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Abstract: Energy security is a multidimensional and multifaceted concept, therefore defining it is a
complex problem. It requires the consideration of a wide set of factors from the fields of economics,
geology, ecology and geopolitics, all of which have an influence on energy security or the lack thereof.
The article focuses on natural gas, which is a very specific fuel in the European context. It is the
most “politicized” source of energy, as a consequence of its growing importance as a transition fuel in
the energy transformation process. In order to identify dependencies between variables on the gas
market and analyze their impact on it (in particular on underground storage), the authors chose a set
of variables and built a Bayesian network. The network is an effective and flexible tool that allows
analysis of the relationships between the variables that build them and model their values based
on evidence. The article presents two stages of work with the Bayesian network. In the first one, a
network was built based on historical data. It shows the relationships between the variables as well
as the probability of the value ranges of individual variables. A huge advantage of the presented
Bayesian network is that it can be used to model various scenarios on the gas market. Moreover, the
ability to make statistical inferences for all its nodes represents a valuable additional feature. Several
examples of such inferences are presented in the second stage of the analysis, examining the impact
of consumption variability on the level of inventory in underground gas storage facilities, the impact
of having an LNG terminal and the share of natural gas in electricity production on the storage
capacity of a given country. The use of tools such as Bayesian networks allows us to better discover
the interrelationships between variables influencing the energy market, analyze them, and estimate
the impact on energy security of distinct scenarios described with specific metrics. A simple example
of such a metric, i.e., the minimum level of gas storage at the end of the winter season, as well as its
analysis and modeling using a relatively simple Bayesian network, is presented in this article.

Keywords: energy security; Bayesian network; natural gas; gas storage; Europe; energy

1. Introduction

Energy is not just another commodity, but the precondition of all commodities, a basic
factor equivalent to air, water, and land [1]. In current times, energy represents a key
component of economic growth [2], technological development and social well-being [3],
i.e., a factor determining the progress of civilization [4]. Economic growth and energy
demand are closely related. Energy is required in all sectors of the economy, including
industry, transport, residential and services [5]. The state of the economies of individual
countries and the standard of living of societies depend on a reliable, efficient and affordable
energy supply. The growing demand for energy, especially in the case of rapidly developing
countries, renders them more sensitive to energy security issues.
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Although the two world wars of the twentieth century demonstrated the relationship
between energy resources and the fate of war campaigns and state security [6], the issue of
energy security became part of the political debate only in the 1970s as a reaction to the first
“oil shocks” [7]. Since then, the interest of researchers on the subject of energy security has
been cyclical, depending on the situation and turbulence on the energy markets. Recently,
there has been a resurgence in the field of economic security as a result of the growing
interest in this issue from researchers, managers and policy makers [8].

The definition of “energy security” has also evolved over the course of several decades.
In the 1970s, energy security was narrowly defined, usually as striving to achieve a high
level of energy self-sufficiency (nationalistic approach to energy security) [9]. In addition,
attention was paid to better management practices in energy projects [10] and more efficient
use of energy technologies [11]. At the turn of the century, there were changes in the defini-
tion of energy security. This was due to several factors: the development of international
cooperation between importers and exporters of energy resources, focus on ensuring equal
access to energy for all social groups, and increasing importance of environmental issues in
the energy sector [12,13].

Economic security is also an integral component of academic debates and political
discussions [14]. A large portion of the research focuses on defining and measuring energy
security [8] and despite the rich literature on the subject, there is still no universal definition
accepted by all interested parties [13,15].

Energy security is a multidimensional and multifaceted concept, therefore defining
it is a complex problem. It requires the consideration of a wide set of factors in the field
of economics, geology, ecology, geopolitics. All of these have an influence on energy
security or the lack thereof. The nature and importance of energy security depends on
the context [16]. In many cases, it is the space-time context that determines the concept of
energy security, and the most important component of this context is the state of the energy
market at a given moment in time [17].

In modern definitions of energy security, four main elements can be identified:

• Availability—the physical existence of energy;
• Accessibility—the possibility of gaining access to energy resources taking into account

geographic, political, demographic, and technological constraints;
• Affordability—the possibility of accessing affordable energy sources;
• Acceptability—the possibility of accessing sources that do not raise any objections,

especially environmental ones [18].

Of these elements, accessibility and affordability are considered the most important
due to their impact on other aspects of energy security [19]. According to the Asia Pacific
Energy Research Center, energy security is defined as “the ability of an economy to guarantee
the availability of the supply of energy resources in a sustainable and timely manner with the energy
price being at a level that will not adversely affect the economic performance of the economy” [20].

Energy security is most often referred to as “security of supply”. In this context,
the International Energy Agency (IEA) defines energy security as “uninterrupted availability
of energy sources at an affordable price” [21]. Similarly, according to the European Commission,
"energy security or security of supply can be defined as the availability of energy at all times in
various forms, in sufficient quantities, and at reasonable and/or affordable prices” [22]. Ensuring a
stable/affordalbe energy supply is, therefore, one of the top priorities of many governments
internationally [23,24].

The supply-oriented definition of energy security does not take into account the
complexity of the energy system, ignoring, e.g., end users [25]. Therefore, the second group
of energy security definitions focuses on the concept of “security of services” which refers to

“the extent to which the population in a defined area (country or region) can have access to affordable,
and competitively priced, environmentally acceptable energy services of adequate quality” [18].
This definition implies end-user orientation [26]. In the energy service-oriented approach,
the subject of research is transmission and distribution infrastructure, quality of supply
and price.
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A different approach to the issue of energy security is presented by energy-exporting
countries, whose aim is to secure sufficiently high and stable revenues from the export
sale of energy resources [27]. As a result, the economies of the largest producers of energy
commodities are dependent on the sale of those commodities. Therefore, the effects of
disruptions in the supply of raw materials and reductions in their price on the global
markets will be strongly felt by these countries. Export revenues affect the economic
development of producer countries, research and exploration projects, development of
new oil fields for exploitation and expansion of transport and transmission systems. In the
case of energy exporting countries, energy security focuses on the aspects of “security of
demand” [28] as well as social and political aspects that test the validity of the “resource
curse” [29] and “paradox of plenty” [30] hypotheses.

In this article, the authors have devoted special attention to the issue of natural gas,
a raw material particularly important today due to its function as a transition fuel in
the energy transformation process and extremely high politicization of the gas market.
The natural gas market in Europe has acquired special importance, especially with the
ongoing Russia–Ukraine conflict, as the Russian Federation was and still remains one
of the main suppliers of this fuel to the European market. At the present stage, we are
unable to assess the real scale of the consequences of this war, because we can predict
neither the military outcome of the Russian–Ukrainian war, nor the extent to which the
announcements of European politicians regarding the cessation of using Russia as the main
supplier of energy resources will be implemented. It seems certain, however, that a return
to the pre-war situation is no longer possible.

The latest literature on energy security and natural gas is rich and covers a variety
of issues. For example, index approach to energy security is presented in [31], where
the evaluation of an index called “Energy Security Level”, measuring the overall energy
security, is performed. The index assessing energy security is also covered in [32,33].
The impact of technical infrastructure on energy security is described in [34], and the
issue of safety and security of oil and gas pipeline transportation is discussed in [35].
An attempt to estimate the value of the potential shortage of natural gas stocks using
stochastic modeling based on the mathematical model of the “Newsvendor problem” is
shown in [36]. The use of the financial portfolio theory to explore energy security issues
is demostrated in [37,38]. The concept of energy security taking into account three new
perspectives: sovereignty, robustness and resilience in the gas sector of the European
Union is explored in [39]. An example of a comprehensive approach to energy security is
presented in [40]

The topic of Bayesian networks appears in the context of optimization of gas supply
reliability in natural gas pipelines [41] and an assessment of probabilistic disaster in the oil
and gas supply chain [42]. However, there are no attempts to model the gas system with
the use of probabilistic methods to obtain the possibility of forecasting the probability of
certain events and variable values. This article fills the gap.

The authors decided to use Bayesian networks to model underground natural gas
storage, because they provide a very useful method for reasoning with the emphasis on
explanation, association, and causation. Bayesian networks are now widely recognized as
a powerful technology for dealing with risk, uncertainty and decision making [43]. The
paper consists of several parts that cover the following topics:

• The current situation in the natural gas market in Europe compared to other primary
energy sources, with particular emphasis on underground natural gas storage.

• Basic information on Bayesian networks.
• A description of the data sources and tools used in the article to create a Bayesian

network modeling the underground gas storage market.
• A presentation of the Bayesian network created by the authors with examples of

inference.
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2. The Natural Gas Market in Europe

In the European Union countries, consumption of primary energy significantly exceeds
production, while the latter remains in a downward trend. By focusing on consumption
alone, it can be seen that over the last 30 years there has been an increase in consumption
of natural gas, renewable energy and non-renewable waste. On the other hand, declines
were recorded in the use of solid fossil fuels, crude oil and nuclear energy. The use of peat
and oil sands, which are of marginal importance as a source of primary energy in Europe
has also decreased (Figures 1 and 2).

Figure 1. Primary energy consumption and its structure by source in the European Union (EU27).
Data Source: Eurostat.

Figure 2. Change in primary energy consumption in the European Union (EU27). Data Source: Eurostat.

The article focuses on natural gas, which is a very specific fuel in the European
context. It represents the most “politicized” source of energy, which is a consequence of its
growing importance as a transition fuel in the energy transformation process. Technical
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and technological issues are also an important factor, because only recently, owing to
the technology of liquefied natural gas (LNG), has it been possible to transport this fuel
efficiently via routes other than gas pipelines. It should be emphasized that the LNG
technology itself is not new, and the first successful liquefaction of methane took place in
the 19th century.

The vast majority of European natural gas fields are mature and their production is
declining. New discoveries are unlikely to be able to make up for this deficiency, but an
interesting new alternative is emerging—development of biomethane production that can
be utilized, transported, and stored together with natural gas. Europe bears great potential
in this area and some issues related to this topic are detailed in [44–47].

A distinguishing feature of natural gas as a source of primary energy is very strong
seasonality in consumption, strongly related to weather conditions. As a result, consump-
tion in the summer months is much lower than in winter. Underground gas storage is used
on a large scale to counterbalance fluctuations in supply and demand in both the short,
medium and long term. They constitute a key element of the gas infrastructure and are one
of the main guarantors of security of gas supply (Figure 3).

Figure 3. Natural gas balance in the European Union (EU27). Data Source: Eurostat.

Rational exploitation of gas reservoirs requires storage of the extracted fuel to maintain
the stable operation of the field in periods of reduced demand. Transmission grids also
work optimally when the gas flow is stable. This strategy is followed (when possible) by all
gas companies globally. In the absence of underground gas storage, both production and
transmission capacity would be forced to meet the peak demand for natural gas, and in
periods of low demand, their capacity would be greatly underused. The seasonal nature of
consumption is noteworthy, with large fluctuations between winter and summer. Domestic
production is relatively steady, while imports are growing, although their seasonal changes
are relatively small. The system is balanced thanks to underground gas storage—gas is
injected into the storage facilities in summer, extracted and placed on the market in winter.

The aforementioned very strong seasonality is clearly visible—in spring and summer,
the storage facilities are mostly full, while in autumn and winter they are emptied. There
are exceptions to this rule, especially in the case of warehouses with a balancing role
in the system (this applies mainly to storage facilities built in salt caverns, due to their
specific technical characteristics and very high operational flexibility) or in the case of
extraordinary events.
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Underground gas storage facilities are one of the main guarantors of energy security
on the natural gas market. This is due to the functions performed by underground gas
storage facilities on the natural gas market, one of the most important of which is balancing
seasonal fluctuations. We can see how important it is to adopt an appropriate security
policy in the natural gas market by comparing the filling level of gas storage facilities in
Poland and throughout Europe in 2021. The Russian Federation, with the help of Gazprom
and other companies, which for years have been tools in shaping its foreign policy, caused
an energy crisis in the European gas market, which was a preparatory stage for armed
aggression against Ukraine. As a result of these activities, the filling level of European
gas storage facilities in the winter of 2021/22 was the lowest for many years and posed a
threat to the energy security of Europe as a whole. Figure 4 shows the total volume of gas
in storage in Europe, and Figure 5 shows the situation in Germany, which was one of the
countries most affected by this policy. The situation in Poland, aware of the threat, did not
differ significantly from the long-term average, and at the end of 2021, the accumulated
stocks were even greater than the average (Figure 6).

Figure 4. Natural gas in underground gas storage in Europe in 2021 compared to 10-year average
and min-max range. Data Source: GIE AGSI+.

Figure 5. Natural gas in underground gas storage in Germany in 2021 compared to 10-year average
and min–max range. Data Source: GIE AGSI+.
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Figure 6. Natural gas in underground gas storage in Poland in 2021 compared to 10-year average
and min–max range. Data Source: GIE AGSI+.

After Russia invaded Ukraine, the difference in the degree of stockpiling in Poland and
other Central European countries was striking (Figures 7 and 8): the stocks accumulated in
Poland were much larger than usual for this time of the year, while in other countries they
remained much lower (data from 2 April 2022), even though in the first quarter of 2022 gas
consumption from storage facilities in Europe was lower than usual (Figure 9) and thus the
stocks returned to the long-term min–max range (Figure 10).

Figure 7. Fill level of underground gas storage facilities in Europe (as of 2 April 2022). Data Source:
GIE AGSI+.
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Figure 8. 10-year average fill level of underground gas storage facilities in Europe (as of 2 April).
Data Source: GIE AGSI+.

Figure 9. Daily stock change in underground gas storage facilities in Europe in 2022 compared to
10-year average and min–max range. Data Source: GIE AGSI+.
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Figure 10. Natural gas in underground gas storage in Europe in 2022 compared to 10-year average
and min–max range. Data Source: GIE AGSI+.

In Poland, on the other hand, an unusual situation has arisen. The increased level of
utilization of the LNG terminal in Świnoujście and the relatively mild weather in February
and March led to an extremely rare situation: stocks in underground gas storage in Poland
began growing instead of falling—more gas was injected into the storage facilities than was
withdrawn from them. This is an unusual situation under normal conditions for this time
of year (Figures 11 and 12).

Figure 11. Daily stock change in underground gas storage facilities in Poland in 2022 compared to
10-year average and min–max range. Data Source: GIE AGSI+.
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Figure 12. Natural gas in underground gas storage in Poland in 2022 compared to 10-year average
and min–max range. Data Source: GIE AGSI+.

This was, among other factors, the effect of additional LNG deliveries obtained on the
spot market and the record utilization of the regasification capacity of the LNG terminal
in Świnoujście. As a result, in February and March 2022, the terminal delivered gas to the
transmission system with historically unprecedented efficiency (Figure 13).

Figure 13. Natural gas send-out from LNG terminal in Poland in 2022 compared to the long-term
average and min–max range. Data Source: GIE AGSI+.

In order to identify dependencies between variables on the gas market and analyze
their impact on this market (in particular on underground storage), the authors chose a
set of variables and built a Bayesian network which describes the relationships between
those variables.
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3. Bayesian Networks

The Bayesian network (BN) can be presented as a precise description of direct relation-
ships between a set of variables. Such a network takes the form of a directed acyclic graph
consisting of nodes and arcs. A probability table (NPT) is assigned to each node [43].

• Directed Graph—A directed graph (also known as a topology or BN structure) con-
sists of a set of nodes and arcs. Nodes are variables and arcs are connections between
them. An arc from A to B expresses the assumption that there is a direct causal or
influential dependence of A on B; in this case node A is the parent of node B, and B is
the child of A. There are no cycles in such a graph—if we have an arc from A to B and
from B to C, then we cannot have an arc from C to A.

• Node Probability Table (NPT)—Each node has an assigned probability table called
the node probability (NPT) table. It is the probability distribution for a given set of
parents of this node. For a node without parents (also called a root node), the NPT is
simply the probability distribution for the variable [43].

The process of building a Bayesian network consists of the following steps:

1. Identification of a set of variables that are relevant to the problem.
2. Creation of a node for each identified variable.
3. Definition of each node’s type.
4. Determination of states for each non-simulation node.
5. Identification of connections between nodes (arcs).
6. Definition of an NPT for each node [43].

Despite the many advantages of Bayesian networks, their use over the years has been
limited due to computational limitations. The difficulty was particularly acute when the
number of nodes and connections between them was large. For this reason, this tool was not
used to a greater extent to solve real decision-making and risk assessment. This situation
changed in the late 1980s, when a number of algorithms were developed to ensure efficient
propagation of many classes of Bayesian network models. In simple terms, their efficiency
results from the use of Bayesian network structures, the variable elimination process and
modular calculations that do not require computations for the entire probability model [43].

In recent years, Bayesian networks have gained popularity in many areas, including
biology, economics, social sciences, computer science, medical diagnostics, operational and
financial risk, cybersecurity, safety and quality assessment, sport-forecasting, law, forensics
and equipment failure diagnostics. Their properties, such as the ability to learn cause–
effect relationships, intuitive graphical representation, the ability to construct complex
hierarchical models and the use of appropriate probability distributions for each of the
Bayesian network elements have proved indispensable in many fields [48].

A particular advantage of Bayesian networks is their ability to effectively combine
human and artificial sources of intelligence. Bayesian networks describe causes and effects
using a graphical framework that ensures rigorous risk quantification and clear reporting
of results. Quantitative probabilities are derived from historical data or expert judgments.
Bayesian networks can then serve as the basis for answering probabilistic questions, the cal-
culations are based on Bayes’ theorem from 1763 and provide a consistent way to update
a belief about an uncertain event as we observe new evidence related to the event. Thus,
Bayesian networks provide a general approach to reasoning, with explainable models of re-
ality, unlike other approaches where the emphasis is on prediction rather than explanation,
association, and causation [43].

4. Materials and Methods

The article presents an example of a Bayesian network showing the relationship
between a number of variables describing the gas market in Europe. R programming
language and RStudio IDE were used to create a Bayesian network [49,50]. These tools
were selected because they provide a comprehensive and flexible environment for both
data analysis and statistical modeling. Additionally, many dedicated Bayesian network
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packages are available, rendering the implementation of approaches presented in the
literature much easier [48]. The main package used in the article was bnlearn which is
an R package for learning the graphical structure of Bayesian networks, estimating their
parameters and performing inference [51]. As the creator of this package writes: “bnlearn
offers a wide variety of structure learning algorithms ([ . . . ] with several tests and network
scores), parameter learning approaches (maximum likelihood for discrete and continuous
data, Bayesian estimation for discrete data) and inference techniques (cross-validation,
bootstrap, conditional probability queries and prediction)” [48].

The data used in the article come primarily from two sources—Eurostat database
and Gas Infrastructure Europe AGSI+ and ALSI+ databases. The details are presented in
Table 1.

Table 1. Variables used in the model and their data sources.

Variable Name Description Data Source (Table Name)

price Gas prices for non-household
consumers—bi-annual data Eurostat (nrg_pc_203)

gas_in_cons Natural gas share in total primary energy
consumption [%] Eurostat (nrg_bal_s)

lng_in_cons LNG imports in total natural gas
consumption [%] Eurostat (nrg_ti_gasm, nrg_bal_s)

gas_in_electricity_prod Share of natural gas in total energy used
to produce electricity [%] Eurostat (nrg_bal_s)

prod_in_cons Share of domestic production of natural
gas in its total consumption [%] Eurostat (nrg_bal_s)

lng_terminal If there is a LNG terminal in particular
country? (0—No, 1—Yes) GIE ALSI+

heating_index
Heating index according to the Eurostat

definition summed up for the period
May–April

Eurostat (nrg_chdd_m)

per_capita_gdp GDP in current market prices Eurostat (naida_10_gdp)

min_ugs_level Minimum level of gas inventory in
underground gas storage [% of capacity] GIE AGSI+

max_ugs_level Maximum level of gas inventory in
underground gas storage [% of capacity] GIE AGSI+

var_cons Coefficient of variation of monthly data
of natural gas consumption Eurostat (nrg_cb_gasm)

wgv_in_cons Working gas volume of gas storage
facilities by natural gas consumption GIE AGSI+, Eurostat (nrg_bal_s)

gas_in_heat_prod Share of natural gas in total energy used
to produce heat [%] Eurostat (nrg_bal_s)

var_imports Coefficient of variation of monthly data
of natural gas imports Eurostat (nrg_cb_gasm)

Distribution of variables are presented in Figure 14. As can be clearly seen, the distribu-
tion of the variables used in the model can, in most cases, hardly be considered even close
to normal. Therefore, we cannot use Gaussian Bayesian networks (GBN) in modeling [48].

For this reason, these variables were subjected to a discretization process in the next
stage of model preparation. There are three main methods of discretization:

• quantile—each variable is discretized independently into k intervals delimited by
empirical quantiles,

• interval—each variable is discretized independently into k equally-spaced intervals,
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• information-preserving—variables are jointly discretized while preserving as much
of the pairwise mutual information between the variables as possible [48].

Variable discretization was carried out according to the third approach, using the
Hartemink algorithm which was created in 2001 [48,52]. The main idea is to pre-discretize
each variable into a large number of k1 intervals, thereby minimizing information loss. Then
the algorithm iterates over the variables and collapses a pair of adjacent intervals for each
of them, which minimizes the loss of paired mutual information in pairs. The algorithm
stops when the number of intervals for all variables is k2 << k1. As a result the set of
discretized variables keeps the relationship structure of the original data much better than
a quantile or interval discretization would allow.

The article adopts a slightly simplified approach because it was decided that, ul-
timately, the discretized variables would have three value ranges. In the future, while
working on the development of this approach, differentiation of this number for individual
variables is planned. At the moment, the approach presented above seems to be suffi-
cient, especially since the model is at an early stage of development. One of the variables
(lng_terminal) was already a discrete variable (0—No, 1—Yes). The calculations were per-
formed using a function built into the bnlearn package. The variables after discretization
are presented in Figure 15.

Figure 14. Variables used in the model—raw data. Data Source: Eurostat, GIE AGSI+, GIE ALSI+.
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Figure 15. Variables used in the model—discretized data. Data Source: Eurostat, GIE AGSI+,
GIE ALSI+.

5. Results

The data, after being prepared, were used to create a Bayesian network modeling the
relationships between the variables influencing the fill level of underground natural gas
storage facilities in Europe. The target, modeled value was the minimum level of inventory
during the year (usually achieved at the end of the winter season).

Despite having knowledge of the gas market, the authors decided to use the algorithm
implemented in the bnlearn package as the basis for the creation of the Bayesian network
structure. The only limitation imposed above was the assumption that the min_ugs_level
node would not be a parent node for any other node.

There are several algorithms that can be used to find the optimal Bayesian network
structure. A relatively simple one is the hill-climbing algorithm [53]. It works as follows: it
starts with a net with all nodes and no arcs, then adds, removes, and inverts one arc at a
time, and keeps the change which most increases the network score [48]. In this case the
Bayesian Information Criterion (BIC) was used as a network score [54] .

5.1. Optimized Structure of the Bayesian Network

The final structure of the network is shown in Figure 16. Some interesting relationships
are revealed on it and, in the authors’ opinion, it is unlikely that all of them could be
identified if the network was built manually, relying only on expert knowledge.

In the presented model, the minimum inventory level of gas storage directly depends
on two variables:

• natural gas consumption volatility (var_cons),
• maximum level of inventory in the storage facility before the winter season (max_ugs_level).

Consumption volatility depends on only the climatic conditions represented in the
model by the heating index (heating_index). It should be remembered that if the model were
enriched with additional variables, these dependencies may look different. For example,
the structure of consumption, i.e., the share of households, industry and the service sector,
could also influence the volatility of consumption. Of course, the above observation applies
to all other dependencies in the presented model. The authors plan to gradually develop
this model and introduce additional variables and dependencies.
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Figure 16. Structure of the final Bayesian network.

The maximum level of inventory in gas storage facility already depends on more
variables. These are:

• consumption volatilty (var_cons),
• share of gas in heat production (gas_in_heat_prod),
• heating index (heating_index),
• share of storage capacity in the annual consumption of natural gas (wgv_in_cons),
• share of the annual production of natural gas in the annual consumption (prod_in_cons),
• import volatility (var_imports).

In turn, the volatility of imports is influenced by:

• heating index (heating_index),
• presence of an LNG terminal (lng_terminal),
• share of gas in the production of electricity (gas_in_electricty_prod).

The share of storage capacity in the annual gas consumption depends on:

• presence of an LNG terminal (lng_terminal),
• share of gas in the production of electricity (gas_in_electricty_prod),
• natural gas consumption volatility (var_cons),
• share of LNG in the annual consumption of natural gas (lng_in_cons),

The following variables influence the share of gas in heat production:

• presence of an LNG terminal (lng_terminal),
• share of storage capacity in the annual consumption of natural gas (wgv_in_cons),
• share of gas in the production of electricity (gas_in_electricty_prod),
• share of natural gas in total primary energy consumption (gas_in_cons),
• share of LNG in the annual consumption of natural gas (lng_in_cons),
• GDP per capita (per_capita_gdp),
• price of natural gas (price).

The remaining variables have no parents and are examples of root nodes.
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5.2. Conditional Probability Tables (CPTs)

The Bayesian network presented in the article contains conditional probability tables
(CPT) for all of its nodes and the probability values contained in them are based on the data
used in its construction process. Tables 2 and 3 show CPTs for two example nodes—var_cons
and min_ugs_level.

Table 2. Conditional probability table (CPT) for var_cons node.

heating_index

[403.99–1902.06] (1902.06–2668.26] (2668.26–5488.44]
var_cons

0.310 0.000 0.014 [0.084, 0.213]
0.552 0.636 0.478 (0.213, 0.414]
0.138 0.364 0.508 (0.414, 1.114]

In the case of the var_cons node, which represents the variability of natural gas con-
sumption, expressed as the variation coefficient of monthly consumption, CPT is relatively
simple because in the analyzed network this node has only one parent node—heating_index.
Furthermore, so, assuming that heating_index is in the range of 403.99 to 1902.06, the coeffi-
cient of variation (var_cons) will be (Table 2):

• from 0.084 to 0.213 with a probability of 31%
• from 0.213 to 0.414 with a probability of 55.2%
• from 0.414 to 1.114 with a probability of 13.8%

The CPT for the minimum inventory level is more complex, since this node has two
parents—var_cons and max_ugs_level (Table 3).

Table 3. Conditional probability table (CPT) for min_ugs_level node.

var_cons = [0.084–0.213]

max_ugs_level

[7.32–75.18] (75.18–97.55] (97.55–100]
min_ugs_level

0.000 0.000 0.000 [0–16.33]
0.000 0.250 0.000 (16.33–20.38]
1.000 0.750 1.000 (20.38–76.47]

var_cons = (0.213–0.414]

max_ugs_level

[7.32–75.18] (75.18–97.55] (97.55–100]
min_ugs_level

0.310 0.302 0.036 [0–16.33]
0.552 0.093 0.000 (16.33–20.38]
0.138 0.605 0.964 (20.38–76.47]

var_cons = (0.414–1.114]

max_ugs_level

[7.32–75.18] (75.18–97.55] (97.55–100]
min_ugs_level

0.500 0.238 0.250 [0–16.33]
0.429 0.143 0.150 (16.33–20.38]
0.071 0.619 0.600 (20.38–76.47]

5.3. Evidence-Based Inference

Despite this increased complexity, a key advantage of Bayesian networks is the ability
to make evidence-based inferences. Evidence-based inferences were made in three cases:

• Minimal level of gas inventory (min_gas_level) based on the volatility of gas consump-
tion (var_cons) evidence.
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• LNG terminal presence (lng_terminal) based on maximum level of gas inventory
(max_gas_level).

• Share of gas storage capacity in gas consumption (wgv_in_cons) based on gas share in
electricity (gas_in_electricity_prod) and LNG terminal presence (lng_terminal).

5.3.1. Minimal Level of Gas Inventory (min_gas_level) Based on the Volatility of Gas
Consumption (var_cons) Evidence

The probability for the minimum inventory level was estimated using the Bayesian
network presented earlier. The evidence used was the volatility of gas consumption in
three variants:

• low—[0.084–0.213]
• medium—(0.213–0.414]
• high—(0.414–1.114]

The results are presented in Table 4 and in Figure 17. We can clearly see that as the
volatility of natural gas consumption increases, the probability that stocks at the end of
the heating season will be low also rise. For the low consumption variant the probability
of low inventories is 0%, for the medium variant it is almost 22%, and for high it is over
33%. The probability that the minimum stock level will be high obviously decreases as
volatility increases (from 92% to 42%). Therefore, there is no doubt that the volatility of
natural gas consumption has a large impact on the minimum stocks of natural gas reached
during the year.

Table 4. Probability of minimal level of inventory (min_ugs_level) depending on volatility of gas
consumption (var_cons).

Volatility of Gas Consumption (var_cons)

Low Medium High

[0.084–0.213] (0.213–0.414] (0.414–1.114]

min_ugs_level

0.000 0.219 0.333 [0–16.33]
0.083 0.037 0.244 (16.33–20.38]
0.917 0.744 0.423 (20.38–76.47]

Figure 17. Minimal level of inventory depending on the volatility of consumption.
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5.3.2. Presence of an LNG Terminal (lng_terminal) Based on Maximum Level of Gas
Inventory (max_gas_level)

The situation is slightly different when we analyze the relationship between the
maximum level of inventory in gas storage facilities and the presence of an LNG terminal in
a given country. It can be seen that these probabilities are similar for each level of maximum
inventory level (Table 5 and Figure 18). It can therefore be concluded that the relationship
between these variables is not very strong

Table 5. Probability of the existence of an LNG terminal (lng_terminal) depending on the maximum
level of inventory (max_ugs_level).

Maximum Level of Inventory (max_ugs_level)

Low Medium High

[7.32–75.18] (75.18–97.55] (97.55–100]

lng_terminal

0.651 0.636 0.657 0—No
0.349 0.364 0.343 1—Yes

Figure 18. Existence of an LNG terminal depending on the maximum level of inventory.

5.3.3. Share of Gas Storage Capacity in Gas Consumption (wgv_in_cons) Based on Gas
Share in Electricity (gas_in_electricity_prod) and Presence of an LNG Terminal (lng_terminal)

The results of the analysis of the share of storage capacity in the consumption of
natural gas, depending on whether there is an LNG terminal in a given country and on the
share of natural gas in the production of electricity, are interesting. When there is an LNG
terminal in a given country, we notice an interesting phenomenon—with the increase in
the share of gas in electricity production, the probability of the medium share of storage
capacity in the consumption of natural gas decreases (Table 6 and Figure 19). In contrast for
a low and high share it grows (more for a low share). It seems that having an LNG terminal
is a security measure and serves as a kind of alternative to underground gas storage.
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Table 6. Probability of gas storage capacity share in gas consumption (wgv_in_cons) depending on the
gas share in electricity production (gas_in_electricity_prod) when an LNG terminal exists (lng_terminal).

Gas Share in Electricity Production (gas_in_electricity_prod)

Low Medium High

[0–0.06] (0.06–0.17] (0.17–0.59]

wgv_in_cons

0.159 0.232 0.344 [0–16.33]
0.573 0.508 0.357 (16.33–20.38]
0.268 0.260 0.299 (20.38–76.47]

Figure 19. Share of storage capacity in gas consumption depending on gas share in electricity
production when an LNG terminal exists.

If, on the other hand, there is no LNG terminal in a given country, the probability of a
high share of storage capacity in consumption increases along with the increase in the share
of natural gas in electricity production (Table 7 and Figure 20). This is unsurprising because,
lacking an alternative (e.g., an LNG terminal), underground gas storage is the only way to
ensure continuity of energy supply where a significant proportion of electricity is generated
through the use of gas. Running out of gas would bear very serious consequences.

Table 7. Probability of gas storage capacity share in consumption (wgv_in_cons) depending on the
gas share in electricity production (gas_in_electricity_prod) when an LNG terminal does not exist
(lng_terminal).

Gas Share in Electricity Production (gas_in_electricity_prod)

Low Medium High

[0–0.06] (0.06–0.17] (0.17–0.59]

wgv_in_cons

0.205 0.023 0.091 [0–16.33]
0.532 0.501 0.373 (16.33–20.38]
0.263 0.476 0.536 (20.38–76.47]
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Figure 20. Share of storage capacity in gas consumption depending on gas share in electricity
production when an LNG terminal does not exist.

6. Discussion and Conclusions

Bayesian networks are an effective and flexible tool that allow analysis of the relation-
ships between the variables that build them and model their values based on evidence.
Utilization of this powerful tool enables the performance of the entire system to be under-
stood, modeled and improved.

This has been presented in this article, where the authors have shown a relatively
simple Bayesian network model that uses historical data from the European gas market
and allows the estimation of the values of the variables that affect underground natural
gas storage. It was built using the R programming language, the RStudio IDE and the
bnlearn package. The data used in the model come from two sources: Eurostat and Gas
Infrastructure Europe databases. The paper fills a gap, because the authors have not yet
encountered a published attempt to model the gas market in this way.

The article presents two stages of work with the Bayesian network. In the first one,
a network was built based on historical data. It shows the relationships between the
variables as well as the probability of the value ranges of individual variables.

The target variable—the minimum level of inventory of gas storage facilities at the end
of the heating season, directly depends on two factors: the volatility of gas consumption
and the maximum filling level of the storage facilities before winter.

Consumption volatility depends on only the climatic conditions represented in the
model by the heating index.

The maximum level of inventory in gas storage facility depends on more variables.
These are: the consumption volatilty, the share of gas in heat production, the heating
index, the share of storage capacity in the annual consumption of natural gas, the share
of the annual production of natural gas in the annual consumption and volatility of the
gas imports.

The volatility of imports is influenced by the heating index, the presence of an LNG
terminal and the share of gas in the production of electricity.

The share of storage capacity in the annual gas consumption depends on: the presence
of an LNG terminal, the share of gas in the production of electricity, the natural gas
consumption volatility and the share of LNG in the annual consumption of natural gas.
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The share of gas in heat production is influenced by: the presence of an LNG terminal,
the share of storage capacity in the annual consumption of natural gas, the share of gas in
the production of electricity, the share of natural gas in total primary energy consumption,
the share of LNG in the annual consumption of natural gas, the GDP per capita and the
price of natural gas.

The relationships presented in the model are interesting and, importantly, it is probable
that not all of them would have been identified if expert knowledge only was used in the
process of creating a Bayesian network, and the network itself was built manually. All the
probabilites are derived from the historical data.

A huge advantage of this Bayesian network is that it can be used to model various
scenarios of the gas market, and a valuable additional feature is the ability to make statistical
inferences for all of its nodes. During such inferences, we enter data for selected variables
(evidence) into the model and calculate the probabilities for the nodes of interest.

Several examples of such inferences are presented in the second stage of the analysis,
examining the impact of consumption variability on the level of inventory in underground
gas storage facilities, the impact of having an LNG terminal and the share of natural gas in
electricity production on the storage capacity of a given country.

We can clearly see that as the volatility of natural gas consumption increases, the prob-
ability that stocks at the end of the heating season will be low also rise.

The situation is slightly different when we analyze the relationship between the
maximum level of inventory in gas storage facilities and the presence of an LNG terminal in
a given country. It can be seen that these probabilities are similar for each level of maximum
inventory level. It can therefore be concluded that the relationship between these variables
is not very strong.

The results of the analysis of the share of storage capacity in the consumption of
natural gas, depending on whether there is an LNG terminal in a given country and on the
share of natural gas in the production of electricity, are interesting. When there is an LNG
terminal in a given country, we notice an interesting phenomenon—with the increase in
the share of gas in electricity production, the probability of the medium share of storage
capacity in the consumption of natural gas decreases. In contrast, for a low and high share it
grows (more for a low share). It appears that having an LNG terminal is a security measure
and serves as a kind of alternative to underground gas storage.

Such a network may be helpful in assessing the impact of energy policies, investments,
climate, geopolitical challenges and unforeseen events on the gas market. This can signifi-
cantly simplify the process of managing it, especially from the perspective of identifying,
assessing and managing risk. The development of such tools is in the best interest of states
and energy companies, and they should be permanently included in the portfolio of tools
used for management at both the operational and strategic levels.

The beginning of 2022 was dominated by Russia’s brutal aggression against Ukraine
coupled with an imbalance in global energy security. These events open a new chapter
in research and approaches to energy security. We are likely to face very large changes,
the scale of which we are not yet able to predict. On the one hand, there is talk of a return to
the use of fossil fuels on a larger scale, mainly solid ones, and on the other hand, there are
discussions about the inevitable acceleration of energy transformation towards the use of
renewable energy sources. Additionally, the global population is currently struggling with
high inflation, caused, on the one hand by years of very lenient monetary policy, and on
the other hand by the soaring energy prices that are spreading throughout the economy,
increasing the price of almost all goods and services.

At present it is difficult to predict how this situation will develop in the short, medium
and long term, but the use of tools such as Bayesian networks allows us to better discover
the interrelationships between variables influencing the energy market, analyze them,
and estimate the impact on energy security of distinct scenarios described with specific
metrics. A simple example of such a metric, i.e., the minimum level of gas storage at the



Energies 2022, 15, 5185 22 of 24

end of the winter season, as well as its analysis and modeling using a relatively simple
Bayesian network, is presented in this article.
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