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Abstract: Detecting the formation of explosive methane–air mixtures in a longwall face is still a
challenging task. Even though atmospheric monitoring systems and computational fluid dynamics
modeling are utilized to inspect methane concentrations, they are not sufficient as a warning system
in critical regions, such as near cutting drums, in real-time. The long short-term memory algorithm
has been established to predict and manage explosive gas zones in longwall mining operations before
explosions happen. This paper introduces a novel methodology with an artificial intelligence algo-
rithm, namely, modified long short-term memory, to detect the formation of explosive methane–air
mixtures in the longwall face and identify possible explosive gas accumulations prior to them becom-
ing hazards. The algorithm was trained and tested based on CFD model outputs for six locations
of the shearer for similar locations and operational conditions of the cutting machine. Results show
that the algorithm can predict explosive gas zones in 3D with overall accuracies ranging from 87.9%
to 92.4% for different settings; output predictions took two minutes after measurement data were
fed into the algorithm. It was found that faster and more prominent coverage of accurate real-time
explosive gas accumulation predictions are possible using the proposed algorithm compared to
computational fluid dynamics and atmospheric monitoring systems.

Keywords: artificial intelligence (AI); computational fluid dynamics (CFD); underground coal mines;
methane prediction; real-time; time series prediction; modified long short-term memory

1. Introduction

Despite alternative energy sources, worldwide coal production is still increasing
each year [1]. Longwall mining is the most utilized coal mining method, due to its high
productivity and safer operating conditions [2]. However, in usual mining operations
and conditions, coal mining still faces serious challenges [3]. Despite advancements in
technology and safety management, longwall face explosions from accumulated methane
gas are known to be the most common causes of methane explosions [4]. Existing industry
practices depend on point-type methane sensors in critical regions to prevent explosive
gas accumulations [5]. However, point sensors are not reliable at spotting and warning
about explosion hazards, especially in crucial areas, such as near the cutting drum, tailgate,
and headgate areas of the longwall face [6]. One catastrophic example of a methane
explosion accident was the 2010 Upper Big Branch Mine in West Virginia, U.S. [6]. Although
atmospheric monitoring systems can report real-time methane concentrations, they fall
behind due to their limited number of sensors and locations [7], which lack full coverage
of the whole longwall face. Computational fluid dynamics (CFD) were employed to
simulate ventilation conditions in longwall faces to reproduce airflow aerodynamics and
the formation of hazardous gas mixtures which are not detectable using conventional
monitoring and ventilation inspection practices [5]. Although CFD modeling can accurately
predict explosive gas zones, high computational power and time requirements render its
use for real-time ventilation monitoring purposes impossible [7].
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Karacan (2008) proposed principle component analysis and an artificial neural network-
based approach to predict methane emission rate throughout 63 longwall mines. The study
shows that the volume of daily methane emission from each mine can be accurately
predicted [8]. Dougherty and Karacan (2011) utilized the prediction model in [8] and
developed software which can predict ventilation emissions with elastic properties [9].
Duda and Krzemień (2018) proposed a framework for forecasting methane emissions from
seams to goafs; they predicted the average volume of methane per minute in each year
of mine life [10]. Sidorenko et al. (2021) provided the necessary parameters to predict
methane emissions from seams to goafs [11]. Although these studies discuss prediction,
these predictions are neither real-time nor spatial outputs.

Previous studies demonstrate the successful implementation of Artificial Intelligence
(AI) in various fields with real-time predictions. For example, Chen et al. (2019) proposed
a real-time AI integration for cancer diagnosis by implementing image processing algo-
rithms for body scans [12]. Nyanteh et al. (2013) implemented an AI for real-time fault
detection [13]. To improve weather forecasting for high-impact weather, McGovern et al.
(2017) integrated an AI with expert opinions [14]. Imran et al. (2014) classified real-time
messages in social media using AI to help the public access important disaster response
information [15]. Dong et al. (2021) used the AI model for real-time monitoring and pre-
dicting of slope failures [16]. Rodríguez-Rangel et al. (2022) incorporated big data analytics
for autonomous vehicles’ speed estimation [17]. Wahyono et al. (2022) proposed combining
AI with data mining for real-time forest fire detection [18].

Real-time prediction of methane in a longwall face requires predicting explosive gas
zone formation in time, and its location in 3D (x, y, and z coordinates). Predictions in
time are mainly conducted using time series classification/analysis [19]. Spatiotemporal
AI models and time series classification are relatively new to the field. Moreover, the
vast majority of successful models only take into account one or two spatial dimensions,
such as x and/or y coordinates, and the data of interest [20–28]. For example, whereas
climate change studies that track carbon emissions use latitude, longitude, and carbon
content [29], water quality studies use one-dimensional distance of the intersections and
water content [19]. This study proposes a 3D spatiotemporal prediction model for the
real-time prediction of methane in the coal face.

Current explosive gas accumulation monitoring practices in longwall coal mines rely
on two methods, namely, point sensors and CFD modeling. Point sensors take real-time
measurements along the face and provide methane concentration values at the installed lo-
cations. CFD modeling provides methane prediction for the whole longwall face. However,
due to computational cost, predictions take days or weeks, depending on the resolution
of the study area. In this study, a continuation of our previous work [7] benchmarking
and analyzing the suitability of the dataset and off-the-shelf algorithms, we developed an
AI algorithm and methodology for use as a real-time explosion hazard warning system.
We used six CFD analyses with varying shearer locations to train, test, and validate our
model. This approach lays the foundation for accurate methane predictions in real-time for
underground mines by combining the most potent advantages of point sensors and CFD
models, decreasing the computational cost of CFD modeling, and increasing the coverage
of point sensors.

Previously conducted methane prediction studies mainly focused on total methane
emissions from the seam or the whole mine. To the best of our knowledge, a 3D real-time
methane prediction approach in longwall mining that integrates CFD data with an AI
model has not been developed yet. Previous studies of methane prediction in longwall
coal mines primarily focused on total methane emissions of the whole mine or the whole
face with varying time intervals of years to minutes. Moreover, the predictions in these
studies do not consider critical methane emission zones, such as near the drums or shearer
locations. This paper fills these gaps. The approach presented herein can provide methane
emission data not only in the 3D spatial domain but also in real-time throughout the mining
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face, including, but not limited to, areas near cutting drums, the shearer, the tailgate, and
the headgate.

The remainder of this paper is organized as follows. Section 2 describes materials
and methods used in this study. Section 3 describes empirical results from the AI model.
Section 4 discusses and compares results. Lastly, Section 5 summarizes the paper, makes
concluding remarks, and outlines future work.

2. Materials and Methods

The developed research methodology exploits the advantages of CFD modeling and
point sensors. Figure 1 illustrates how AI was integrated into real-time methane concentra-
tion prediction.

Figure 1. Research methodology.

The first step explains spatial and temporal CFD modeling and longwall face simula-
tion. The second step presents extracted data and how they were processed and presented.
The third step discusses an AI algorithm, referred to as the long short-term memory (LSTM)
model, and how it was modified to meet this study’s requirements; the algorithm was
trained and tested, and parameters were optimized. In the last step, predictions for spatial
and temporal results are discussed.

2.1. Spatial and Temporal CFD Modeling

Ansys Fluent software version 18.2 was utilized to model and simulate a longwall face.
The modeled longwall face was 300 m long with a mining height of 3 m and a depth of
6 m. Two primary pieces of equipment were also modeled: (i) support equipment (shields)
and (ii) cutting equipment (shearers). There were 150 shields; each shield was 2 m long,
fixed in the model. One 10 m long shearer was placed along the longwall face in 6 locations.
Location details are provided in Section 2.2. Lastly, the modeled area was covered with
approximately 31 million hexagonal and octagonal meshes. Mesh sizes ranged from 3 cm
to 30 cm, which increased prediction resolution.

The simulation exemplified a transient CFD model of methane (CH4) gas emission
from the coal face based on a bleeder ventilation system with a tailgate (TG) back return
setup. Each transient model was simulated for 180 s and recorded at 1 s intervals.

2.2. Data Curation

Data were collected after modeling the longwall and simulating methane emissions.
It should be noted that although each mine ventilation condition is unique, previously
conducted studies [30–34] validate that simulated data are consistent with the actual
situation that includes but is not limited to “(i) continuous leakage of fresh air from the face to
the gob, and the higher accumulation of methane as the supplied air travels from the headgate to
tailgate side of the face; (ii) higher leakage around the headgate and tailgate corners of the face due to
the high porosity and permeability around the edge of the gob; (iii) Methane accumulation seems to
follow linear regression based on ventilation surveys done in several longwall operations.” [4].

Each simulation had approximately 31 million cells; data for each cell for each second
of recording included pressure, airflow velocity (Vx, Vy, and Vz), CH4 concentration, cell
volume, and x, y, and z coordinates. Data collection was repeated for each of the shearer’s
six locations, which required 10 days for each location. Details of specific shearer locations
and the cutting direction during data collection are provided in Figure 2.
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Figure 2. Six locations of the shearer and cutting directions during data collection.

Figure 3 represents a snapshot of the 120th second of location 3 as an example. Other
locations and timestamps acted similarly; to avoid redundancy only one example is provided.

Figure 3. Snapshot of the 120th second of shearer location 3.

Raw data from the Fluent software were preprocessed, which included data conver-
sion into CSV files, removing empty fields, adding cutting directions, and fixing the two
significant figures for all fields. There were 2 terabytes (TBs) of end data for each location;
12 TBs of data were input into the AI.

2.3. The Modified LSTM

The literature discusses different methods for the spatiotemporal prediction of a
parameter, namely, the Naïve 2 method, simple exponential smoothing, the Holt method,
the ARIMA method, and the ETS method [35]. The primary disadvantage of using the
Naïve 2, simple exponential smoothing, and HOLT methods is that these algorithms can
only predict one step ahead of time within a confidence interval. In a dynamic environment
such as longwall mining, continuous monitoring is the key to preventing explosive hazards;
hence, one-step-ahead predictions were not sufficient for the aim of this study. Moreover,
it was not feasible to implement these methods for real-time prediction considering the
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required computational power and data size. For example, each location had approximately
32 million cells, which were connected to each other and affected methane concentration.
In contrast, the ARIMA and ETS methods can predict long-term methane concentrations
for a specific cell. However, the longwall’s geometry was 3D, and these statistical methods
are not effective at predicting in a 3D environment. Moreover, unlike AI models, statistical
methods utilize interpolation that cannot learn data’s extreme fluctuations.

AI and machine learning (ML) algorithms have been recently introduced to predict
the time and location of a parameter of interest. Although applications are still limited,
preliminary results of a range of studies (discussed briefly in Section 1) are promising.
Moreover, in-depth analysis and benchmarking of the most promising algorithms for
real-time methane prediction were examined in a previous study [7].

In light of the literature and previous tests, a recurrent neural network (RNN) was
determined to be the best candidate for real-time methane prediction in longwall coal
mines. An RNN contain cycles from previous time steps as network inputs to influence
predictions at the current time step. These timestamps are stored in the RNN’s internal
states, allowing it to exploit a dynamically changing contextual window over the input
sequence history [36–38].

Unfortunately, the range of contextual information that a standard RNN can access is,
in practice, quite limited. The problem is that the influence of a given input on the hidden
layer and, therefore, on the network output, either decays or blows up exponentially as
it cycles around the network’s recurrent connections. This shortcoming is referred to in
the literature as the vanishing gradient problem. Long short-term memory (LSTM) is an
RNN architecture specifically designed to address the vanishing gradient problem [39–41].
LSTMs were introduced in about 1997; their main advantages include that they are (i) al-
gorithms that can store information for a specified time duration, (ii) resistant to noise,
and (iii) trainable parameters [42,43]. In the light of our previous study [7], any future
prediction using AI can be categorized into seven problem types (image, sensor, motion,
spectrographs, electronic devices, electrocardiograms, and simulations). As methane pre-
diction is similar to the sensor-type problem, one of the best performing algorithms, an
LSTM network (a special type of RNN) was adapted for this study.

Figure 4 shows the simplified architecture of the LSTM model, modified from the blog
post by Olah [37]. In the forget gate, the cell takes the previous time step and determines
which information should be kept and which should be omitted. In the input gate, the cell
takes information and keeps only what is relevant for prediction. In the update gate, the
cell takes previous neural network information and updates prediction weights. Lastly, the
output gate determines which parameters and data to output and feed to the next cell.

As LSTMs are viewed as feed-forward neural networks where each cell shares the same
model parameters, they are considered deep architectures or deep neural networks [36].
In this study, the LSTM network was modified, trained, and tested with CFD outputs. A
conventional LSTM network accepts 2D data. LSTM model modifications implemented
in this study include (i) changing the input shape for the 3D space and (ii) adding 3D
operations and vector calculations. The inputs to the modified LSTM model were; x, y, and
z coordinates, the smallest distance to the shearer, airflow velocity, methane concentration,
and the volume of each cell for 180 s, which were recorded at 1 s intervals.
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Figure 4. Simplified LSTM architecture (modified from [37]).

3. Results

Even the best-performing algorithms might fail to predict results without high-quality
data. Therefore, training, validation, and testing of the algorithm are critical for reliable
predictions; if these steps are not performed correctly results might be biased. Table 1
provides a data breakdown, and is followed by an explanation of each topic in respective
subsections. Note that similar shearer locations were selected for training and predicting
methane content. For example, Figure 2 illustrates that shearer locations 1 and 6 had a
similar location in the middle of the longwall face, and locations 3 and 4 had a similar
location on the tailgate side. In addition to slight changes in the exact positions of cutting
equipment, cutting directions were also changed. Datasets for similar locations were
divided 50–50 for training and testing. The first 50% was divided into 80% to 20% for
training and validation; the detailed distribution is provided in Table 1.

Table 1. Training, validation, and testing datasets based on shearer locations.

Training DataSet Validation DataSet Cutting Direction Testing DataSet Cutting Direction

80% of Location 1 20% of Location 1 Headgate to Tailgate Location 6 Tailgate to Headgate

80% of Location 2 20% of Location 2 Headgate to Tailgate Location 5 Tailgate to Headgate

80% of Location 3 20% of Location 3 Headgate to Tailgate Location 4 Tailgate to Headgate

80% of Location 4 20% of Location 4 Tailgate to Headgate Location 3 Headgate to Tailgate

80% of Location 5 20% of Location 5 Tailgate to Headgate Location 2 Headgate to Tailgate

80% of Location 6 20% of Location 6 Tailgate to Headgate Location 1 Headgate to Tailgate
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The common practice of splitting data into train, validation, and test sets depends on
the dataset and might range from 50–50% to 80–20%. With a few data points (n < 10,000),
70–30% splitting is used. However, if the number of recordings is high (n > 1,000,000), the
importance of split ratios decays. Overall, the most important element in splitting a dataset
is having good data representation in the train and test sets. In this study, the number of
recordings was close to 64,300,000; hence, training was conducted using a specific shearer
direction and tested using the opposite direction but the same position [44–48].

The training and validation of each instance took approximately seven days; testing
time was 15 min with high-performance computing using the following specifications:

• CPU: Intel Xeon COU E704830 v3@2.10GHz (4 CPUs/node, 48 cores/node)
• GPU: five Tesla K80
• Memory: 2133 MT/s, Dual Rank, x4 Data Width RDIMM (42.7 GB/Core)
• Storage: 20 TBs

Input data were approximately 5 TBs for each instance, with 2 TBs of output.

3.1. Training

Training data were used to teach patterns and features to the AI model. The same
training data were repeatedly given to the model until a threshold level was reached.
Feeding the same data repeatedly is called an epoch. The simple explanation of an epoch is
one complete pass of the dataset through the designed network. The algorithm updated its
parameters with each epoch while learning the input dataset. Training data were divided
into 80% and 20% for each instance using the stratified K-folds cross-validation method.
This yielded a balanced data division, which preserved the percentage of samples for each
methane content. The divided 80% of data were used to train the model.

3.2. Validation

Validation data were separated from training data, which validated the AI’s per-
formance. Training and validation accuracy helps users evaluate their mode. Figure 5
illustrates a commonly used metric for assessing algorithm performance, validation, and
training accuracy versus an epoch.

Figure 5. Validation and training accuracy.

In the training and validation accuracy graph, the curves’ slopes approach horizontal
after the 12th epoch, which indicates that data did not make a significant learning process
over the algorithm. At approximately the 20th epoch, the learning curve becomes almost
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horizontal. This indicates that no further training was necessary after the 20th epoch,
as the accuracies did not change considerably and ranged from 89.1% to 93.8%. Lastly,
the validation curve below the training curve indicates that the model was fed a good
representation of data, was ready for testing, and able to provide reliable predictions.

3.3. Testing

After training and validation, test data were used to evaluate the AI model’s perfor-
mance predicting methane. The model’s performance was analyzed using the actual and
predicted methane content of the testing data for each training and testing coupled set, as
provided in Table 2.

Table 2. Overall accuracies of tests.

Couple Name Training DataSet Testing DataSet Overall Accuracy

L1L6 Location 1 Location 6 92.4%

L2L5 Location 2 Location 5 89.1%

L3L4 Location 3 Location 4 87.9%

L4L3 Location 4 Location 3 88.3%

L5L2 Location 5 Location 2 91.0%

L6L1 Location 6 Location 1 91.6%

These results show that the modified LSTM algorithm predicted methane concentra-
tion with an accuracy ranging from 87.9% to 92.4%.

4. Discussion

Analysis revealed that the modified LSTM algorithm can possibly combine effective
aspects of CFD modeling and point sensor measurements. AI algorithms can achieve 3D
coverage of CFD modeling and real-time point sensor data measurements. The overall
accuracies of different locations ranged from 87.9% to 92.4%. Although accuracies were rel-
atively high, some locations (such as locations 3 and 4) had less accurate results than others,
possibly because the closer the shearer was to the headgate and tailgate (locations 1 and 6),
the more methane emissions fluctuated. The algorithm was more agile when spotting
fluctuations; therefore, relatively constant methane emissions might be the reason for lower
test accuracies in locations 3 and 4. Although the accuracies showed promising results,
with additional datasets they might increase. Even if a single location has approximately
32 million points, the entire measurement only contains 180 s of data. If these measurements
could be increased, accuracies might also increase. Given the current data storage and
computational power advancements in supercomputers, the required time for training was
45 days. Moreover, an increase in data size will increase the required computational power
and time required for training; however, time requirements will change more exponentially
than linearly. Training times will not affect prediction times; once the algorithm is trained,
the required prediction time will not change drastically.

Whereas explosive gas zone monitoring relies on point sensors, the critical regions of
the longwall face cannot be tracked in real time. Although CFD modeling can overcome
the sensors’ coverage, the required prediction time could be days to weeks, depending on
the resolution of the simulation. This study’s methodology eliminates these shortfalls. The
system proposed herein yields highly accurate real-time predictions with detailed coverage
of the longwall face. Therefore, modified LSTM-based methane prediction might help
early warning systems for miners and engineers reduce safety risks and prevent accidents
such as the Upper Big Branch. Lastly, the system can increase production by reducing
unnecessary stops of the shearer.

However, the AI’s prediction capabilities depend on the simulated CFD model results.
Therefore, predictions can only be as accurate as similar longwall face models. Training
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the AI model using different longwall face models can increase the AI model’s capacity.
If the AI model can be trained with more data, it might be used for all longwall mines in
the world.

5. Conclusions

As was the case with the Upper Big Branch accident, longwall mine methane explo-
sions can be fatal. Current explosive gas zone management practices are carried out either
with point sensors or CFD modeling. Leveraging the power of AI might be crucial for
monitoring explosive methane concentration. The primary objective of this study was
to combine the advantages of current methane monitoring practices and eliminate their
disadvantages. For this purpose, modified LSTM architecture was utilized for real-time
methane prediction.

This study is unique as it provided real-time methane prediction in 3D space. Our
study successfully leveraged a significant (12 TB) amount of CFD data for location and
time prediction of possible explosive methane accumulation. Unnecessary stops, high fan
speed, and other high operating costs can be reduced using the proposed method, which
will help increase the safety and productivity of all longwall coal mines by monitoring the
methane gas along the face.

Although the proposed methodology successfully predicted methane concentration
throughout the longwall face, the results only contained numbers representing location,
time, and methane content. Results consisted of lines of numbers that could not be inter-
preted or used by engineers and/or miners to determine if the explosive gas accumulation
was hazardous.

Future research associated with this study will consist of two parts. First, the algo-
rithm will be trained using other mines’ methane emission models. This will increase
the algorithm’s prediction capabilities and enable its usage and implementation on all
longwalls in the world. Second, the predictions of the AI model will be imported into Unity
for visualization purposes. This will help facilitate the integration of real-time predictions
with augmented and virtual reality environments, which are already implemented in other
industries, such as construction, production, health, and many more. The final product
might ease the judgement burden placed on engineers and workers in times of critical
methane emission. We will convert results into more robust, understandable visualizations
that resemble CFD output; providing a familiar output will help engineers and workers by
decreasing their cognitive load.

We have started the second development phase; a side-by-side comparison of the CFD
model and our visualizations for different time stamps are shown in Figure 6.

Figure 6. Side-by-side comparisons of CFD models and prediction visualizations modid.
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These visualizations will help us conduct a user study with the aim of discovering a
better way to visualize AI outcomes. The user study will also provide insights regarding
the possible integration of these visualizations into a mixed-reality environment.
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