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Abstract: The integration of renewable energy generation and nonlinear power electronic equipment
into the grid brings about complex harmonics and interharmonics problems. The amplitude and fre-
quency of harmonics and interharmonics should be detected by high time-frequency (T-F) resolution
methods owing to their time-varying transient features. In this paper, a synchrosqueezing adaptive
S-transform (SAST) method is proposed to detect the parameters of harmonics. Firstly, the time-
frequency spectrum (TFS) of the harmonic signals is acquired by an adaptive S-transform (AST)
algorithm. The TFS results are then subjected to synchronous compression, so as to achieve higher
time-frequency representation precision. The detection results of the simulation signals show that
SAST can achieve a better time-frequency resolution than the S-transform (ST) and synchrosqueezing
short-time Fourier transform (SSTFT). In addition, the application of SAST to the analysis of experi-
mental signals also suggests its superiority in the parameter detection of harmonics, especially for
the time-varying interharmonics.

Keywords: harmonics detection; interharmonics; adaptive S-transform; time-frequency resolution;
synchrosqueezing adaptive S-transform

1. Introduction

With a high proportion of new energy generation and nonlinear power electronics
connected to the grid, the impact of harmonics and interharmonics on power quality is of
increasing concern [1]. Harmonics represent grave hazards, such as motor noise, voltage
deviation and resonance for transformers, motors, arc furnaces, metering instruments and
other industrial equipment [2–4]. Moreover, harmonics can also result in grid-voltage
fluctuations as well as the flicker, resonance, and over-zero shifts in the voltage wave-
form [5,6]. Therefore, the detection and analysis of harmonics and interharmonics are of
great significance to promote the safety and power quality of new energy generation.

In a power system, an AC non-sinusoidal signal can be decomposed into linear
combinations of sinusoidal components of different frequencies. When the frequency of
the sinusoidal component is the same as the frequency of the original AC signal, it is called
fundamental. When the frequency of the sinusoidal component is an integer multiple
of the frequency of the original AC signal, it is called a harmonic [7–9]. For example, if
the frequency is three times, five times, or seven times the fundamental frequency, the
harmonic is called the third harmonic, fifth harmonic, or seventh harmonic. When the
frequency of the sinusoidal component is a non-integer multiple of the frequency of the
original AC signal, it is called an interharmonic. For example, when the frequency is
1.5 times or 2.5 times the fundamental frequency, the signal is called interharmonic at
this time [10]. Due to the large number of nonlinear loads connected to the grid, this
can lead to serious harmonic problems. When these nonlinear loads are impulsive, the
nonlinear fluctuating loads will create serious interharmonic problems [11,12]. Harmonics
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and interharmonics can cause serious interference phenomena in power systems. For
example, it causes abnormal vibration in induction motors. The traditional signal detection
methods are not accurate enough for harmonics and interharmonics, and thus cannot
effectively analyze power quality problems [13].

The conventional harmonic and interharmonic detection methods mainly include
short-time Fourier transform (STFT) [14], wavelet transform (WT) [15], Hilbert–Huang
transform (HHT) [16–18], and S-transform (ST) [19,20]. In [21], STFT was used to detect
harmonics. The analysis results of the integer harmonics revealed a high accuracy of STFT,
however, STFT had the defects of frequency leakage due to asynchronous transformations.
The harmonic detection by WT indicated that the wavelet basis of WT substantially in-
fluenced the detection results [22]. When ST was used to detect harmonics, the window
function of ST had a fixed tendency to vary and it failed to achieve the best resolution [23].
The HHT algorithm was proven to be particularly effective in dealing with nonlinear and
non-smooth signals, and it required no basis function prior to computation. However, HHT
showed poor noise immunity, which was attributed to its high sensitivity to noise [24]. It
was demonstrated by some scholars that the MUSIC and time-frequency adaptive atoms
could well improve the time-frequency resolution [25]. A great many researchers claimed
that synchronous squeeze transform (SST) could effectively improve the detection accu-
racy of harmonics. In a number of studies, the combined methods of WT, ST and SST for
harmonic detection [26] greatly enhanced the time-frequency resolution, which, however,
was still affected by the wavelet basis and the window function of ST. A generalized S-
transform-based SST (GSST) algorithm [27] was proposed to improve the window function
of ST, but its computation was intricate because its parameters were acquired iteratively.

To tackle the above-mentioned problems, a synchrosqueezing adaptive S-transform
(SAST) method was developed to detect the parameters of harmonics and interharmonics in
this article. An adaptive S-transform (AST) algorithm was designed at first to provide a TFS
with an adequate resolution for SST. The time-frequency resolution was obtained by direct
optimization of the standard deviation of the window function without iterative calculation.
Secondly, a SAST was adopted to further improve the time-frequency resolution. Due to
the continuous distribution of the time-varying harmonic components in the frequency
domain, the best time-frequency resolution cannot be achieved only by optimizing the
window function of AST. The TFS of AST near the instantaneous frequency of SAST was
squeezed onto that frequency, which improved the time-frequency resolution of SAST for
detecting harmonics and interharmonics.

The main contribution of SAST is that it directly matches a Gaussian window with the
main value interval of the power quality signal spectrum to optimize the time-frequency
resolution. The optimization was based on the three sigma criterion, and the best value of
the standard deviation of the Gaussian window was sought directly through the energy
occupation ratio. Hence, the traditional multi-parameter iteration problem was eliminated
and the time-frequency resolution was improved. Moreover, SAST was less affected by
noise compared with the other harmonic detection algorithms. By the end of the paper,
the method was compared with the existing harmonic detection methods in the analysis
of mathematical model signals and the signals generated by the simulation platform. The
analysis results verified the detection accuracy and noise immunity of the proposed method.

The remainder of this paper is organized as follows. The basic theory is introduced in
Section 2. Section 3 provides the simulation results of the test signals and the measured
data. Finally, the study concludes in Section 4.

2. Synchrosqueezing Adaptive S-Transform Theory

Developed from STFT, the traditional ST converts the standard deviation σ of the
window function into a frequency function. The traditional ST [28] of the signal x(t) is
defined as

S(τ, f ) =
∫ +∞

−∞

| f |√
2π

x(t)e−
f 2(τ−t)2

2 e−2iπ f tdt (1)
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in which t, f and τ represent the time, frequency and time-shift factors, respectively. The
time factor controls the position of the window function on the time axis, thus ensuring
that the window function can analyze the entire time horizon.

The window function of traditional ST is:

W(τ − t, f ) =
| f |√
2π

e−(τ−t)2 f 2/2 (2)

The corresponding standard deviation σ( f ) is:

σ( f ) =
1
| f | (3)

Although ST inherits the advantages of STFT and WT, the fixed trend of σ varying with
the frequency deteriorates the time-frequency resolution of ST, according to (3). Therefore,
an AST algorithm is built to afford the TFS of the harmonic signal. The time-frequency
resolution of AST can be adjusted by changing the standard deviation σ.

The window function of AST can be written as

W(τ − t, σ) =
1√

2πσast
e−(τ−t)2/2σast

2
(4)

σast =

{
σmin, f = f0
σmax, f 6= f0

(5)

in which the value interval [σmin, σmax] is completely determined by the spectrum of the
signal x(t).

The corresponding AST is:

AST(τ, f ) =
∫ +∞

−∞
x(t)

1√
2πσast

e−(τ−t)2/2σast
2
e−2iπ f tdt (6)

Comparing Equations (1) and (2), the standard deviation σast is no longer a fixed
function of frequency | f |. The window function is indirectly related to frequency.

To determine the value interval [σmin, σmax] of standard deviation σast, a window
matching spectrum (WMS) method is designed as follows.

The window function of AST is represented in the frequency domain as

W(σ, f ) = e−2π2σ2 f 2
(7)

The effective window width can be defined based on the frequency domain extension
σf of the window function:

σ2
f =

+∞
∑
−∞

f 2|W( f )|2d f

+∞
∑
−∞
|W( f )|2d f

=
1

8πσ2 (8)

σf =
1

2
√

2πσ
(9)

According to Equation (8), the frequency domain expansion σf is inversely related
to the standard deviation σ. The effective window width can be defined based on the 3σ
criterion when it covers the main energy distribution of the window function centered on
the frequency point.

Substituting f = 3
√

2σf into Equation (7), we have

W(σ, 3
√

2σf ) = e−9/2 = 0.0111 (10)
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When f = ±3
√

2σf , the amplitude of the Gaussian window function is only 0.0111,
and 99.73% of the energy distribution of the Gaussian window function is included. There-
fore, the effective window width of the Gaussian window can be expressed as

D = 6
√

2σf = 3/πσ (11)

where the frequency point corresponding to the effective window width D of the window
function is:

fw = ±3
√

2σf = ±3/2πσ (12)

Therefore, these frequency points have a reciprocal relationship with the standard
deviation σ.

To avoid energy leakage and frequency aliasing, the effective window width D should
cover the major energy distribution of the frequency component fn but not the energy
distribution of its adjacent frequency components fn−1 and fn+1.

The spectrum energy En of each frequency component is represented as

En =
fn+ f∆2

∑
f= fn− f∆1

|X( f )|2 (13)

in which f∆1 = ( fn−1 + fn)/2 and f∆2 = ( fn + fn+1)/2. There is a frequency interval
[an, bn] that makes the main energy E fn satisfy

E fn

En
=

1
En

bn

∑
f=an

|X( f )|2 ≥ 99.73% , n = 0, 1, 2, · · · n− 1 (14)

The frequency interval [an, bn] denotes the frequency main energy interval, which
contains more than a 99% energy distribution of the frequency component fn. To eliminate
feature information loss and frequency aliasing, the effective window width of the Gaussian
window should cover the main energy interval [an, bn] of the frequency component fn, but
its adjacent intervals [an−1, bn−1] and [an+1, bn+1] need to be excluded.

For interharmonic signals, the time-varying harmonic components are continuously
distributed in the frequency domain, and their main energy interval becomes invalid.
However, the main energy interval of the fundamental frequency components is still useful
to determine the standard deviation σ.

Therefore, the frequency coordinates fw = 3/2πσn of the effective window width D
corresponding to the fundamental frequency component f0 should satisfy

b0 ≤
3

2πσ
≤ a1 (15)

The value of σ corresponding to the frequency component f0 is calculated as{ 3
2πa1
≤ σ0 ≤ 3

2πb0

σmin = 3
2πa1

, σmax = 3
2πb0

(16)

in which σmin corresponds to the best time resolution, and σmax denotes the best frequency
resolution.

The obtained value interval of [σmin, σmax] is used to improve the time-frequency
resolution of AST. This method is free of frequency aliasing and iterative calculations.
However, on account of the continuity of time-varying harmonics, AST is unable to achieve
the best energy concentration through the WMS method. Therefore, a SAST algorithm is
established based on the TFS of AST to further improve the time-frequency resolution.

Synchrosqueezing is to squeeze energy into the real instantaneous frequency of the
signal. The derivation process of SAST is briefly introduced as:
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Let ψ(t) = 1√
2π

et2/2ei2πt, AST can be expressed as:

AST(τ, f ) =
1
σ

e−i2π f τ
∫ +∞

−∞
x(t)ψ[ f (t− τ)]dt (17)

According to the synchrosqueezing wavelet transform [29], the signal function also
adopts a single frequency function

x(t) = A cos(2π f0t) (18)

Λ
x(ε) = Aπ[δ(ε− 2π f0) + δ(ε + 2π f0)] (19)

Bringing Formula (19) into Formula (17), we have

AST(τ, f ) =
Aπ

σ
e−i2π( f− f0)τ

Λ
ψ∗(2π f−1 f0) (20)

By deriving the spectrum during AST transformation, the instantaneous frequency is
estimated. Formula (20) is the result of deriving the time factor

∂AST
∂τ

=
Aπ

σ
[−i2π( f − f0)]e

−i2π( f− f0)τ
Λ
ψ(2π f−1 f0) (21)

The instantaneous frequency of the signal is computed by deriving the time spectrum
of AST.

f0(τ, f ) = f +
1

i2πAST(τ, f )
· ∂AST(τ, f )

∂τ
(22)

The SAST algorithm rearranges the frequency spectrum of AST and squeezes the
energy of the center frequency [ fx − f0

2 , fx +
f0
2 ] to the position of f0. The SAST formula of

x(t) can be thus expressed as

SAST( f0, b) = f0
−1 × ∑

fk :| fx( f0,b)− f0|≤∆ fk/2
|AST(τ, f ) | fk∆ fk (23)

in which f0 is the instantaneous frequency, fx is the center frequency and fk is the dis-
crete frequency.

The above is the theoretical introduction of SAST. The 3σ criterion is applied to the
window function of the Gaussian window, and the window width is directly matched with
the energy range of the signal to determine the best σ. Unlike ST, AST dispenses with the
need for frequency aliasing, Furthermore, AST provides a TFS with an adequate resolution
for SST. The succeeding SST treatment renders the energy distribution of the harmonics
and interharmonics more concentrated, and a satisfactory time-frequency resolution is
finally achieved.

Figure 1 presents the signals and time-frequency results of SAST used to detect the
harmonic parameters. Figure 2 shows the main steps of SAST to detect the harmonic
parameters. The TFS is calculated by AST firstly, and then the frequency is rearranged
and squeezed.
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Figure 1. The schematic diagram of SAST. Figure 1. The schematic diagram of SAST.
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3. Performance Analysis

The merging of a large number of new energy sources, such as wind power and
photovoltaic power into the grid, gives rise to a growing prominence in harmonics and
interharmonics issues. The detection of harmonics and interharmonics parameters is ex-
tremely important for harmonic control. This section aims to detect the harmonic and
interharmonic parameters. To verify its effectiveness, SAST is compared with the other ap-
proaches to their analytical results of different signals (mathematical models, noise signals,
signals generated by new energy sources connected to the grid and experimental platforms).

3.1. Time-Frequency Analysis Performance Comparison Based on Mathematical Models

The proposed method is tested on time-varying harmonic signals, and the experimen-
tal results are compared with those of SSTFT, HHT, WT and ST. The simulation experiments
are conducted in a MATLAB environment with a signal sampling rate of 1600 Hz. The test
signal is described as:

x(t) =


sin(2π50t) 0 < t < 1s
0.8 sin(2π75t) 0.12 < t ≤ 0.24s
0.6 sin(2π110t) 0.24 < t ≤ 0.4s
0.4 sin(2π140t) 0.4 ≤ t < 0.5s
0.6 sin(2π350t) 0.4 ≤ t < 0.5s

(24)

According to Equation (24), the test signal contains components with different fre-
quencies and amplitudes. The frequencies of interharmonics are 75 Hz, 110 Hz, 140 Hz and
350 Hz, and the corresponding amplitudes are 0.8, 0.6, 0.4 and 0.6, respectively.

Figure 3 shows the comparison results of the five methods. As can be seen from
Figure 3e, ST has the worst time-frequency resolution and cannot effectively distinguish
between the five frequency contents. Because the window function of ST is frequency-
dependent only, this single trend of variation causes the lack of resolution accuracy of
ST and thus cannot distinguish the signals effectively. The time-frequency plot of HHT
contains the information that is related to the instantaneous frequency. However, it can be
seen from Figure 3c that the analysis of HHT is poor. Because of the endpoint effect of HHT,
for the time-varying interharmonics, the signal at the time-varying endpoints produce
misalignment. Therefore, it causes poor discrimination. WT can effectively distinguish
the five frequency contents, however, the energy concentration is poor compared with
SSTFT and SAST. This is influenced to some extent by the wavelet base. Compared with
the other three methods, SSTFT and SAST are better, with SAST being the best due to
the higher matching of the window function to the signal in SAST compared with SSTFT,
which improves the time-frequency resolution. Therefore, SAST has a better analysis for
time-varying interharmonics.

Compared with ST, WT and HHT, SSTFT and SAST have better analysis results.
To further compare the analytical accuracy of the two, the detection accuracies of the
two methods in terms of the frequency and amplitude are listed in Table 1. SSTFT can
detect all the frequency components, showing a high detection accuracy for the frequency.
However, the amplitude’s relative error of the 75 Hz component detected by SSTFT is
19.43%, which does not satisfy the detection accuracy requirement. SAST has the highest
detection accuracy for both the frequency and amplitude, proving that SAST has a high
time-frequency resolution and can effectively detect the harmonic components.
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Table 1. Accuracy of two methods in detecting time-varying harmonics.

Test Signal Actual Value
Detection Value Relative Error

SSTFT SAST SSTFT SAST

Harmonic components (Hz)

50 49 50 2.00% 0.00%
75 74 75 1.33% 0.00%

110 109 110 0.91% 0.00%
140 139 140 0.71% 0.00%
350 349 350 0.29% 0.00%

Harmonic amplitudes (V)

1 0.9992 1.0040 0.08% 0.40%
0.8 0.6446 0.8002 19.43% 0.02%
0.6 0.5989 0.5962 0.18% 0.63%
0.4 0.3862 0.3907 3.45% 2.33%
0.6 0.5712 0.5931 4.80% 1.15%

The temporal resolution of the two methods is further analyzed by this experiment.
The detection accuracies of the three methods in the time domain are listed in Table 2.

In Table 2, the accuracy analysis was performed separately for the start and end times.
As shown in Table 2, SSTFT has the lowest temporal resolution, which is due to the problem
of the low temporal resolution of STFT itself, which is influenced by the window function.
In contrast, SAST has the highest temporal resolution because the window function of SAST
is determined according to the 3sigma criterion, which enhances the analysis accuracy to
some extent.
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Table 2. Accuracy of time detected by the two methods.

Test Signal Actual Value
Detection Value Relative Error

SSTFT SAST SSTFT SAST

Start time (s)

0 0.0155 0 1.55% 0%
0.12 0.1375 0.0981 14.50% 1.08%
0.24 0.2537 0.2404 5.71% 0.17%
0.4 0.4181 0.3995 4.53% 0.13%
0.4 0.4169 0.4006 4.23% 0.15%

Ending time (s)

1 0.9856 1 1.44% 0%
0.8 0.2344 0.2331 0.56% 2.88%
0.6 0.3794 0.3981 5.15% 0.19%
0.4 0.4762 0.4987 4.76% 0.60%
0.6 0.4806 0.5031 3.88% 0.62%

3.2. Anti-Noise Analysis of Signals Based on Mathematical Models

To further test the anti-noise performance of SAST, simulation experiments were
conducted on noisy signals in a MATLAB environment at a signal sampling rate of 512 Hz,
and the results were compared with other time-frequency analysis methods (ST, WT, HHT
and SSTFT). The mathematical model of the signal is:

x(t) = x1(t) + x2(t)

x1(t) = sin(2π(17t + 6 sin(1.5t)))

x2(t) = sin(2π(40t + sin(1.5t)))

(25)

The two signals of different frequencies were superimposed, to which the Gaussian
white noise with a signal-to-noise ratio of 10 dB was added. The experimental results are
shown in Figure 4.

It can be seen from Figure 4c that HHT suffers modal aliasing in a strong noise
environment and cannot identify the signal clearly. This indicates that the HHT performs
poorly in terms of noise immunity. Because HHT analyzes the signal through the EMD
decomposition process, EMD is analyzed by forming an upper and lower envelope for the
very large and very small values, and the noise environment easily affects the accuracy
of the upper and lower envelopes. Thus, the resolution accuracy of HHT in a noisy
environment is not high. Figure 4b,e are the analyses of WT and ST. Both have a poor
resolution in noisy environments. This is because the window function of ST is not matched
enough, while WT is affected by the wavelet basis and the number of decomposition
layers. According to the figures, the time-frequency analyses of SSTFT and SAST have
higher resolution and a better energy concentration than the other methods. The spectral
energy of the other approaches is distributed in a more dispersed way than that of SAST. It
indicates that these two algorithms have better anti-noise capabilities in harmonic detection.
However, the energy distribution of SAST is more concentrated than that of SSTFT. In
summary, SAST has better noise immunity.

To further examine the consistency between the analytical results of SAST and the
original signal, the estimated instantaneous frequencies of the simulation results were
compared with the true instantaneous frequencies of the signal. The values of some of the
true frequencies and estimated frequencies are also listed and written in Table 3 swell, so
that a more visual comparison can be made.
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Figure 4. The results of time-varying harmonic and interharmonic signals based on five methods. 
(a) Test signal, (b) WT, (c) HHT, (d) SSTFT, (e) ST, (f) SAST. 
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Table 3. Comparison between real frequency and estimated frequency of the signal.

Time (s)
Frequency Comparison

Real Frequency Estimated Frequency

0.5 23.59 23.00
1 17.64 18.73

1.5 11.35 11.20
2 8.90 8.23

2.5 9.62 9.70

It can be inferred from the coincidence degree of the two types of frequencies that the
estimated value of SAST is highly accurate, which further confirms the effectiveness of
this method.

3.3. Time-Frequency Parameters Analysis Based on New Energy

In this section, the resolution of SAST was checked on the harmonic signals, which
were generated by the grid connection of new energy. The photovoltaic grid-connected
inverters are one of the main harmonic sources in the power grid. Another origin of
harmonics is the large-scale wind power grid-connected systems. Therefore, it is essential
to attest to the effectiveness of SAST on the photovoltaic grid connection and wind power
grid connection models. Firstly, a photovoltaic grid-connected inverter model (Figure 5)
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was built for comparison and verification. Additionally, it gave the individual parameters
of the PV grid-connected inverter model in Table 4.
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Figure 5. Photovoltaic grid-connected inverter model.

Table 4. Individual parameters of the PV grid-connected inverter model.

Parameter Name Numerical Value Parameter Name Numerical Value

DC Current Source 1A Three-phase inverter circuit switching frequency 10 KHz
boost circuit switching frequency 25 KHz Regulating system 1

Duty Cycle 0.3 DC side capacitance 20 µF
Energy storage inductor 3 mH Output filter 3 mH
Last connected system 120 KV infinity system

Since the mathematical model of the acquired signal was unknown, the fast Fourier
transform (FFT) of the acquired signal was performed to yield the frequency components
and bandwidth of the signal. According to the FFT results of the signal, the frequency com-
ponents of the signal were 50 Hz, 100 Hz, and 150 Hz . . . The fundamental frequency of the
signal was 50 Hz, the maximum frequency was 750 Hz, and the frequency bandwidth was
700 Hz. The FFT results provided a reference for the comparison of the experimental results.

In order to facilitate the analysis, the amplitude of the harmonic signals generated
by SAST was normalized to [−1,1]. The sampling rate of the signal was 1600 Hz, and the
experiment was conducted in a MATLAB environment. Figure 6 is the time-frequency
spectra of ST, SSTFT, WT and SAST.

It can be seen from Figure 6b,d that the harmonic and interharmonics, except for the
fundamental frequency of the analog signal, are severely ambiguous, implying that the
T-F resolutions of ST and WT are not adequate for the detection of parameters. The single
nature of the window function and the fixed nature of the wavelet basis were the main
reasons for the lack of accuracy of ST and WT for the interharmonic analysis. In Figure 6c,
the TFS of SSTFT is better than that of ST due to the “squeezing” effect, however, SSTFT
sustained a huge energy loss. As for SAST in Figure 6e, there is no energy loss in the
TFS, and each frequency component can be clearly recognized. The results demonstrated
that the time-frequency resolution of SAST was higher than that of the ST, WT and SSTFT.
Because SAST matched the signal components by the 3sigma criterion, the harmonics and
interharmonics could be analyzed more effectively
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Figure 6. The time-frequency spectra of photovoltaic grid-connected harmonic signals based on 
three methods. (a) Simulation signal, (b) S-transform, (c) synchrosqueezing STFT (SSTFT), (d) WT, 
(e) synchrosqueezing adaptive S-transform (SAST). 
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Figure 6. The time-frequency spectra of photovoltaic grid-connected harmonic signals based on
three methods. (a) Simulation signal, (b) S-transform, (c) synchrosqueezing STFT (SSTFT), (d) WT,
(e) synchrosqueezing adaptive S-transform (SAST).

Secondly, the wind power grid-connected system model was established to simulate
the interharmonic signal, and the detection accuracy of SAST was further verified in
this model. In the simulation verification process, both the video analysis diagrams and
detection results of the various parameters were analyzed to check the analysis error. The
simulation experiment was still conducted in a MATLAB environment at a signal sampling
rate of 1600 Hz. The grid-connected system of wind power generation is shown in Figure 7.
SAST was applied to analyze the wind power grid-connected signals, and its effectiveness
in separating the different frequency components was measured. Additionally, it gave the
individual parameters of the wind power grid in Table 5.

Table 5. Individual parameters of the wind power grid.

Parameter Name Numerical Value Parameter Name Numerical Value

Wind Turbine Line Voltage 575 Vrms Wind Turbine Pole Logarithm 3
Wind turbine magnetization inductance 6.77 pu Wind turbine inertia constant 5.04

Wind turbine frequency 50 Hz Turbine pitch angle 0

Wind turbine rotor 0.004843 pu Turbine pitch angle controller gain Kp = 5
Ki = 25

Shunt capacitor 1.1 × 10−6 F Turbine wind speed variation between 2~11 m/s

The same FFT was performed on the signal to afford the frequency components and
bandwidth, and the FFT results contributed to the comparison of the experimental results.
The FFT results showed that the frequency components of the signal were 50 Hz, 100 Hz,
150 Hz . . . , 750 Hz. The signal had a fundamental frequency of 50 Hz, a maximum
frequency of 750 Hz, and a frequency bandwidth of 700 Hz.

Similarly, the interharmonic signal data generated by this model were normalized to
[−1,1]. The time-frequency spectra of ST, SSTFT, WT and SAST are presented in Figure 7.
Figure 8a–e are the TFSs of the original signal, ST, SSTFT, WT and SAST, respectively. As
shown in Figure 8, the frequency components of the T-F plots that were generated by the ST
method and WT method are blurred, which is attributed to the low T-F resolution. Owing to
the “squeezing” effect, the SSTFT and SAST methods have a higher T-F resolution than the
ST method. Comparing Figure 8c,e, SSTFT and SAST have a similar frequency resolution,
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however, SAST suffers less energy loss than SSTFT, suggesting that the T-F resolution of
SAST is better than the other methods. Therefore, SAST has a high T-F resolution to detect
the interharmonic parameters. The time-frequency resolution accuracies of ST and WT
were affected by the window function and wavelet basis, respectively. In addition, the
resolution accuracy of WT was also affected by the number of decomposition layers. SSTFT
did not have a high resolution accuracy for the small amplitude signals and could not
effectively detect the low amplitude components. SAST improved the analysis accuracy of
the interharmonics after the effective matching of window functions and could effectively
detect each simple harmonic component.
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Figure 8. Comparison of wind grid-connected interharmonics based on five time-frequency analysis 
schemes. (a) The original signal generated by photovoltaic power generation, (b) time-frequency 
diagram of ST, (c) time-frequency diagram of SSTFT, (d) time-frequency diagram of WT, (e) time-
frequency diagram of SAST. 
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Figure 8. Comparison of wind grid-connected interharmonics based on five time-frequency analysis
schemes. (a) The original signal generated by photovoltaic power generation, (b) time-frequency
diagram of ST, (c) time-frequency diagram of SSTFT, (d) time-frequency diagram of WT,
(e) time-frequency diagram of SAST.



Energies 2022, 15, 4539 14 of 19

The interharmonic parameters extracted by SSTFT and SAST are listed in Table 6.
SSTFT could identify all the interharmonic components, however, its relative errors were
larger than those of SAST. Nevertheless, SAST was capable of identifying all the har-
monic components more accurately than the other methods. Taken above, compared
with the SSTFT, the SAST method has the highest T-F resolution to detect the parameters
of interharmonics.

Table 6. Accuracy of two methods in detecting wind power grid-connected harmonics.

Measured Signal Actual Value
Detection Value Relative Error

SSTFT SAST SSTFT SAST

Harmonic
components (Hz)

50 49 50 2.00% 0.00%
100 99 101 1.00% 1.00%
150 149 149 0.67% 0.67%
200 199 200 0.50% 0.00%
250 249 250 0.40% 0.00%
300 298 299 0.67% 0.33%
350 348 350 0.57% 0.00%
400 399 400 0.25% 0.00%
450 449 449 0.22% 0.22%
500 499 500 0.20% 0.00%
600 599 600 0.17% 0.00%
700 699 700 0.14% 0.00%
750 749 750 0.13% 0.00%

To further illustrate the effectiveness of the method, a model of the induction motor
powered by the inverter was built, and the model was built as shown in Figure 9. The
relevant parameters of the modified model are also given. Two sets of AC voltage sources
with different power supply frequencies with circuit breakers were used to establish the
motor inverter speed control model, where voltage source 1 was set to 260 × sqrt (3) V,
60 Hz, and voltage source 2 was set to 220 × sqrt (3) V, 50 Hz, the switching frequency
of the two voltage sources was 10 Hz, and the load torque of the motor was 20 Nm.
The stator current was collected in the experiment, and the current signal was analyzed.
The simulation experiments were still performed in a MATLAB environment, and the
sampling rate of the signal was 600 Hz. Additionally, in order to provide a reference
for the experimental results, the FFT was used to analyze the signal components. The
analysis results showed that the main frequency components contained in the signal were:
4 Hz, 8 Hz, 20 Hz, 48 Hz, and 56 Hz, the lowest frequency of the signal was 4 Hz, the
highest frequency was 56 Hz, and the bandwidth of the signal was 52. The experimental
comparison results are shown in Figure 10.

Figure 10b represents the ST analysis results of the signal. From Figure 10b, it can
be seen that the accuracy of the time-frequency analysis of ST is very poor and that the
individual frequency components of the signal cannot be identified, and there are serious
crossover phenomena between the frequencies. Because the resolution accuracy of ST is
determined to some extent by the frequency and cannot be properly adjusted, this makes the
analysis boundary between each frequency unclear when ST analyzes the interharmonics
containing multiple frequency contents, thus affecting the analysis accuracy. Figure 10c,d
represent the results of the SSTFT analysis and WT analysis of the signal, respectively.
The analysis results of SSTFT have an energy loss compared with those of SAST, which
leads to insufficient clarity of the frequency components. The analytical accuracy of WT
was even worse, and the interharmonic components could not be clearly distinguished.
This is because when using WT to analyze the signal, the performance of using WT is not
good due to the number of decomposition layers and the window function.Furthermore,
the process of the SAST analysis provided good time-frequency results for SST due to the
high resolution of AST, and the time-frequency results were better and superior after SST
squeezing. In other words, SAST has a higher time-frequency resolution in comparison.
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Figure 10. Simulation comparison of the output current signal of the induction motor based on the 
inverter power supply.(a) The original signal,(b) time-frequency diagram of ST, (c) time-frequency 
diagram of SSTFT, (d) time-frequency diagram of WT, (e) time-frequency diagram of SAST. 
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Figure 10. Simulation comparison of the output current signal of the induction motor based on the 
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Figure 10. Simulation comparison of the output current signal of the induction motor based on the
inverter power supply. (a) The original signal, (b) time-frequency diagram of ST, (c) time-frequency
diagram of SSTFT, (d) time-frequency diagram of WT, (e) time-frequency diagram of SAST.

3.4. Measurement Experiment Examples

Experimental signals with randomness can better reflect the actual operation of the
power system than the simulation signals. In this section, an experimental platform
for generating and capturing harmonic and interharmonic signals was built to further
authenticate the performance of the proposed method (Figure 11). The hardware platform
contained a programmable AC source (Chroma 61511), a control computer, a multi-channel
waveform monitoring recorder (MR1200M), a dual-channel oscilloscope (DPO 3012), and
a personal computer (PC). The Chroma 61511 was programmed to generate single- or
three-phase voltage signals based on the parameters set by the control computer. The
MR1200M and DPO 3012 were connected to the Chroma 61511 to sample the experimental
signal in real time.
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The time-varying interharmonic signal was generated by the programmable AC
source Chroma 61511, and then the voltage waveform with the time-varying frequency
components was output by the interharmonic module of the instrument. The sampling
frequency of the MR1200M was set to 2000 Hz, and the sampling time was 5 s. After
sampling the signals, the MR1200M transmitted the signal data to the computer in real
time via the universal serial bus interface. The collected interharmonic signal was then
analyzed by ST, SSTFT, WT and SAST, and the time-frequency spectra that were yielded
are drawn (Figure 12).
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Figure 12. The time-frequency spectra of experimental interharmonic signals based on three methods.
(a) Time-varying interharmonic signal collected by experiment platform (b) S-transform, (c) WT,
(d) synchrosqueezing STFT (SSTFT), (e) synchrosqueezing adaptive S-transform (SAST).
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In Figure 12, the interharmonic signal contains a fundamental frequency component
and a time-varying harmonic component, and the frequency of the latter increases linearly
from 60 Hz to 130 Hz. The TFS of ST presents a poor frequency concentration, and the
two frequency components in the low-frequency region cannot be separated (Figure 12b).
The analysis of WT was improved compared to ST, however, the energy aggregation of the
signal performed poorly, as seen in Figure 12c. On the contrary, the T-F spectra generated
by SSTFT and SAST had higher frequency concentrations than that of ST. Comparing
Figure 12d,e, SSTFT and SAST show a satisfactory time-frequency resolution without
frequency aliasing. However, SAST was able to identify the frequency components in
the low-frequency region without energy loss. Therefore, SAST is superior to the other
methods in the performance of detecting the time-varying experimental signals.

Among the four methods, SSTFT and SAST were better for the analysis. To further
compare the analysis results of SSTFT and SAST, Table 7 concludes the accuracy of SSTFT
and SAST for detecting the frequency and amplitude of the time-varying harmonic signals.
SSTFT was unable to identify the start frequency of the interharmonic signal as a result
of the low T-F resolution. For the stop frequency of the interharmonic components, the
amplitude relative error of SSTFT was 127.78%, respectively. Thus, the parameter detection
result of SSTFT failed to meet the demands. On the contrary, SAST provided an excellent
T-F resolution to improve the accuracy of detecting the interharmonic parameters. In
addition, for the interharmonic signal with a length of 10,000 points, it only took 2.782 s
for SAST to complete the TFA, which is much faster than the ST and SSTFT. Therefore, the
SAST method can detect the harmonic parameters with high accuracy and speed.

Table 7. Accuracy of two methods in detecting experimental interharmonic signals.

Test Actual Detection Value/Relative Error (%)

Signal Value SSTFT SAST

Fundamental frequency 50 49.8/0.40 50.2/0.40
Start frequency 60 — 61.6/2.67
Stop frequency 130 133.2/2.46 130.2/0.15

Harmonic amplitude (V)
400 308.1/22.98 402.7/0.67
40 — 39.47/1.33
40 91.11/127.78 39.74/0.65

Time cost (s) 28.388 2.782

4. Conclusions

In this study, the SAST method is proposed to analyze and detect harmonics and
interharmonics. First of all, an AST algorithm was used to provide a TFS with a moderate
resolution for SST. The TFS of AST near the instantaneous frequency of SAST was then
squeezed into that frequency, which further improved the time-frequency resolution. The
harmonic parameter detection framework, which is based on SAST, was constructed to
detect the harmonics and interharmonics. Through the different simulation experiments,
SAST was proven to have a higher time-frequency resolution than ST and SSTFT, thus,
it can effectively identify the frequency components. This finding is confirmed by the
harmonic parameter detection results. Moreover, a measurement experiment example
was built, which also verified that SAST had a higher time-frequency resolution when
detecting the time-varying experimental signals. The SAST method was highly adaptive to
the analysis and parameter detection of the harmonics and interharmonics. Moreover, the
parameter detection results of SAST can accurately reflect harmonic characteristics.

The SAST method acts as a powerful tool to analyze harmonic and interharmonic
problems under the background of a new energy grid connection.



Energies 2022, 15, 4539 18 of 19

Author Contributions: Methodology, P.L. and Z.L.; software, P.L.; investigation, P.L., K.M., F.T. and
Z.L.; writing—original draft preparation, K.M.; writing—review and editing, K.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China (Grant No.
2021YFB3201600) and The Natural Science Foundation of Hebei Province (E2020203198) and the
Cultivation Project for Basic Research and Innovation of Yanshan University (2021LGQN012).

Informed Consent Statement: Formed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zobaa, A.; Aleem, S.A. A New Approach for Harmonic Distortion Minimization in Power Systems Supplying Nonlinear Loads.

IEEE Trans. Ind. Inform. 2014, 10, 1401–1412. [CrossRef]
2. Aleem, S.H.E.A.; Zobaa, A.F.; Balci, M.E.; Ismael, S.M. Harmonic Overloading Minimization of Frequency-Dependent Components in

Harmonics Polluted Distribution Systems Using Harris Hawks Optimization Algorithm. IEEE Access 2019, 7, 100824–100837. [CrossRef]
3. Vivert, M.; Diez, R.; Cousineau, M.; Cobaleda, D.B.; Patino, D.; Ladoux, P. Real-Time Adaptive Selective Harmonic Elimination

for Cascaded Full-Bridge Multilevel Inverter. Energies 2022, 15, 2995. [CrossRef]
4. Göthner, F.; Roldán-Pérez, J.; Torres-Olguin, R.E.; Midtgård, O.-M. Harmonic Virtual Impedance Design for Optimal Management

of Power Quality in Microgrids. IEEE Trans. Power Electron. 2021, 36, 10114–10126. [CrossRef]
5. Sangwongwanich, A.; Blaabjerg, F. Mitigation of Interharmonics in PV Systems With Maximum Power Point Tracking Modifica-

tion. IEEE Trans. Power Electron. 2019, 34, 8279–8282. [CrossRef]
6. Sridharan, K.; Babu, B.C. Accurate Phase Detection System Using Modified SGDFT-Based PLL for Three-Phase Grid-Interactive

Power Converter During Interharmonic Conditions. IEEE Trans. Instrum. Meas. 2021, 71, 1–11. [CrossRef]
7. Xiahou, K.S.; Liu, Y.; Wu, Q.H. Robust Load Frequency Control of Power Systems Against Random Time-Delay Attacks. IEEE

Trans. Smart Grid 2021, 12, 909–911. [CrossRef]
8. Delkhosh, H.; Seifi, H. Power System Frequency Security Index Considering All Aspects of Frequency Profile. IEEE Trans. Power

Syst. 2021, 36, 1656–1659. [CrossRef]
9. Roca, D.A.L.; Mercado, P.; Suvire, G. System Frequency Response Model Considering the Influence of Power System Stabilizers.

IEEE Lat. Am. Trans. 2022, 20, 912–920. [CrossRef]
10. Li, Y.; Teng, Z.; Tang, Q.; Ji, Z. Detection of Interharmonics Using Sparse Signal Decomposition Based on ICA-MP. IEEE Trans.

Instrum. Meas. 2021, 70, 1–9. [CrossRef]
11. Peterson, B.; Rens, J.; Botha, G.; Desmet, J. On Harmonic Emission Assessment: A Discriminative Approach. SAIEE Afr. Res. J.

2017, 108, 165–173. [CrossRef]
12. Mohamadian, S.; Pairo, H.; Ghasemian, A. A Straightforward Quadrature Signal Generator for Single-Phase SOGI-PLL With Low

Susceptibility to Grid Harmonics. IEEE Trans. Ind. Electron. 2022, 69, 6997–7007. [CrossRef]
13. Wang, R.; Huang, W.; Hu, B.; Du, Q.; Guo, X. Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD.

IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [CrossRef]
14. Lin, H.-C. Inter-Harmonic Identification Using Group-Harmonic Weighting Approach Based on the FFT. IEEE Trans. Power

Electron. 2008, 23, 1309–1319. [CrossRef]
15. Wang, X.; Wang, B.; Chen, W. The Second-Order Synchrosqueezing Continuous Wavelet Transform and Its Application in the

High-Speed-Train Induced Seismic Signal. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1109–1113. [CrossRef]
16. Wang, X.; Li, B.; Liu, Z.; Roman, H.T.; Russo, O.L.; Chin, K.K.; Farmer, K.R. Analysis of Partial Discharge Signal Using the

Hilbert–Huang Transform. IEEE Trans. Power Deliv. 2006, 21, 1063–1067. [CrossRef]
17. Li, Y.; Lin, J.; Niu, G.; Wu, M.; Wei, X. A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for

Microgrids. Energies 2021, 14, 5040. [CrossRef]
18. Li, D.; Ukil, A.; Satpathi, K.; Yeap, Y.M. Improved S Transform-Based Fault Detection Method in Voltage Source Converter

Interfaced DC System. IEEE Trans. Ind. Electron. 2021, 68, 5024–5035. [CrossRef]
19. Liu, N.; Gao, J.; Zhang, B.; Wang, Q.; Jiang, X. Self-Adaptive Generalized S-Transform and Its Application in Seismic Time–

Frequency Analysis. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7849–7859. [CrossRef]
20. Platas-Garza, M.A.; de la O Serna, J.A. Polynomial Implementation of the Taylor–Fourier Transform for Harmonic Analysis. IEEE

Trans. Instrum. Meas. 2014, 63, 2846–2854. [CrossRef]
21. Wright, P. Short-time Fourier transforms and Wigner-Ville distributions applied to the calibration of power frequency harmonic

analyzers. IEEE Trans. Instrum. Meas. 1999, 48, 475–478. [CrossRef]
22. Barros, J.; Diego, R. Application of the Wavelet-Packet Transform to the Estimation of Harmonic Groups in Current and Voltage

Waveforms. IEEE Trans. Power Deliv. 2006, 21, 533–535. [CrossRef]
23. Dash, P.; Panigrahi, B.; Panda, G. Power quality analysis using s-transform. IEEE Trans. Power Deliv. 2003, 18, 406–411. [CrossRef]
24. Afroni, M.J.; Sutanto, D.; Stirling, D. Analysis of Nonstationary Power-Quality Waveforms Using Iterative Hilbert Huang

Transform and SAX Algorithm. IEEE Trans. Power Deliv. 2013, 28, 2134–2144. [CrossRef]

http://doi.org/10.1109/TII.2014.2307196
http://doi.org/10.1109/ACCESS.2019.2930831
http://doi.org/10.3390/en15092995
http://doi.org/10.1109/TPEL.2021.3065755
http://doi.org/10.1109/TPEL.2019.2902880
http://doi.org/10.1109/TIM.2021.3136172
http://doi.org/10.1109/TSG.2020.3018635
http://doi.org/10.1109/TPWRS.2020.3047510
http://doi.org/10.1109/TLA.2022.9757373
http://doi.org/10.1109/TIM.2021.3122185
http://doi.org/10.23919/SAIEE.2017.8531929
http://doi.org/10.1109/TIE.2021.3095813
http://doi.org/10.1109/TIM.2022.3146913
http://doi.org/10.1109/tpel.2008.921067
http://doi.org/10.1109/LGRS.2020.2993596
http://doi.org/10.1109/TPWRD.2005.861328
http://doi.org/10.3390/en14165040
http://doi.org/10.1109/TIE.2020.2988193
http://doi.org/10.1109/TGRS.2019.2916792
http://doi.org/10.1109/TIM.2014.2324191
http://doi.org/10.1109/19.769633
http://doi.org/10.1109/TPWRD.2005.848437
http://doi.org/10.1109/TPWRD.2003.809616
http://doi.org/10.1109/TPWRD.2013.2264948


Energies 2022, 15, 4539 19 of 19

25. Zhang, Z.; Zhong, Y.; Xiang, J.; Jiang, Y. Phase correction improved multiple signal classification for impact source localization
under varying temperature conditions. Measurement 2020, 152, 107374. [CrossRef]

26. Testa, A.; Akram, M.F.; Burch, R.; Carpinelli, G.; Chang, G.; Dinavahi, V.; Hatziadoniu, C.; Grady, W.M.; Gunther, E.;
Halpin, M.; et al. Interharmonics: Theory and Modeling. IEEE Trans. Power Deliv. 2007, 22, 2335–2348. [CrossRef]

27. Fourer, D.; Auger, F.; Czarnecki, K.; Meignen, S.; Flandrin, P. Chirp Rate and Instantaneous Frequency Estimation: Application to
Recursive Vertical Synchrosqueezing. IEEE Signal Process. Lett. 2017, 24, 1724–1728. [CrossRef]

28. Wang, Q.; Li, Y.; Chen, S.; Tang, B. Matching Demodulation Synchrosqueezing S Transform and its Application in Seismic
Time–Frequency Analysis. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

29. Tian, Y.; Gao, J.; Wang, D. Synchrosqueezing Optimal Basic Wavelet Transform and Its Application on Sedimentary Cycle Division.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

http://doi.org/10.1016/j.measurement.2019.107374
http://doi.org/10.1109/TPWRD.2007.905505
http://doi.org/10.1109/LSP.2017.2714578
http://doi.org/10.1109/LGRS.2020.3047892
http://doi.org/10.1109/TGRS.2021.3127268

	Introduction 
	Synchrosqueezing Adaptive S-Transform Theory 
	Performance Analysis 
	Time-Frequency Analysis Performance Comparison Based on Mathematical Models 
	Anti-Noise Analysis of Signals Based on Mathematical Models 
	Time-Frequency Parameters Analysis Based on New Energy 
	Measurement Experiment Examples 

	Conclusions 
	References

