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Abstract: Wind farm (WF) equivalence is an effective method to achieve accurate and efficient
simulation of large-scale WF. Existing equivalent models are generally suitable for one certain or very
few scenarios, and have difficulty reflecting the multiple aspects of dynamic processes of WF. Aiming
at these problems, this paper proposes an equivalent model of WF based on multivariate multi-
scale entropy (MMSE) and multi-view clustering. Firstly, the influence of the factors on the dynamic
process of the wind turbine (WT) is discussed, including control mode, wind speed and its wake effect,
resistance of crowbar resistor and so on. The relationship between these factors and the dynamic
equivalence of WF is analyzed. Secondly, an overview of MMSE is given, and the applicability of
MMSE on WF equivalence is analyzed. On this basis, this paper proposes the extraction process of
a WT clustering indicator using MMSE. Then, the multi-view fuzzy C means (MV-FCM) algorithm
is used for the clustering of WTs, and the equivalent model of WF is obtained after calculating the
equivalent parameters. Finally, the IEEE14 power system including WF is simulated. The results show
that the equivalent model could be applied to dynamic process simulation in various fault scenarios
of power systems, and the error is small when the cluster number is 4. Compared with the detailed
model, the simulation time of the WF equivalent model proposed in this paper is shortened by 86%,
and the simulation accuracy is improved by about 44% compared with the comparative model.

Keywords: wind farm; multivariate multi-scale entropy; WF equivalence; data mining; cluster;
multi-scenario

1. Introduction

According to the wind power report released by the Global Wind Energy Council
(GWEC) [1] in 2021, the global new wind power installed capacity is 93.6 GW, and the
cumulative installed capacity reaches 837 GW, with a year-on-year increase of 12.4%. The
proportion of wind power in power demand continues to increase, and new installations in
China, the United States, Brazil, Vietnam and the United Kingdom account for 75.1% of
the global total. With the rapid increase of the scale of wind power grid connection, the
flexibility and security stability of power systems are affected and impacted. Therefore, the
requirement for analysis and calculation of large-scale wind power integration into power
systems is increasing [2,3]. WF often has dozens or even hundreds of WTs. If each WT
is modeled separately, it will greatly increase the complexity and simulation calculation
time of the power system simulation model, and even face the problem of “dimension
disaster” [4]. On the basis of satisfying the simulation accuracy, the equivalent modeling of
WF provides a new idea for solving this problem.

In [5], the WF was equivalent to a WT, and its capacity was equal to the sum of the
capacities of all WTs. However, the wind speed distribution in large WF is uneven, and the
WTs are at different operating points. So, this kind of WF equivalent model usually has a
large error. Therefore, in recent years, the research on the equivalent value of WF mainly
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focuses on the multi-machine equivalent value, which mainly includes the construction
of WF equivalence grouping indicators [6–9], the optimization of clustering algorithm
in the equivalence process, and the new equivalence method suitable for multi-scenario
analysis [10–12]. At present, the indicators used for WF equivalence are generally selected
as wind speed [6], action behavior of pitch angle [7], input of crowbar protection [8],
internal state quantity of WTs [9], active power output of WT, etc. This kind of research is
relatively mature now. In terms of clustering algorithms, traditional clustering algorithms,
such as K-means algorithm and fuzzy C-means clustering algorithm, have been widely
and successfully applied to the problem of WF equivalence. Reference [13] used a K-means
algorithm to cluster the original wind speed matrix and the matrix composed of 13 state
variables, respectively, to the equivalence of the WF. In order to improve the accuracy and
efficiency of the equivalence algorithm, the fuzzy clustering algorithm was introduced
into the multi-machine equivalence of WF in [14]. However, with the increase of the
number of WTs, the amount of calculation will increase. In order to avoid the complex
calculation process of clustering before determining the number of clusters in traditional
fuzzy clustering and ensure the practicability of the clustering results, reference [15] used
the fuzzy C-means clustering algorithm for WF modeling. The algorithm is simple and
has fast convergence. In addition, reference [16] used the support vector machine (SVM)
algorithm to form a set of clusters for each wind speed and direction. The wind speed and
direction data of the WF determine the occurrence probability of each group of data. Based
on the groups with the highest probability and the number of clusters, the clustering model
for the year is determined by probability clustering method. However, the distribution
of wind speed and wind direction in actual WF is uncertain, and it is not suitable for the
cluster classification of WF throughout the year. Nowadays, the research on the clustering
algorithm in WF equivalence mainly focuses on how to improve clustering accuracy.
Although favorable results have been acquired through the above studies, limitations still
exist. Specifically, the equivalent model is generally applicable to a relatively single scenario.
In other words, with the change of the operating conditions in the WF, the clustering results
of the WTs would also be changeable, and thus the applicability of the equivalent model is
greatly limited.

To solve the above problems, reference [10] considered the wake effect and the influ-
ence of low voltage ride-through characteristics of WTs on the response capability of WF,
and proposed a three-step aggregation method for WF, which improves the simulation
efficiency of the WF equivalent model in low voltage cases. Reference [11] used time series
to cluster WTs, which ensures that the clustering results of WF are effective within a period
of time. Apparently, this method can effectively reduce the number of WTs clustering.
However, this method only uses the active power in the WTs clustering, so the accuracies
for other variables except for active power cannot be guaranteed. In recent years, the
big data technology [17] and artificial intelligence technology [18] have been well applied
in data mining and feature extraction in data. Reference [12] applied big data mining
technology to WF equivalence, and proposed a WF equivalence method based on a cloud
model. The established equivalent model can be used in various types of interlocking
off-line analysis of WTs. However, the model takes the voltage of the WT in a single time
point as the object of feature extraction, and it can only reflect the characteristics of the
WT at one moment, and cannot reflect the dynamic characteristics of the output of the WT
in a period of time. Therefore, this method is also limited in the analysis of the dynamic
characteristics of the WF output.

In this paper, a WF equivalent model based on MMSE is proposed. The model
takes the time series of the WT port state as the mining object, and obtains the operating
characteristics of the WT by extracting its MMSE. By using the advantages of MMSE in
describing uncertain fuzzy systems and overcoming the difficulties in processing time series
data with classical entropy theory, WT clustering and WF equivalence are completed. It can
effectively solve the problem that the current WF equivalent model has a single applicable
scene and is difficult to effectively reflect the dynamic characteristics of the WF output. At
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the same time, in order to verify the applicability of the equivalent WF model in various
power system fault situations, that is, the multi-scenario output dynamic characteristics of
the equivalent WF, this paper sets up various power system fault conditions such as wind
speed, wind direction and fault location. The example analysis shows that the equivalent
WF model proposed in this paper has the following advantages: it can more accurately
reflect the overall operating characteristics of the WF in the case of multi-scenario power
system faults, and the simulation time is shortened by 86% compared with the detailed
model, the accuracy is increased by 44% compared with the comparison model.

The remainder of this paper is organized as follows. Section 2 analyses the key
factors influencing the dynamic characteristics of WT output and their relationship with
the equivalent WF model. In Section 3, we propose an extraction method of the WT
clustering index based on MMSE. In Section 4, we use the MV-FCM WT clustering method
for equivalent model of WF. Simulations are provided in Section 5 to validate the approach.
We conclude the paper in Section 6.

2. Key Factors Affecting the Dynamic Characteristics of WT Output

In this paper, the output dynamic characteristics of the WT refers to the change process
of the WT active and reactive power outputs during the short-circuit fault in the external
power grid of the WT. The output dynamic characteristics of WTs are affected by multiple
factors. This chapter analyzes the key factors that affect the output dynamic characteristics
of WTs and their relationship with the equivalence of WF.

2.1. Analysis of Key Factors

There are many factors that influence the dynamic characteristics of the WT output,
such as the transition of the WT in fault type, the effect of wind speed and its weak effect,
and the direction of wind affect the active power output of the WT. The pry bar protection
resistance can change the reactive power dynamic of the WT during the fault, and the
position of the fault will affect the voltage and active and reactive power dynamic of the WT.

2.1.1. WT Control Mode

In terms of the active power and reactive power output of the WT, the control methods
of the WTs are mainly divided into constant voltage control and constant power factor
control [19,20]. The constant voltage control mode of the WT is shown in the Q local control
in Figure 1. Under this control mode, the active power fluctuation at the grid connection
point is large and the fault traversal ability is low when the WT fails. The constant power
factor control of the WT is shown in the V local control in Figure 1. Under this control
mode, the WT can enter the steady state quickly after the power grid failure, but the active
power recovery value is usually too large. The specific formula of WT is too complex and
is not the focus of this paper, so it is not discussed here.

Energies 2022, 15, x FOR PEER REVIEW 4 of 18 
 

 

Inner 
Current 
Loop 

Controller
(GSC)

PCC

GSC

*V

*
di

*
qi

gridXgXfX fi

LV

gi

+

+

-

V local control

Outer-loop of Distributed 
Control in WTLC

1
)( _

+
=

sT
K

sG
v

vp
v

*
pccVΔ

*
qi*

LV

LV

Q local control

s
K

KsG qi
qpq

_
_)( +=

Outer-loop of Centralized 
Control in WTLC

*
qi

*
LQ

LQ
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2.1.2. Wind Speed and Its Wake Effect

The WT generally adopts the maximum power tracking control method, so the wind
speed is the most important factor affecting the active power output of the WT. For example,
the wind speed in the offshore WF is more uniform than that in the onshore WF, the wake
effect has a greater impact, and the huge economic loss caused by the wake effect every
year [21,22]. At the same time, the downstream WTs in the WF are shielded by the upstream
WTs, and their input wind speed is lower than that of the upstream WTs. The relationship
can be described as the wake effect, as can be seen in Figure 2. Due to the existence of the
wake effect, the dynamic characteristics of active power of different WTs are no longer
independent of each other.
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Figure 2. Scheme of overlapped wake model.

2.1.3. Influence of Wind Direction on Wake Effect

When the wind direction changes, the windward side of the WT blade is always
perpendicular to the wind direction, as shown in Figure 3. As the wind direction changes,
the wake effect between the WTs changes accordingly. The change of the wake effect
between the WTs would cause the changes of the rotational speed and pitch angle of the
WTs, and at the same time, it would change the overall active power output of the WF.
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2.1.4. Resistance Value of Crowbar Protection Resistor

At present, doubly-fed induction generators (DFIG) are generally equipped with crow-
bar protection. When there are power grid faults, the connection of the crowbar protection
would lock the rotor-side converter of the WT, causing the WT to run asynchronously
to absorb a large amount of reactive power from the power grid; thereby, the dynamic
characteristics of reactive power of the DFIG during low voltage ride-through changes
significantly [23,24].

2.1.5. The Degree of Voltage Drop at the WT Port

According to the principle of short-circuit calculation in power system analysis, the
calculation formula of short-circuit point current and WT port voltage after short-circuit is:

.
I f =

.
U f |0|

Z f f +z f.
Ui =

.
Ui|0| − Zi f

.
I f

(1)
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where
.
I f represents the short-circuit current of the short-circuit point f ;

.
Ui represents the

voltage of the WT port i after the short-circuit;
.

U f |0| and
.

Ui|0| represent the steady-state
voltage of the short-circuit point f and the WT port i before the short-circuit, respectively;
and Zff, Zif, and zf represent the self-impedance of the short-circuit point f, the mutual
impedance between the WT port i and the short-circuit point f, and the short-circuit
impedance, respectively.

It can be seen from (1) that the WT port voltage after a power system fault is mainly
related to the short-circuit current at the short-circuit point and the mutual impedance
between the WT port and the short-circuit point, and the short-circuit current at the short-
circuit point is related to the short-circuit point self-impedance. Therefore, the change
of fault location (directly related to the degree of voltage drop at the WT port) would
cause the difference of dynamic voltage at the WT port, which would affect the dynamic
characteristics of active and reactive power output of the WT.

2.2. Relationship between Key Factors and WF Equivalence

From the above analysis, it is known that there are many factors that affect the dynamic
characteristics of the WT output. The purpose of this paper is to obtain the mathematical
expression of the dynamic characteristics of the WT output through data mining, which is
to obtain effective information that can describe the dynamic characteristics of the WT from
a large number of dynamic characteristics of the WT output, and use this as a clustering
indicator for WF equivalence. Among the key factors affecting the dynamic characteristics
of the WT output, some factors are constant for a WT, such as the resistance of the crowbar
protection resistor; but more factors are changeable, such as wind speed. The difference in
the dynamic characteristics of the WT output is also mainly due to the changes of these
random key factors. Therefore, by adjusting the value of the random key factor and taking
it as the input of the WT, a large number of output dynamic characteristics of the WT can
be obtained, which provides the necessary basis for the subsequent data mining work.

3. Extraction Method of WT Clustering Indicator Based on MMSE

MMSE is briefly reviewed, and the applicability analysis of MMSE in WF equivalence
is presented. Further, the extraction process of WT clustering indicator is given.

3.1. MMSE Overview

MMSE is established on the basis of multivariate sample entropy proposed by Ahmed
and is mainly used to evaluate and quantify multivariate time series complexity [25,26].
MMSE overcomes the influence of time series length on entropy calculation, and shows
great advantages in operating any number of data channels at the same time. The acquisi-
tion of MMSE mainly consists of two steps: time series coarsening and multivariate sample
entropy calculation.

3.1.1. Processing of Time Series Coarsening

For the p-dimensional time series {ykl}L
l=1(k = 1, 2, . . . , p), L is the length of the time

series, and the time series after coarsening can be expressed as:

xλ
k,i =

1
λ

λi

∑
l=λ(i−1)+1

yk,l (1 ≤ i ≤ [
L
λ
] , k = 1, 2, . . . , p) (2)

where the square brackets represent the round-down symbol; λ represents the adjustable
coarse-grained scale factor; and xλ

k,i represents the element of the time series k after λ coarse
graining. Scale factor λ is the most important parameter to adjust the coarsening degree
of time series in MMSE. Generally speaking, λ is an integer greater than or equal to 1, for
each λ, the complexity evaluation of time series under this scale factor can be obtained.
By adjusting the value of λ, the evaluation of time series under multi-scale factor can
be obtained.
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On the one hand, time series coarsening reduces the influence of time series length
on the calculation of entropy value by averaging. On the other hand, the complexity
description of time series on multiple time scales is achieved by coarsening, which greatly
reduces the influence of outliers on time series complexity calculation.

3.1.2. Calculation of MMSE

The calculation of multivariate sample entropy is the basis of MMSE. The calculation
of multivariate sample entropy can be divided into five steps, which are described in
detail below.

(1) Set the embedding vector M = [m1, m2, . . . , mp] ∈ RP, the time delay vector
τ = [τ1, τ2, . . . , τp]. Let N = [L/λ], and the vector reconstruction of p-dimensional time

series
{

xλ
k,i

}N

i=1
after λ coarsening is performed to obtain m-dimensional composite delay

vectors, and the number of the vectors is (N−vm):

Xλ
m(i) = [x λ

1,i , xλ
1,i+τ1

, . . . , xλ
1,i+(m1−1)τ1

, xλ
2,i , xλ

2,i+τ2
, . . . , xλ

2,i+(m2−1)τ2
,

xλ
p,i , xλ

p,i+τp
, . . . , xλ

p,i+(mp−1)τp
] (i = 1, 2, . . . , N − vm)

(3)

where m = ∑
p
k=1mk and vm is defined as vm = max {M} ×max {τ}.

(2) For any two composite delay vectors Xλ
m(i) and Xλ

m(j), find the maximum norm
between the two vectors, denoted as d[Xλ

m(i), Xλ
m(j)]. Set the threshold r, and count the num-

ber of vector pairs with d[Xλ
m(i), Xλ

m(j)] ≤ r (1 ≤ j ≤ N−vm, j 6= i), denoted as Pm
i . Calculate

the frequency Bm
i (r) of the vector pairs that meet the above conditions, and calculate the

average value to obtain Bm(r). The calculation formulas of the two are as follows:
Bm

i (r) =
1

N−vm−1 Pm
i

Bm(r) = 1
N−vm

N−vm
∑

i=1
Bm

i (r)
(4)

(3) Add the value 1 to any element mk in the above embedding vector M to obtain a
new embedding vector M′k = [m1, m2, . . . , mk+1, . . . , mp]. Replace M′k with M in step (1),
and use the method of step (1) to obtain a new m + 1 dimensional composite delay vector
Xλ,k

m+1. By changing k from 1 to p, ∑
p
k=1(N−vk

m+1) total of Xλ,k
m+1 can be obtained, where

vk
m+1 = max {M′k} ×max {τ}.

(4) For any two Xλ,k
m+1(i) and Xλ,k

m+1(j), the calculation satisfies the condition d[Xλ,k
m+1(i),

Xλ,k
m+1(j)]≤ r (1≤ j≤ ∑

p
k=1(N−vk

m+1), j 6= i), denote the number of vector pairs as Pm+1
i , and

calculate Bm+1
i (r) and Bm+1(r), the two calculation formulas are, respectively, as follows:

Bm+1
i (r) = 1

∑
p
k=1(N−vk

m+1)−1
Pm+1

i

Bm+1(r) = 1
∑

p
k=1(N−vk

m+1)

p
∑

k=1
(N−vk

m+1)

∑
i=1

Bm+1
i (r)

(5)

(5) Calculate multivariate sample entropy after λ coarsening. By changing the value,
the MMSE at different scales can be obtained.

E(λ, M, τ, r, N) =− ln
[

Bm+1(r)
Bm(r)

]
(6)

By coarsening a time series with a scale factor and calculating the multivariate sample
entropy of the processed time series, the multivariate sample entropy at that scale can
be obtained. By selecting different scale coefficients, the multivariate sample entropy at
multiple scale coefficients, which is MMSE, can be obtained.
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3.2. Applicability Analysis of MMSE in WF Equivalence

MMSE is an effective tool to deal with the complexity of multivariate time series and
is essentially a data mining method. In Section 2, the key factors affecting the dynamic
characteristics of the WT output are mainly analyzed. However, the mathematical relation-
ship between these factors and the dynamic characteristics of the WT output is difficult to
obtain, which is to say, it is difficult to establish the relationship between the key factors
and the dynamic characteristics of the WT output.

The output dynamic characteristics of the WT are affected by many factors and are
not unique. Therefore, the dynamic characteristics of the WT are random and fuzzy. As an
effective tool to characterize the degree of uncertainty of the system in science and technol-
ogy, entropy can describe the randomness and fuzziness in the dynamic characteristics of
WTs. In the simulation, the dynamic characteristics of the WT’s active power output are
usually expressed as time series. Yet, the classical entropy theory is difficult to deal with the
time series. Therefore, the MMSE is introduced to describe the randomness and fuzziness
of the time series. At the same time, a scale factor is introduced to obtain a multi-scale
complete description of the dynamic characteristics of the power output by the WT.

3.3. Extraction Process of WT Clustering Indicator

Among the key factors affecting the dynamic characteristics of the WT output, the WT
control method, wake effect under defined wind direction, and the resistance value of the
crowbar protection resistor may be different in different WTs, but they are fixed for a single
WT; the wind speed, wind direction, and grid short-circuit fault location are random and
cannot be exhaustive. Therefore, it is necessary to count the probability characteristics of
these random key factors based on historical data, sample them by constructing a random
variable generator, and input them into the WT. Taking the sampling of wind speed as an
example, if the wind speed at the location of the WF is a normal distribution through the
historical statistics, a certain number of wind speed samples can be obtained by random
sampling. The sampling of wind direction and fault location is exactly the same as that of
wind speed.

Input the sampling samples into the WT, and the WT power output curve with the
same number of sampling samples can be obtained. Select coarsening scale factor λ, and
use formula (2) to calculate the coarsening results of the WT active power output curve
under this scale factor xλ

k,I (1 ≤ i ≤ [L/λ], k = 1, 2, . . . , p). Through adjusting the size of
λ, different coarsening results can be obtained. For the coarse-grained result of the WT’s
active power output curve under a certain scale factor λ, the multivariate sample entropy
after λ coarse-grained can be obtained by using Equations (3)–(6), which is, E(λ, M, τ, r,
N). In this paper, the multivariate sample entropy of WT active power output curve under
different scale factor λ, namely MMSE, is taken as the clustering indicator of WT. The
extraction process of WT clustering indicator can be shown in Figure 4.
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The WT clustering method based on MV-FCM is presented, and the calculation of the
equivalent WT parameters is given.
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4.1. WT Clustering Method Based on MV-FCM

In this paper, the MMSE of active power and reactive power is considered as the
clustering indicator. Apparently, the MMSEs of active power and reactive power consist
of two views [27], and traditional single-view clustering algorithms cannot be applied. In
recent years, multi-view clustering has become a hot topic in data mining. These methods
can aggregate data samples with multiple views into several groups, and each view has its
own feature. In [28], the researchers proposed a MV-FCM clustering method, which firstly
calculates the membership degree for each view, and then combines the clustering results
of all views into the final clustering result.

Assuming that the dataset can be divided into C classes, the objective function and
constraints of the MV-FCM clustering algorithm can be expressed as (7).

min
K

∑
k=1

N

∑
j=1

C

∑
i=1

{µ m
ij,kd2

ij,k+αj,kµij,k(1 − µm−1
ij,k

)
−β j,kµij,k(1 − µm−1

ij,k )}
(7)

s.t.
C
∑

i=1
µij,k= 1 µij,k ∈ [1, 0]

1 ≤ i ≤ C ≤ j ≤ N, 1 ≤ k ≤ K
(8)

where N is the number of samples; K is the number of viewing angles; µij,k is the mem-

bership degree of sample xj,k to cluster center vi,k in perspective K; d2
ij,k is the Euclidean

distance between xj,k and vi,k ; the role of αj,kµij,k

(
1− µm−1

ij,k

)
is to make the membership

degree of xj,k to vi,k more important in clustering, while β j,kµij,k

(
1− µm−1

ij,k

)
is to weaken

this role. αj,k and β j,k . are enhancement parameters and weakening parameters, re-
spectively; m > 1 is the fuzzification constant. The iteration update formula for µij,k and
vi,k is

µij,k =
1

∑C
i=1

[
d2

ij,k−(α j,k−β j,k

)
d2

ij,k−(α j,k−β j,k

)
] 1

m−1
(9)

vi,k =
∑N

j=1 µm
ij,kxj,k

∑N
j=1 µm

ij,k

(10)

The clustering process of MV-FCM is shown in Figure 5.
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The quantification formula for the clustering effect is as follows:

CE =

{
∑k

i=1[( ∑
ki
n=1|Ei,n−Ei,n|)/ki ]}/k

(∑k
i=1|Ci−Ci|)/k(

n= 1, 2, . . . , ki, n 6= n ; i= 1, 2, . . . , k, i 6= i
) (11)
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where CE indicates the clustering effect, and the smaller the value, the better the clustering
effect. Ei,n represents the n-th clustering sample of class i. This paper refers to the multi-
scale and multi-scale entropy of the WT. Ci represents the cluster center of category i; ki
represents the number of samples for category i; and k represents the number of categories.

4.2. Calculation of Equivalent WT Parameters

Assuming that the model and capacity of WTs in the WF are the same, the equivalent
WT parameters are related to the number of WTs m. After the WT clustering is completed,
the relevant parameters of the equivalent WT can be calculated by Equation (12):

Seq =
m
∑

i=1
Si, Peq =

m
∑

i=1
Pi, Qeq =

m
∑

i=1
Qi

xm-eq = xm
m , xs-eq = xs

m , xr-eq = xr
m

rs-eq = rs
m , rr-eq = rr

m

Heq =
m
∑

i=1
Hi, Keq =

m
∑

i=1
Ki, Deq =

m
∑

i=1
Di

(12)

where the subscript eq represents the equivalent parameter; m refers to the number of
equivalent units; S, P and Q, respectively, represent the capacity, active power and reactive
power of the WT; xm refers to reactance of excitation branch; xs and rs, respectively, repre-
sent reactance and resistance of stator winding; xr and rr, respectively, represent reactance
and resistance of rotor winding; H, K and D, respectively, represent the shafting inertia
time constant, shafting stiffness coefficient and shafting damping coefficient.

In this paper, the WT is connected to the public connection point through the step-
up transformer. Since the WT capacity is the same, it can be assumed that the step-up
transformer capacity is also the same, and the equivalent parameters of the transformer
can be calculated by (13). {

ST-eq= mST
xT-eq = xT

m
(13)

where ST represents transformer capacity; xT represents transformer reactance. Based on
the principle of constant voltage loss before and after equalization, the line impedance is
equalized, and the equivalent formula is shown in (14):

Zeq =
∑m

i=1

(
∑i

k=1(Z k ∑n
j=k Pj)Pi

)
(∑m

i=1 Pi)
2

Yeq =
m
∑

i=1
Yi

(14)

where n represents the number of WTs in the main-line WT branch; Zk represents the
branch impedance of the k-th main-line cable; Pi represents the output power of the i-th
WT; and Yi represents the ground admittance of the i-th main-line cable.

5. Simulation Examples
5.1. Example Description

In this paper, PSCAD simulation software is used to build the IEEE14 node model
including the WF shown in Figure 6. The WF consists of 16 WTs, numbered W1–W16, with
a single WT capacity of 1.5 MW. The WF is connected to a common connection point PCC
through a box transformer (660 V/35 kV) and a collector line, and then to the power system
through a main transformer (35 kV/110 kV). The parameters of the WT are shown in Table 1.
It is assumed that the wind speed obeys a Weibull distribution with a scale coefficient of
10.7 and a shape coefficient of 3.97 [29], the WT control mode obeys a two-point distribution,
and the location of faults in each line obeys a uniform distribution. For the wind direction,
0◦–360◦ is divided into 16 wind direction zones, and the span of each wind direction zone
is 22.5◦. The calculation results considering the wake effect of the wind direction in Figure 5
are shown in Table 2. The numbers in the table represent the ratio of the wind speed of the
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input WT to the natural wind speed. The crowbar protection resistance of W1–W8 is 0.14 Ω,
and the crowbar protection resistance of W9–W16 is 0.12 Ω. The system configuration used
in the simulation is Intel (R) Core (TM) i7—7700 CPU 3.60 GHz, 16 GB memory.
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Table 1. Parameters of WT.

WT Gen Converter

Rated capacity = 1.5 MW
cut-in wind speed = 4.5 m/s
cut-out wind speed = 18 m/s

Rs = 0.00706 p.u.
Rr = 0.005 p.u.
Lm = 2.9 p.u.

Ls = 0.171 p.u.
Lr = 0.156 p.u.

Grid side inductance = 0.15 p.u.
Grid side resistance = 0.0015 p.u.

DC capacitor = 0.01 F

Table 2. Calculation results of wake effect under a wind direction.

WT Number Wake Effect WT Number Wake Effect WT Number Wake Effect WT Number Wake Effect

1 1.000 5 1.000 9 1.000 13 1.000
2 0.947 6 0.945 10 0.944 14 0.952
3 0.908 7 0.924 11 0.915 15 0.906
4 0.829 8 0.878 12 0.856 16 0.904

5.2. Equivalent Model of WF

Consider the random combination of wind speed between 5 m/s and 18 m/s, wind
direction between 0◦, 90◦, 180◦, 270◦, and short-circuit fault location between nodes 1–14
to form different simulation conditions. The simulation system shown in Figure 6 is
simulated and analyzed. Among them, it is assumed that the fault occurs at t = 3 s, and
the fault duration is 0.15 s. Taking the active power curve of the WT outlet as the analysis
object, Figure 7 shows the active power curve at the outlet of W1 under various random
combinations, which is the data source for extracting the multivariate multi-scale entropy of
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the active and reactive power of W1. In Figure 7, each curve is an “element” corresponding
to the multivariate multi-scale entropy. Calculate the multivariate multi-scale entropy of
all the curves in Figure 7 to obtain the multivariate multi-scale entropy of active power
and reactive power, that is, the multi-view clustering indicator of W1. The maximum scale
factor is selected to be 10, and the multi-scale entropy value of the W1–W16 active and
reactive power curves is calculated using the WT clustering indicator extraction method in
Section 3 of this paper. The results are shown in Figure 8. The vector in the two figures is
the multi-view clustering indicator of each WT. The difference in entropy value of different
WTs at multiple scales reflects the difference in the dynamic characteristics of the WT
output. Taking the multi-scale entropy value of the active and reactive power of the WT as
the multi-view clustering indicator, the MV-FCM algorithm is used for clustering, where
the number of clusters is four, and the clustering results are shown in Table 3.

Energies 2022, 15, x FOR PEER REVIEW 12 of 18 
 

 

maximum scale factor is selected to be 10, and the multi-scale entropy value of the W1–
W16 active and reactive power curves is calculated using the WT clustering indicator ex-
traction method in Section 3 of this paper. The results are shown in Figure 8. The vector 
in the two figures is the multi-view clustering indicator of each WT. The difference in 
entropy value of different WTs at multiple scales reflects the difference in the dynamic 
characteristics of the WT output. Taking the multi-scale entropy value of the active and 
reactive power of the WT as the multi-view clustering indicator, the MV-FCM algorithm 
is used for clustering, where the number of clusters is four, and the clustering results are 
shown in Table 3. 

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

 
Figure 7. Active power of W1 under different random combination. 

  
(a) (b) 

Figure 8. (a) Multi-scale entropy of active power in W1–W16. (b) Multi-scale entropy of reactive 
power in W1–W16. 

Table 3. Cluster of wind generators. 

Cluster Wind Generators 
Equivalent Cluster 1 W1, W5, W6, W10, W1, W15 
Equivalent Cluster 2 W4, W91, W12 
Equivalent Cluster 3 W3, W8, W13, W16 
Equivalent Cluster 4 W2, W14, W7 

  

1.15

1.25

1.35

1.45

1.55

1.65

1.75

1.85

1 2 3 4 5 6 7 8 9 10

M
ul

t-i
sc

al
e 

en
tro

py

Scale factor

W1 W2 W3 W4
W5 W6 W7 W8
W9 W10 W11 W12
W13 W14 W15 W16 0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

M
ul

t-i
sc

al
e 

en
tro

py

Scale factor

W1 W2 W3 W4
W5 W6 W7 W8
W9 W10 W11 W12
W13 W14 W15 W16

Figure 7. Active power of W1 under different random combination.

Energies 2022, 15, x FOR PEER REVIEW 12 of 18 
 

 

maximum scale factor is selected to be 10, and the multi-scale entropy value of the W1–
W16 active and reactive power curves is calculated using the WT clustering indicator ex-
traction method in Section 3 of this paper. The results are shown in Figure 8. The vector 
in the two figures is the multi-view clustering indicator of each WT. The difference in 
entropy value of different WTs at multiple scales reflects the difference in the dynamic 
characteristics of the WT output. Taking the multi-scale entropy value of the active and 
reactive power of the WT as the multi-view clustering indicator, the MV-FCM algorithm 
is used for clustering, where the number of clusters is four, and the clustering results are 
shown in Table 3. 

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

 
Figure 7. Active power of W1 under different random combination. 

  
(a) (b) 

Figure 8. (a) Multi-scale entropy of active power in W1–W16. (b) Multi-scale entropy of reactive 
power in W1–W16. 

Table 3. Cluster of wind generators. 

Cluster Wind Generators 
Equivalent Cluster 1 W1, W5, W6, W10, W1, W15 
Equivalent Cluster 2 W4, W91, W12 
Equivalent Cluster 3 W3, W8, W13, W16 
Equivalent Cluster 4 W2, W14, W7 

  

1.15

1.25

1.35

1.45

1.55

1.65

1.75

1.85

1 2 3 4 5 6 7 8 9 10

M
ul

t-i
sc

al
e 

en
tro

py

Scale factor

W1 W2 W3 W4
W5 W6 W7 W8
W9 W10 W11 W12
W13 W14 W15 W16 0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

M
ul

t-i
sc

al
e 

en
tro

py

Scale factor

W1 W2 W3 W4
W5 W6 W7 W8
W9 W10 W11 W12
W13 W14 W15 W16

Figure 8. (a) Multi-scale entropy of active power in W1–W16. (b) Multi-scale entropy of reactive
power in W1–W16.

Table 3. Cluster of wind generators.

Cluster Wind Generators

Equivalent Cluster 1 W1, W5, W6, W10, W1, W15
Equivalent Cluster 2 W4, W91, W12
Equivalent Cluster 3 W3, W8, W13, W16
Equivalent Cluster 4 W2, W14, W7
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5.3. Comparative Analysis of Equivalent Model and Detailed Model

In order to verify the accuracy of the equivalent model of the WF and the accuracy of
the output dynamic characteristics of the equivalent WF in various scenarios, such as active
power and reactive power, different fault situations of the WF are set, including different
wind speeds, wind directions and fault locations, as shown in Table 4. It is also set that the
fault occurs at t = 3 s, and the fault duration is 0.15 s. Under the operating conditions of
Table 4, the active power, reactive power and voltage curves of the equivalent model and
the detailed model at the PCC are shown in Figures 9 and 10.

Table 4. Operating conditions of WF.

Case Wind Speed(m/s) Wind Direction Fault Location

1 9.5 North Bus9
2 10 South the middle of Bus4–Bus7
3 10.5 Southeast the middle of Bus10–Bus11
4 11 East the middle of Bus4–Bus5
5 11.5 Northwest the middle of Bus2–Bus3
6 12 Northeast the middle of Bus13–Bus14
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Figure 9. (a) Active power curves in PCC of different models. (b) Reactive power curves in PCC of
different models.
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As can be seen from Figures 9 and 10, under the conditions of WF faults in multiple
scenarios such as different wind speeds, wind directions and fault locations, the active
power, reactive power and voltage output characteristics of the dynamic equivalent model
in this paper trace the detailed model well. Especially after the fault of the power system,
the dynamic equivalent model of this paper can well reflect the dynamic characteristics
of the WT, which verifies the accuracy of the output dynamic characteristics of the WF
equivalent model in multiple scenarios. This is because the output dynamic characteristics
of WTs under the influence of various key factors are comprehensively considered when
extracting the clustering indicator of WTs in the WF. It can reflect the randomness and
fuzziness of the WT under multi-scenario fault conditions, rather than just describe the
output dynamic characteristics of the WT under a certain fault condition. At the same time,
the multi-view clustering indicator is used for clustering, and the clustering results can
reflect the dynamic characteristics of physical quantities from each viewpoint. Therefore,
the clustering results are suitable for the simulation analysis of external faults of WF in
various scenarios.

To further verify the validity of this model, set different number of clusters, and
calculate the absolute average error Erse and root mean square error Emres of the voltage of
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each node of the power system during the simulation period. The calculation formulas of
both Erse and Emres are as follows:

Erse =
1
K ∑K

j=1

∣∣∣Vi,j −V′i,j
∣∣∣

Emres =

√
∑K

j=1

(
Vi,j−V′i,j

)2

K

(j = 1, 2, . . . , G) (15)

where K represents the number of sample points of the simulation curve; G represents the
number of nodes in the power system; Vi,j and V′i,j represent the results of equivalent model
and detailed model, respectively.

Figure 11 shows Erse and Emres of IEEE14 system node voltage under WF equivalent
model and detailed model with different number of clusters. From the figure, it can be seen
that the model error does not continuously decrease with the increase of the number of
equivalent machines, among which the simulation error of four machine equivalents is the
smallest. This is because in the clustering process, the optimal clustering effect is to ensure
that the distance between the same class of samples is as small as possible, and the distance
between different cluster centers is as large as possible.
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WT numbers (clustering). Where light blue with circular line represents 2 machine equivalent, orange
with square line represents 3 machine equivalent, gray with diamond line represents 4 machine
equivalent, yellow with triangle line represents 5 machine equivalent, dark blue with× line represents
6 machine equivalent.

Table 5 shows the CE values for different cluster numbers. It can be seen from the
table that when the number of clusters is 4, the CE value is the smallest, so the simulation
error of the 4-machine equivalent is the smallest. When the number of clusters is less
than 4, the number of clusters is too small. The result is that distance between clustering
objects in the same category is too large, and the molecular term in Formula (12) is too large,
which results in a larger CE value and poor clustering effect of WT. When the number of
clusters is more than four, small distances between different cluster centers occur, and the
denominator term in Formula (12) is too small, which also results in larger CE and poorer
clustering effect of WT.

Table 5. Erse and Emres of voltage in PCC.

Cluster Number 2 3 4 5 6

CE 0.86 0.57 0.14 0.28 0.32

5.4. Comparison and Analysis between the Model in This Paper and Traditional Model

In this paper, multivariate multi-scale entropy is used for the first time to mine the
dynamic characteristics of WT active power time series output. However, previous studies
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mostly used single time point physical quantities such as wind speed and WT internal
state quantity as clustering indicators, and the comparison between time series and single
time points is to be studied. However, in the traditional method, the clustering indicator is
usually extracted from a certain operation of the WT, not from the various fault conditions
proposed in this paper. Based on this idea, as a comparison example in this section, this
paper selects the active power time series of a wind in a fault situation (wind speed 10 m/s,
wind direction south wind, short circuit fault location Bus 9 of power grid) as the object to
be excavated, and extracts its MMSE as the clustering indicator. It should be noted that
since only a single case is considered, MMSE would degenerate into a unit multi-scale
entropy. Table 6 shows Erse and Emres of the voltage at the outlet of the WF under different
fault conditions when two clustering indices are selected. From the table, it can be seen that
the comparison model only has small error when extracting the corresponding fault case as
clustering indicator, and the errors in non-clustering cases are larger than the model in this
paper. This is because when extracting clustering indicator, the model takes into account the
dynamic characteristics of the WT output affected by various key factors comprehensively,
so it has a wide applicability. The comparison model only considers a single fault when
choosing the clustering indicator, so its simulation under this fault condition has better
adaptability, while there are larger simulation errors in other cases.

Table 6. Erse and Emres of voltage in PCC.

Fault Condition
Erse (%) Emres (%)

Proposed Model Comparison Model Proposed Model Comparison Model

10 m/s, South wind, Bus 9 4.33 3.77 4.45 4.15
10 m/s, North wind, Bus 9 4.26 8.29 1.65 8.66
11 m/s, North wind, Bus 9 4.29 9.06 4.67 9.78
10 m/s, South wind, Bus 4 4.42 7.84 4.54 7.29

5.5. Simulation Efficiency Analysis of Equivalent Model

In order to verify the superiority of the equivalent model in this paper in terms of
simulation efficiency, several fault situations are set up, and the simulation time of the
equivalent model and the detailed model is obtained through simulation, as shown in
Table 7. From this table, compared to the detailed model, the simulation time of the
equivalent model in this paper is reduced by about 86%.

Table 7. Simulation time comparison of equivalent model and detail model.

Fault Condition
Simulation Time (s)

Proposed Model Detailed Model

10 m/s, North wind, Bus 9 133 946
11 m/s, North wind, Bus 9 136 951
10 m/s, South wind, Bus 4 134 953

6. Conclusions

In this paper, an equivalent model of WF based on MMSE and multi-view clustering
is proposed. Compared with the traditional WF equivalent model, this model can better
simulate the dynamic process of WF in all kinds of fault scenarios of power systems,
reducing the number of WF equivalence. Compared with detailed models, the proposed
equivalent model can reduce the simulation time by about 86%. Compared with the
comparison model, the proposed equivalent model improves the accuracy by about 44%,
which greatly improves the simulation efficiency. The number of clusters is the factor that
affects the equivalent value of WF. In the simulation case of this paper, the equivalent
precision is higher when the number of equivalent machines is 4. The method proposed
in this paper is only suitable for the equivalent modeling of a single WF. When modeling
multiple WFs, the correlation of the active output of each WF becomes weak due to the
different installation locations of some WFs affected by meteorological and geographic
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interference factors. How to consider the MMSE method to establish the equivalent model
of multiple WFs is the future research direction of this paper.
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