not in the interval, ci = 0; R is the true
value range; Ui is the upper bound of prediction; and Li is the lower bound of prediction.

5. Experiments and Analysis
5.1. Experimental Data and Conditions

To further test the prediction performance of the model, we use the hourly load data
of a region in Denmark in 2019 for verification obtained from ENTSO-E. The load value is
shown in Figure 1. We can see that the load value is generally stable, and the distribution
shows a trend of high, medium, and low at both ends.

Experiments were conducted on 64-bit Windows 10 using MATLAB R2018a with an
i7-7700hq CPU and a GTX-1050 graphics card.

From the Figure 1, we can see that the load data at 5–7 p.m. on May 1 is 0, which may
be the abnormal data caused by missing data. At 8:00 a.m. and 9:00 a.m. on November 4,
the load reached the highest value of the whole year, but this value is relatively isolated.
This situation also shows that the change of load is affected by many factors and has some
randomness. On the whole, the fluctuation of annual load data is small, and the load at the
beginning and end of the year is slightly larger in the overall trend.
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5.2. Selection of Mode Decomposition Method

Firstly, empirical mode decomposition (EMD), ensemble empirical mode decompo-
sition (EEMD) and improved complete ensemble empirical mode decomposition with
adaptive noise (ICEEMDAN) are used to decompose the original load series. To control
the experimental variables, we set the noise weight of EEMD and ICEEMDAN to 0.2 and
the number of noise additions to 50. A higher entropy value of the intrinsic mode function
(IMF) means a lower autocorrelation of the IMF. The results are shown in Table 1. The
sample entropy of the original series is 1.462. The higher the sample entropy, the lower the
autocorrelation of the IMF series and the more complex the IMF. The sample entropy of
IMF 11 and IMF 12 generated by EEMD decomposition is 0, because the sample entropy
of the two IMF is less than 1 × 10−5. The series is chaotic and random. Table 1 shows the
sample entropy values and correlation coefficients for each IMF.

Table 1. Sample entropy and correlation coefficient.

Method IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 IMF13

EMD
CC 0.087 0.352 0.672 0.203 0.280 0.244 0.104 0.155 0.217 0.324 0.033
SE 0.192 0.518 0.6173 0.1767 0.329 0.155 0.247 0.041 0.084 0.341

EEMD
CC 0.205 0.582 0.607 0.232 0.380 0.272 0.120 0.195 0.339 0.153 0.336 0.308 0.191
SE 0.763 1.121 0.873 0.092 0.064 0.300 2.63 × 10−3 3.00 × 10−3 1.42 × 10−3 9.56 × 10−4 0 0 2 × 10−5

ICEEMDAN
CC 0.193 0.511 0.618 0.195 0.342 0.212 0.065 0.134 0.350 0.019
SE 0.729 1.123 1.059 0.108 0.082 0.041 4.30 × 10−3 3.30 × 10−3 1.66 × 10−3 1.30 × 10−3

We reconstruct the IMF with entropy > 0.5 into a random component. The IMF with
0.04 < entropy < 0.5 is reconstructed into a periodic component. IMF with entropy < 0.04
is reconstructed as a trend component. The composition of the three components under
different modal decomposition methods is shown in Table 2.

Table 2. Division of three components by different decomposition methods.

Method Random Component Periodic Component Trend Components

EMD IMF1–IMF3 IMF4–IMF7 IMF8–IMF11
EEMD IMF1–IMF3 IMF4–IMF6 IMF7–IMF13

ICEEMDAN IMF1–IMF3 IMF4–IMF6 IMF7–IMF10

According to the division results in Table 2, we reconstructed the decomposed load
series and then used the extreme learning machine (ELM) to predict the results as shown
in the following Table 3. When the ELM algorithm is used for prediction, to ensure the
optimal number of neurons in the hidden layer, we set a cycle, that is, the number of hidden
neurons is from 1 to 100, and the optimal number of neurons is selected. The prediction
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results are shown in Table 3. It can be seen that the accuracy of load series prediction after
decomposition and reconstruction using ICEEMDAN algorithm is the highest, absolute
percentage error (MAPE) is 2.50, mean absolute error (MAE) is 63.84, and mean square error
(MSE) is 9625.20. The prediction results based on EMD decomposition and reconstruction
are worse. It is possible that a mode mixing situation has occurred. Therefore, we can judge
that using ICEEMDAN to reconstruct and predict the load series has good accuracy.

Table 3. Prediction results of ELM.

Method MAPE(%) MAE MSE

EMD-ELM 2.60 67.23 16,393.89
EEMD-ELM 2.66 68.20 12,555.00

ICEEMDAN-ELM 2.50 63.84 9625.20

Based on the above experimental results, we choose to use ICEEMDAN combined
with sample entropy reconstruction to decompose the load data. The reconstructed load
data is shown in Figure 2.
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Figure 2. The reconstructed load series.

Combined with Figure 2, we can see that the load value showed a downward trend
from January to August, reaching the bottom of electricity consumption in August, and
the load value showed an upward trend from August to December. Through the variance
and standard deviation, we can find that the January, February, April, and December load
values is bigger, and the June, July, August, and September load values is smaller.

Figure 2 is the three load components reconstructed by ICEEMDAN combined with
sample entropy. We can see that the periodic component has obvious and stable periodicity;
when the fluctuation range of the trend component is small, the load value is high at both
ends and low in the middle, and the overall trend is similar to that of the original data. The
series with a higher frequency of random component variation is more ambiguous, and
the variation range of load value is large and random. Through the above analysis, we can
conclude that the reconstructed component conforms to the characteristics of the original
load data.



Energies 2022, 15, 147 10 of 14

5.3. Prediction Performance of Different Prediction Methods

To select the best prediction algorithm, we chose the BP neural network, support
vector regression, and ELM to compare. The predicted results are shown in Table 4. The
experimental results are shown in Table 3. The MAPE and MAE of ICEEMDAN-ELM are
greater then ICEEMDAN-BP, and MSE is smaller than that of ICEEMDAN-BP. However, the
three evaluation indexes of ICEEMDAN-ELM are better than ICEEMDAN-SVR. As MSE is
more sensitive to extremum, combining the three evaluations we chose ICEEMDAN-ELM.

Table 4. Prediction results of different algorithms.

Method MAPE(%) MAE MSE

ICEEMDAN-BP 2.28 58.68 9822.40
ICEEMDAN-SVR 3.13 77.10 11,582.00
ICEEMDAN-ELM 2.50 63.84 9625.20

In the experimental process, we find that although ELM has the advantages of high
accuracy and a fast training speed, the prediction stability is slightly poor. To further
improve the prediction effect, we use the salp swarm algorithm (SAA) to optimize the
number of hidden layer neurons and threshold of ELM to improve the accuracy of point
prediction. After using SSA optimization, the prediction accuracy of the model has been
significantly improved. It can be seen that MAPE, MAE and MSE decreased to 1.98, 50.42
and 6723.70, respectively. Figure 3 is the comparison between the prediction results of
SSA-ELM and ELM. From Figure 3, we can see that SSA-ELM has a higher prediction
accuracy than ELM. Therefore, we can conclude that using the SSA method to optimize
the number and threshold of ELM hidden layer neurons is better than selecting only the
optimal number of ELM hidden layer neurons.
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5.4. Performance of Reconstructed Model and Ordinary Model

To better evaluate the three different prediction models, we use SSA-ELM to predict
the load data processed by different methods. From Table 5, we can see that the prediction
effect of the model combined with ICEEMDAN is better than that of the ordinary model
without decomposition. On the other hand, we can see that the training time of the
reconstructed model is 127.78 s, which is significantly lower than that of the decomposed
model. Considering the prediction accuracy, the number of models, and training time, we
believe that the overall performance of the reconstructed model is better.
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Table 5. Comparison of the reconstructed model and the decomposition model.

Method MAPE(%) MAE MSE Traing Time (s)

Reconstructed Model 1.98 50.427 6723.70 127.78
Decomposition Model 1.55 38.46 2632.40 451.50

Ordinary Model 2.32 59.69 8898.00 41.00

5.5. Interval Prediction Based on Kernel Density Estimation

To better estimate the uncertainty in the load sequence, we used the kernel density
estimation method to estimate the load interval. Firstly, we use the maximum real load
value of the training set to normalize the error of the training set, and then divide the
error into 0–1750 MW, 1750–2350 MW, 2350–2850 MW, and more than 2850 MW, according
to the size of the predicted load value. The four intervals are respectively estimated by
kernel density estimation and logistic estimation, and the optimal approximation curve is
selected. Then, according to the predicted value of the prediction set, the corresponding
error percentage is selected to obtain the final prediction interval.

It can be seen from Figure 4 that the fitting effect of kernel density estimation is better
than that of logistic estimation in the process of estimating the set error of the 0–1750 MW
interval. Further comparison with Figure 4b, it can be found that the normal kernel has a
better fitting effect on the cumulative distribution function curve of the training set error,
and the error range is [−1.44%, +2.1%] under the 90% confidence interval. Similarly, we
found that the prediction effect of 1750–2350 MW Epanechnikov kernel is better through
experiments, and the error range of 90% confidence interval is [−2.9%, +2.6%]. For the
2350–2850 MW load interval, Box kernel has a good fitting. The error range is [−3.3%,
+4.1%] under 90% confidence interval. The Box kernel above 2850 MW has a good prediction
effect, and the corresponding value range is [−3.21%, +3.98%].
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Finally, prediction intervals coverage probability (PICP) is 0.919 and prediction inter-
vals normalized averaged width (PINAW) is 0.112. PCIP is 0.919, indicating that 91.9%
of the load values in the test set fall within the prediction interval, and PCIP > interval
confidence, which shows that the model in this paper has good prediction performance and
can accurately estimate the load change. For PINAW, when the prediction interval width is
certain, the larger the variation range of real load data, the smaller the PINAW, which also
represents the better performance of the model. To avoid the impact of the highest point
of annual load value (4952) on PINAW, we select the second highest point of forecast set
value 3416 as the upper limit of load change, and the final PINAW is 0.112. This shows that
the width of the prediction interval is within a reasonable range, and the model used in
this paper does not obtain high coverage by unlimited increase of the width of the error
interval. To sum up, we can conclude that the probability prediction model proposed in
this paper has good prediction accuracy.

6. Conclusions

By analyzing the above experiments, we can draw the following conclusions:

(1) Compared with EEMD and EMD decomposition models, we find that ICEMDAN
decomposition has better prediction accuracy. In addition, through the comparison of
the decomposition model, reconstruction model, and ordinary model, we can find that
the reconstruction model performs well in training time and prediction accuracy, and
is suitable for load forecasting scenarios. Combined ICEEMDAN with sample entropy
is used to decompose and reconstruct the load series, which not only improves the
accuracy of load forecasting, but also reduces the number of models, shortens the
training time, and improves the forecasting efficiency.

(2) Through the comparison between SSA-ELM and ELM, we can find that the prediction
accuracy of the model has been significantly improved after using SSA to optimize
the number and threshold of ELM hidden layer neurons. SSA-ELM can effectively
improve the stability and accuracy of prediction results.

(3) The kernel density estimation is used to analyze the error interval, which has a good
fitting for the error curve and can obtain a more accurate prediction interval. We also
found that the choice of different sum functions will affect the fitting effect of error
distribution, and then affect the accuracy of interval prediction.

(4) PICP was 0.919 and PINAW was 0.112. These two indicators show that the model
achieves high coverage in a reasonable interval width. This means that the method
used in this paper can better predict the variation range of load and reflect some
unknown load information. It also proves the feasibility of the method used in
this paper.
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