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Abstract: Maintaining proper operation of adaptive protection schemes is one of the main challenges
that must be considered for smart grid deployment. The use of reliable cyber detection and protection
systems boosts the preparedness potential of the network as required by National Infrastructure
Protection Plans (NIPPS). In an effort to enhance grid cyber-physical resilience, this paper proposes
a tool to enable attack detection in protective relays to tackle the problem of compromising their
online settings by cyber attackers. Implementing the tool first involves an offline phase in which
Monte Carlo simulation is used to generate a training dataset. Using rough set classification, a set of
If-Then rules is obtained for each relay and loaded to the relays at the initialization stage. The second
phase occurs during online operation, with each updated setting checked by the corresponding
relay’s built-in tool to determine whether the settings received are genuine or compromised. A test
dataset was generated to assess tool performance using the modified IEEE 34-bus test feeder. Several
assessment measures have been used for performance evaluation and their results demonstrate the
tool’s superior ability to classify settings efficiently using physical properties only.

Keywords: adaptive protection schemes; cybersecurity; substation automation; cyber-physical
resilience; overcurrent relays; Monte Carlo simulation; smart grids; rough sets

1. Introduction

Continuous research is dedicated to developing methods to improve existing security
tools to better fit the nature of smart grids. However, there is no perfect security scheme
for every potential threat. Instead, the new concept of resilience has emerged as a strategic
objective in power system planning. Grid resilience is related to the power system’s ability
to continue operating and delivering power even in the event of low-probability, high-
consequence disruptions such as cyber-physical attacks. Grid resilience objectives focus on
managing and/or minimizing potential consequences resulting from these disruptions.

Cyber attacks can result in critical disruptions and other consequences for different
targets in the power grid. From a cybersecurity perspective, the attack on the relay can
result in either a relay sending a tripping signal when it should not or failing to send
that signal when it should. From a power system viewpoint, incorrect settings have
a considerable effect on grid operation. False tripping interrupts network customers
unnecessarily, degrading network reliability. Further, it causes component outages that
can sometimes initiate cascading failure, disturbing grid stability. A real-life example is
the cyber attack that targeted the substations of the Ukrainian power grid in December
2015 [1]. The attack interrupted approximately 225,000 customers by several circuit breakers
tripping. As a result of this attack, research interest has been directed toward studying the
cyber-physical vulnerabilities of substations.

Due to the recent advancement in technologies and equipment introduced to the net-
work, designing a reliable protection scheme for smart grids has become more complicated.
To overcome new protection challenges, several solutions have been proposed. A review of
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these solutions was carried out in [2], with a discussion of the practical limitations of each.
The study concluded that adaptive protection schemes are the best approach to handling
these challenges with the help of communication-assisted relays [3–9] due to their flexibility
in modifying both relay settings and characteristics online using external signals [10]. In
the literature, the techniques used in adaptive relays differ. First, some schemes suggest
sending the network status (DGs connected/disconnected, network configuration, etc.)
to the relay through communication. Then, the relay itself can calculate the appropriate
settings for each case [3–5]. The drawback of this technique is the time delay that arises
while the relay calculates the settings because grid protection applications are time sensitive.
Second, other schemes propose calculating different settings offline and pre-storing them in
relays. The relay should match the real-time scenario, based on the network status received
through communication, with the pre-stored data to obtain the appropriate settings, as
used in [6]. However, it is not realistic to obtain and establish a manageable number of relay
setting groups that could cover all possible scenarios in the network [7]. Third, to overcome
the drawbacks of the previous approaches, an alternative approach was adopted [7–9],
whereby an updated setting that fits the exact existing situation is sent directly to the
adaptive relay. However, the problem of compromising these settings due to the cyber
vulnerabilities of smart grids is still a matter of concern. Therefore, the focus of this paper
is on developing a detection tool that can be built into microprocessor-based relays for
checking the incoming settings against modification attacks. Relays will be trained to
differentiate between genius and compromised settings (or erroneous settings).

Due to the growing need for deploying attack-resilient designs, there has been an
increasing demand for developing cyber attack detection systems for those digital adaptive
relays. In [11], a comprehensive study on the cybersecurity concerns for digital relays is
presented, including settings considerations. Although the existing research addressing
the attack detection problem for protection systems is still limited, solutions proposed
can be classified into either developing Intrusion Detection Systems (IDS) that monitor
the network for malicious patterns or using Artificial Intelligence (AI)-based methods
employing the physical properties of the power system.

The authors of [12] propose a rule-based IDS for cyber threats of the IEC61850-based
substations. The IDS was developed based on the collected data generated from simulated
attacks on Intelligent Electronic Devices (IEDs). Detection capability is tested through
genuine user activity along with simulated attacks. In [13], a probabilistic decision-tree-
based IDS for the IEDs in IEC61850-based substations was developed. Simulated attacks
on IEDs have been used to obtain two types of genuine user activity (casual browsing
of data and downloading IED data) and two types of common malicious IED attacks
(DOS and password crack attacks). The authors of [14] performed systematic extraction of
intrusion events within a substation for its proposed detection method. Different scenarios,
including single and multiple attacks on more than one substation, are simulated in this
work. These methods can effectively identify some cyberattacks against IEC 61850 and
IEDs by investigating the footprints of the attacker’s logs. However, they are not able to
detect new or previously unknown cyberattacks. Therefore, after installation, they will
require additional maintenance effort to keep their signature database updated.

In addition to previously unknown attacks, false data injection (FDI) and Man-in-
the-middle (MITM) attacks can target the payload of communication packets. Hence,
sensor readings or relay settings can be modified to cause undesired actions without
being noticed. The detection of such complex attacks is better recognized using advanced
data analytics and AI methods with the help of power system properties. In [15], a
deep-learning-based detection system was proposed, which was trained using voltage
and current measurements resulting from the simulation of different types of faults. In
this way, the proposed detection system can detect the maliciously injected voltage and
current measurements. The authors of [16] propose a new model for cyber attack detection
on SAS by utilizing criteria from both cyber and physical domains. The method uses
protection coordination principles to help check the changes in protection settings. The
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method also runs real-time power system analysis to assess the consequences of the control
commands. This method can protect against sensor data injection and direct circuit breaker
control attacks. In [17], an artificial intelligence expert system-based model was used for
characterizing the power system in a multi-agent microgrid security framework. The model
can detect malicious and erroneous CB switching commands. The authors of [18] used
physical limitations to help the Network Intrusion Detection System (NIDS). The proposed
IDS keeps monitoring and analyzing the network traffic exchanged within the physical
system. The IDS identifies traffic that deviates from the expected communication pattern
or physical limitations. The physical limitation used is a predefined range for the pickup
current of the instantenous overcurrent relay; hence, anything outside this range will be
considered malicious.

As noted, the use of physical properties helps IDSs detect unknown kinds of attacks.
However, to the best of our knowledge, none of the existing methods address the problem
of detecting compromised settings for the adaptive relays with online updated settings.
In addition, the long execution time of most of these methods makes them inadequate
for protection relaying applications, as will be discussed in Section 5. The main objective
of this work is to fill this security gap by developing a detection tool that can be built
into microprocessor-based relays to check the incoming settings against data integrity
attacks. The technique proposed is based on splitting the process into two steps, offline
and online, which satisfies the time requirements. This has also made it possible to im-
plement this technique directly in a relay because, as an embedded system, it has limited
computational overhead.

The rest of this paper is organized as follows: Section 2 explains the concept of
rough set classification and how to apply it. Section 3 explains the proposed detection by
determining system uncertainties used for the probabilistic analysis for fault calculation,
modeling these uncertainties, and discussing how to generate the training dataset for the
initialization phase. Section 4 holds the simulation study and generates classification rules.
Section 5 tests the rules to evaluate tool performance using various measures. Finally,
Section 6 concludes this paper.

2. The Rough Set-Based Rule Learning

The rough set theory was first proposed by the Polish computer scientist Zdzisław
Pawlak in 1982 [19] and is concerned with classifying and analyzing imprecise knowl-
edge [20]. The concept behind this classification is employing indiscernibility relations to
evaluate to what extent two objects are similar.

2.1. Information Tables

A dataset is modeled in the form of an information table, wherein each row represents
an object (a case or an event), and each column represents an attribute (a variable) that
can be measured/supplied for each object [20]. Attributes are divided into two types:
conditional and decisional.

Let I = (U, A) be an information system, where U (the universe) is a finite set of
objects and A is a finite set of attributes such that ∀ a ∈ A a : U → Va, Va is called the
value set of attributes.

2.2. Indiscernibility Relation and Set Approximation

The theory sees the data as equivalence classes; in other words, sets of objects indis-
cernible with regard to the attributes. A rough set is a set of objects that the equivalence
classes cannot exactly represent because the set may include and exclude objects which are
indiscernible with regard to the attributes P [21].

For any P ⊆ A,

IND(P) =
{
(x, y) ∈ U2

∣∣∣ ∀ a ∈ P, a(x) = a(y)
}

(1)
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where IND(P) is called the P-indiscernibility relation; that is, if (x, y) ∈ IND(P), then
objects x and y are indiscernible from each other by P attributes. In that way, any target set,
X, can be approximated using (1) the equivalence classes that are completely contained in
the set (the lower approximation of X or the positive region) and (2) the equivalence classes
with at least one object in the set (the upper approximation of X or the negative region):

Lower approximation:
PX = {x| [x]P ⊆ X} (2)

Upper approximation:

PX = {x | [x]P ∩ X 6= ∅} (3)

where [x]P denotes the equivalence classes of the P-indiscernibility relation. Additionally,
the difference between the upper and the lower approximation creates the boundary region,
BR(X), which consists of the objects that cannot be ruled in or out of the target set, X. The
representation of these approximations can be depicted in Figure 1.

BRP(X) = PX− PX (4)
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2.3. Reducts

After obtaining the equivalence classes, a reduction is required to attain the set ap-
proximation by keeping only attributes that preserve the indiscernibility relation while
rejecting any redundant attributes. Hence, a reduct can be defined as a minimal subset
of attributes that enables the same discernibility as the whole set of attributes. In other
words, it distinguishes one object from all objects with a different decision [19]. Unfortu-
nately, finding the set of all reducts is an NP-complete problem [22]. However, finding
reducts can be achieved by several approximation algorithms, e.g., greedy algorithms and
genetic algorithms [22], which are all based on constructing a discernibility matrix and the
corresponding discernibility functions.

2.4. Decision Rules

Based on the values for each attribute in the reduct, If-Then rules can then be generated.
The Then part can include more than one decision class, depending on whether the decision
class is rough with respect to the attributes in the reduct.

3. Proposed Detection Tool for Digital Relays

The arrangement of the targeted adaptive overcurrent protection scheme employs
digital relays that isolate faults by taking appropriate tripping decisions based on settings
obtained from a central processing unit. This unit calculates the settings required for each
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relay based on the current status of the network, e.g., the network topology, and connected
DGs/loads.

To solve the problem of a relay’s limited computational capabilities, rough set classifi-
cation can be implemented in two phases. First, the knowledge extractor generates a set of
rules that will determine the normal and abnormal behavior of the system. This phase can
be carried out offline during the initialization process, and its output (the set of rules) can
be loaded into the relay during this process. Then, the second phase is implemented online
during operation, wherein the incoming settings will be checked using the preloaded set of
rules. This second phase is simple and could easily be implemented in the digital relay. The
verification of the settings received can be determined by three attributes: the bus voltage
of the associated relay, its line current, and the relay setting (TDS).

3.1. Probabilistic Analysis and System Uncertainties Associated with Fault Calculation

Probabilistic short circuit analysis aims to calculate a probability distribution of short
circuit current magnitudes at various locations in the system. This approach can provide
information on the likelihood that short circuit currents exceed/fall below certain values.
In this work, the probabilistic analysis is used to build a database of:

i. The bus voltages, which are considered the pre-fault voltages,
ii. The load currents seen by each relay before the fault occurrence, and
iii. The fault currents seen by each relay in the network.

To build this database, an algorithm based on Monte Carlo simulation will be developed.
Probabilistic analysis of short circuit currents for relay coordination is primarily af-

fected by the statistical variables, which are associated with the power system operating
conditions at the time of fault occurrence, namely DG availability, renewable DG levels,
and loading levels. The output variables are the pre-fault voltages, loading currents, and
fault currents.

3.2. Modeling of Load Demand and DG Injected Power

For load demand modeling, the load data given in the IEEE RTS [23] is used. Then, the
whole year is divided into four seasons, and each season is represented by two clusters: a
weekday and a weekend cluster. Consequently, the whole load curves should be classified
into eight clusters (4 seasons × 2 clusters/season. The IEEE RTS assigns the same data for
spring and fall, which reduces the number of clusters to six, as listed in Table 1.

Table 1. Load models.

Season Clusters Model

Summer Weekday L1
Summer Weekend L2
Winter Weekday L3
Winter Weekend L4

Fall/Spring Weekday L5
Fall/Spring Weekend L6

Each model is intended to be denoted by a representative load curve (centroid) along
with a PDF for the error around this centroid. For obtaining the centroids, the K-means
clustering is applied by minimizing the squared error function between a data point xj

i
that belongs to a cluster and the cluster centroid cj, represented by the following optimiza-
tion problem,

Min.
k

∑
j=1

n

∑
i=1

∣∣∣∣∣∣ xj
i − cj

∣∣∣∣∣∣2 (5)
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3.3. Simulation Results

A MATLAB m-file was developed for clustering the data; the obtained centroid values
for the 24 h are listed in Table 2. Each centroid is plotted with associated curves of the same
cluster, and the results are presented in Figure 2.
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The differences between all load curves belonging to a certain cluster and their rep-
resentative load curve are calculated to select a proper PDF. The PDF for the error is best
fitted to the Weibull distribution [24]. The Weibull parameters are given in Table 3, where
αw, βw, and Γw are the Weibull shape, scale, and location parameters, respectively.

Similarly, DGs injected output power can be clustered. The data used are taken
from [25]. The best PDF to fit the wind output power data, according to that reference,
is the Johnson SB distribution during all the seasons. The Johnson SB PDF parameters
obtained are shown in Table 4, where γ and δ are shape parameters, λ is a scale parameter,
and ζ is a location parameter.
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Table 2. Clusters’ representative centroids.

L1 L2 L3 L4 L5 L6

1 0.523 0.478 0.576 0.530 0.449 0.423
2 0.491 0.452 0.542 0.489 0.442 0.411
3 0.474 0.426 0.516 0.462 0.428 0.389
4 0.458 0.420 0.508 0.449 0.414 0.372
5 0.458 0.413 0.508 0.435 0.421 0.366
6 0.474 0.401 0.516 0.442 0.464 0.366
7 0.523 0.401 0.637 0.449 0.514 0.383
8 0.621 0.426 0.740 0.476 0.606 0.417
9 0.711 0.523 0.817 0.544 0.678 0.468

10 0.777 0.556 0.826 0.598 0.706 0.502
11 0.810 0.588 0.826 0.612 0.713 0.519
12 0.818 0.601 0.817 0.618 0.706 0.530
13 0.810 0.601 0.817 0.612 0.664 0.513
14 0.818 0.594 0.817 0.598 0.656 0.507
15 0.818 0.588 0.800 0.591 0.642 0.507
16 0.793 0.588 0.809 0.591 0.628 0.485
17 0.785 0.594 0.852 0.618 0.642 0.479
18 0.785 0.607 0.860 0.680 0.656 0.496
19 0.760 0.614 0.860 0.673 0.685 0.519
20 0.752 0.614 0.826 0.659 0.699 0.564
21 0.752 0.646 0.783 0.639 0.685 0.547
22 0.760 0.601 0.714 0.625 0.642 0.535
23 0.711 0.568 0.628 0.591 0.571 0.507
24 0.589 0.517 0.542 0.550 0.499 0.479

Table 3. Weibull PDF parameters for different load models [24].

Model αw βw Γw

L1 2.4226 0.09934 −0.08812
L2 1.7979 0.05353 −0.04758
L3 5.247 0.22676 −0.20872
L4 5.1698 0.16188 −0.14876
L5 8.2088 0.21547 −0.20307
L6 17.046 0.29313 −0.28402

Table 4. Johnson SB PDF parameters for different wind DG models [25].

Model Season Γ δ λ ζ

WD1 Spring 0.40832 0.46673 0.97881 −0.0765
WD2 Fall 0.1866 0.49059 0.98015 −0.00616
WD3 Summer 0.48423 0.55561 0.97956 −0.00874
WD4 Winter −0.0199 0.48906 0.95746 0.005568

3.4. Proposed Algorithm for Initialization Phase

A Monte Carlo simulation-based algorithm that models the required network was
developed as shown in Figure 3a. The algorithm consists of running the load flow analysis
to obtain the pre-fault voltages and currents and then performing short circuit calculations
to obtain short circuit currents. The outputs of this simulation are used for the second step,
wherein the relay settings are calculated. For realizing the offline procedures, the flowchart
shown in Figure 3b is proposed. The steps can be explained as follows.
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The relay time-current characteristic can be given as [26],

t = 2
β(

ISC
IP

)α
− 1
·TDS, (6)

where t is the relay operating time and the parameters α, β are standard values determining
the degree of the inverse of the relay characteristics. TDS is the time dial setting (relay
setting). IP is the relay pickup current and ISC is the short circuit current passing through
the relay. An optimization problem is formulated where the objective function, denoted by
‘T’, is the summation of the operating times of all relays. These times will be minimized
while maintaining the conditions of protection coordination.

Min. T =
n

∑
i=1

Witi (7)

where n is the total number of relays, and ti is the operating time of the ith relay. The
weighted coefficient, Wi is a value that depends on the probability of a short circuit fault
occurring in the ith zone, which is assumed to be one here. This problem is subject to the
following constraints,

Limits of the relay settings:

TDSmin ≤ TDS ≤ TDSmax (8)

where TDSmin and TDSmax are the minimum and maximum TDSs for each relay, respectively.
Coordination criteria:

tj − ti ≥ CTI ∀(i, j) ∈ Ω (9)

The time tj is the operating time of the backup relay, and Ω is the set of the main/backup
relay pairs. The values of each attribute can be redefined into levels/clusters to classify
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them based on their values. Using k-means clustering, each attribute is classified into
10 clusters. Performing this step for all the attributes can reduce the set of relations but
conserves the same classification of the original set of examples.

A knowledge database (information table) must then be built. The rows will contain
the events which are the study cases in this application; the columns hold the attributes.
The conditional attributes in this application are the bus voltage of the associated relay and
its line current, whereas the decisional attribute is the relay setting (TDS). Next, the reducts
are found, and the set of rules—in the form of If-Then rules—will be generated.

4. Simulation Setup and Results
4.1. System Description

The IEEE 34-bus distribution test system [27] was adopted for this case study with
some modifications. Two identical distributed generators are connected to buses 854 and
840, with an installed capacity of 336 KW each. The relays are then located as well. All
relays are communicating with the central processing unit to obtain the updated settings.
The single-line diagram is shown in Figure 4.
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4.2. System Modeling

This system was modeled in the Electric Power Distribution System Simulator
(OpenDSS) [28]. An OpenDSS script file was created to perform load flow and short
circuit analysis in the presence of the DGs. This script is driven by a MATLAB m-file
developed to perform Monte Carlo simulation. The DG availability’s random variable here
is represented by a binomial distribution, with a probability p that the DG is connected to
the network. For the DG connected to Bus 854, p = 0.9, and p = 0.5 for the one connected to
bus 840. DGs are assumed to supply 50% of the load demand, shared equally between them.
The simulation runs 2000 iterations, giving a maximum percentage error of the voltage
mean of 0.2811% and the current mean of 3.2%, for all the relays, for a 95% confidence
interval (assuming normal distribution). Using the outputs of this step, the coordinated
relays TDSs are then calculated for the 2000 cases.

4.3. Rough Set and Rule Generation

Relay#1 is located at the main substation, Relay#8 protects a feeder with spot and
distributed loads, and Relay#12 is located on a line that has a DG connected. Due to their
importance and diversity, those relays are selected for testing. For these relays, each voltage
and current attribute is clustered into 10 clusters using K-means. However, when clustering
the attributes of the relays, a fewer number of distinct centroids have been obtained. The
results are given in Table 5. An information table was constructed using the clustered
attributes. Using Rosetta software [29], the information table was first reduced using
genetic algorithms. The sets of rules were generated: 44 rules for Relay#1’s case, 42 rules
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for Relay#8’s case, and 38 rules for Relay#12’s case. If the incoming setting satisfies any of
these rules, it is marked as genuine and will be used by the relay.

Table 5. Centroids for relays under investigation.

No.
Relay#1 Relay#8 Relay#12

V (p.u) I (A) TDS V (p.u) I (A) TDS V (p.u) I (A) TDS

C1 1.014 27.33 0.206 0.851 17.78 0.102 0.949 8.20 0.001
C2 0.993 45.44 0.001 1.0173 14.19 17.857 1.008 1.23 20
C3 1.047 33.37 0.105 0.939 21.35 0.095 0.968 7.98
C4 1.031 50.77 0.208 0.996 14.53 0.001 0.898 0.82
C5 1.008 19.64 0.202 1.061 18.76 0.098 1.055 2.09
C6 1.019 23.29 0.959 15.29 1.029 8.39
C7 1.026 36.19 0.976 16.88 0.846 1.60
C8 0.985 40.06 1.039 14.87 0.988 1.39
C9 1.000 56.61 0.912 19.84 0.874 1.86

C10 1.039 30.55 0.883 15.95 0.925 1.03

As an illustration, Tables 6–8 show samples of the generated rules for Relay#1, Relay#8,
and Relay#12, respectively. Support refers to the number of objects in the training set
matching the corresponding rule, and the rule coverage is its support divided by the
number of objects in the training set.

Table 6. Sample of results of Relay#1’s rules.

No. Rule Support Coverage

R1 IF Voltage = 4 AND Current = 1 Then TDS = 1 103 0.0515
R2 IF Voltage = 1 AND Current = 3 Then TDS = 4 151 0.0755
R3 IF Voltage = 10 AND Current = 6 Then TDS = 1 91 0.0455
R4 IF Voltage = 2 AND Current = 4 Then TDS = 1 OR 4 74 0.037
R5 IF Voltage = 6 AND Current = 10 Then TDS = 4 107 0.0535
R6 IF Voltage = 4 AND Current = 3 Then TDS = 5 18 0.009
R7 IF Voltage = 10 AND Current = 10 Then TDS = 5 26 0.013

Table 7. Sample of results of Relay#8’s rules.

No. Rule Support Coverage

R1 IF Voltage = 8 AND Current = 4 Then TDS = 1 OR 5 85 0.0425
R2 IF Voltage = 4 AND Current = 4 Then TDS = 5 183 0.0915
R3 IF Voltage = 4 AND Current = 2 Then TDS = 1 89 0.0445
R4 IF Voltage = 2 AND Current = 4 Then TDS = 1 OR 5 129 0.0645
R5 IF Voltage = 10 AND Current = 1 Then TDS = 1 OR 3 51 0.0255
R6 IF Voltage = 10 AND Current = 9 Then TDS = 3 25 0.0125

Table 8. Sample of results of Relay#12’s rules.

No. Rule Support Coverage

R1 IF Voltage = 6 AND Current = 4 Then TDS = 1 16 0.008
R2 IF Voltage = 8 AND Current = 2 Then TDS = 1 90 0.045
R3 IF Voltage = 9 AND Current = 9 Then TDS = 1 OR 2 13 0.0065
R4 IF Voltage = 1 AND Current = 1 Then TDS = 1 93 0.0465
R5 IF Voltage = 3 AND Current = 1 Then TDS = 1 82 0.041
R6 IF Voltage = 5 AND Current = 4 Then TDS = 1 59 0.0295

5. Performance Evaluation

To assess the proposed tool’s performance, a test dataset (set of attributes) of 200 cases
was generated for each relay under investigation. For relay settings: 100 left genuine,
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and 100 have been compromised using the following attack template. The classification
results are then presented. Finally, the performance measures and execution times have
been calculated.

5.1. Attack Template and Model

To modify the relay setting, a scaling attack is used, which involves modifying true
values to higher or lower ones depending on the scaling attack parameter λs [30].

f ∗(t) =

{
f (t), t /∈ τ

(1 + λs) ∗ f (t), t ∈ τ
(10)

where t and τ represent time and attack period, respectively. The choice of λs depends
on the degree of an attackers’ knowledge of the system and their desired impacts. The
scaling parameter is selected to cover a wide range of values, extending from [−0.1 : 10].
The values in the range (−0.1 ≤ λs < 0) simulate attacks by an adversary who wants
the breaker to trip faster for normal currents or currents below the short circuit values.
This case results in interrupting customers unnecessarily, and in some cases, can cause
overloading over other lines, which can lead up to cascading failure. The rest of the range
(i.e., 0 ≤ λs ≤ 10), however, simulates the intention of delaying the breaker operation
when it should act faster. That case can result in miscoordination between devices or even
fires, safety hazards, and asset damage when main and backup protection devices are
all targeted.

The following limitations and assumptions are considered to model the cyber attack.

1- It is assumed that an attacker can gain access to the information of the protection
systems and their communication protocols to manipulate the digital relay setting
signal coming from a remote control center.

2- The measured voltages and currents are local and secure.
3- Attackers can target one or more relays at the same time.
4- Attackers know the lines protected by the smart relays.
5- Attackers cannot trip circuit breakers directly.
6- Attacker capabilities are limited.

5.2. Classification Results

Using the attack template, all the test cases have been checked using the rules obtained
in Section 4. The results are presented in the confusion matrices and given in Tables 9–11.

Table 9. Results for Relay#1.

Total = 200
Predicted

Yes No

Actual
Yes True Positive

(TP) = 97
False Negative

(FN) = 3

No False Positive
(FP) = 0

True Negative
(TN) = 100

Table 10. Results for Relay#8.

Total = 200
Predicted

Yes No

Actual
Yes True Positive

(TP) = 97
False Negative

(FN) = 3

No False Positive
(FP) = 1

True Negative
(TN) = 99
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Table 11. Results for Relay#12.

Total = 200
Predicted

Yes No

Actual
Yes True Positive

(TP) = 99
False Negative

(FN) = 1

No False Positive
(FP) = 0

True Negative
(TN) = 100

5.3. Performance Measures

The following outcome measures have been calculated, and the results are presented
in Table 12:

• Accuracy (classification rate) is calculated as the number of all correct predictions
divided by the total number of cases in the dataset.

Accuracy =
TP + TN

Total
(11)

• Error rate (ERR) is calculated as the number of all incorrect predictions divided by the
total number of cases in the dataset.

ERR =
FN + FP

Total
(12)

• Sensitivity (probability of detection) measures the proportion of actual positives
correctly identified. This measure is crucial for attack detection tools since false
positives are better tolerated by the system than false negatives.

Sensitivity =
TP

TP + FN
(13)

Table 12. Results of evaluation measures.

Measures Relay#1 Relay#8 Relay#12

Accuracy 98.5% 98% 99.5%
ERR 1.5% 2% 0.5%

Sensitivity 97% 97% 99%

5.4. Execution Time

Needless to say, protection system applications are time sensitive. Therefore, the
time latency of real-time communication used is always restricted to 4 ms [31,32]. In this
section, the execution times of classifying the incoming settings have been monitored for
all the relays under investigation using the test dataset used earlier. These times have been
measured and are plotted in Figure 5. The simulation was performed in MATLAB, which
can easily convert this code into other forms suitable for any smart relay hardware platform
used, e.g., C, C++, or Structured Text and Ladder Diagrams (for PLC and Programmable
Automation Controller (PAC) devices). Based on the simulation results, the average ex-
ecution times measured for Relay#1, Relay#8, and Relay#12 are 0.45269 ms, 0.43166 ms,
and 0.44203 ms, respectively. Considering the time requirements, the very rapid execution
times here are because simple calculations only are needed during the online stage, and
these results confirm the tool’s practicality for protection system applications.
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6. Summary and Conclusions

This paper proposes a rough-set-based detection tool that can identify incorrect settings
for overcurrent relays in active distribution networks. This work aims to enhance the
security of communication-based overcurrent relays used in adaptive protection schemes.
Using the tool proposed, protective relays can assess the accuracy and consistency of the
settings they receive, maintaining the data integrity requirements. The tool is reliable since
it uses only local measurements and pre-stored physical properties to judge the settings.

The detection tool was tested on the IEEE 34-bus benchmark systems with DGs
added. The evaluation assessment of the tool’s performance was conducted using various
measures: accuracy, error rate, sensitivity, and execution time. The results demonstrate
the tool’s superior ability to classify settings rapidly and efficiently. These results make
the tool trustworthy to be used whenever there is a lack of security measures due to
the narrowband communication channels used in a power system or the time-critical
communication protocols. In addition, it can be used as an extra line of defense when
applying the defense-in-depth strategy.

Since detection takes place within the relay itself, the tool proposed in this paper can
judge incoming settings regardless of the type of attack resulting in those incorrect settings.
Incorrect settings have a wide range of undesirable effects ranging from unnecessarily
customer interruption and equipment damage to a cascading failure and grid stability
problems. Additionally, the test dataset used has covered a broad range of settings to
simulate different potential attacker profiles, e.g., script kiddies and cybercriminals.

The results of the modified IEEE 34-bus test system model in this study show high
accuracy (up to 99.537%) and a high probability of detection (sensitivity) ranging from 97%
to 99%. Additionally, the investigations showed that the detection process required a very
short time frame. The obtained results prove that this technique is suitable for real-time
applications to protect the power network from moving into insecure states and ensure
that the power system remains prepared in the face of cyber-physical attacks conducted
through adaptive relays.

In conclusion, securing adaptive protection schemes help enable the broad deployment
of these schemes in smart grids. In turn, several problems in modern power grids, such as all
microgrid protection challenges, including changing network topology, intermittent natures
of renewable DGs, varying short circuit currents, selectivity problems, and islanding, can
be overcome. Therefore, securing adaptive schemes is considered crucial for modern power
grids and grid cyber-physical resilience enhancement. In our future work, we will consider
changing the network topology by changing the statuses of tie and sectionalizing switches
to deal with the dynamic topology of smart grids.

Author Contributions: Conceptualization, N.M. and M.M.A.S.; methodology, N.M.; investigation,
N.M. and M.M.A.S.; writing—original draft preparation, N.M.; writing—review and editing, M.M.A.S.
and N.M. All authors have read and agreed to the published version of the manuscript.



Energies 2022, 15, 4328 14 of 15

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deng, R.; Zhuang, P.; Liang, H. CCPA: Coordinated Cyber-Physical Attacks and Countermeasures in Smart Grid. IEEE Trans.

Smart Grid 2017, 8, 2420–2430. [CrossRef]
2. Mohamed, N.A.; Salama, M.M.A. A review on the proposed solutions to microgrid protection problems. In Proceedings of the

Canadian Conference on Electrical and Computer Engineering, Vancouver, BC, Canada, 15–18 May 2016. [CrossRef]
3. Oudalov, A.; Fidigatti, A. Adaptive Network Protection in MIcrogrids. ABB Int. J. Distrib. Energy Resour. 2009, 5, 201–226.
4. Orji, U.; Schantz, C.; Leeb, S.B.; Kirtley, J.L.; Sievenpiper, B.; Gerhard, K.; McCoy, T. Adaptive Zonal Protection for Ring Microgrids.

IEEE Trans. Smart Grid 2017, 8, 1843–1851. [CrossRef]
5. Ustun, T.S.; Khan, R.H.; Hadbah, A.; Kalam, A. An adaptive microgrid protection scheme based on a wide-area smart grid

communications network. In Proceedings of the 2013 IEEE Latin-America Conference on Communication, Santiago, Chile, 24–26
November 2013. [CrossRef]

6. Ibrahim, A.M.; El-Khattam, W.; ElMesallamy, M.; Talaat, H.A. Adaptive protection coordination scheme for distribution network
with distributed generation using ABC. J. Electr. Syst. Inf. Technol. 2016, 3, 320–332. [CrossRef]
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