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Abstract: Range anxiety remains one of the main hurdles to the widespread adoption of electric
vehicles (EVs). To mitigate this issue, accurate energy consumption prediction is required. In this
study, a hybrid approach is proposed toward this objective by taking into account driving behavior,
road conditions, natural environment, and additional weight. The main components of the EV were
simulated using physical and equation-based models. A rich synthetic dataset illustrating different
driving scenarios was then constructed. Real-world data were also collected using a city car. A
machine learning model was built to relate the mechanical power to the electric power. The proposed
predictive method achieved an R2 of 0.99 on test synthetic data and an R2 of 0.98 on real-world
data. Furthermore, the instantaneous regenerative braking power efficiency as a function of the
deceleration level was also investigated in this study.

Keywords: range anxiety; hybrid approach; synthetic dataset; real-world data; instantaneous regenerative
braking power

1. Introduction

Over the last few decades, there has been an increase in greenhouse gas (GHG) emis-
sions from various sectors, owing to the usage of fossil fuels. The majority of the emissions
are ascribed to vehicles that rely on fossil fuel in their internal combustion engines. On the
other hand, the limited minable reserves of fossil fuels and their imbalanced distribution
have also led to global energy crises during the last century [1]. To overcome this crisis,
governments and international communities around the world have been pushing to adopt
sources of clean energy. Electric vehicles (EVs) are considered as an option to achieve a
low-carbon transportation system. In many countries around the globe, ambitious targets
have been set to promote EVs [2], and some even aim to ban the sale of internal combustion
engine vehicles in the not-so-distant future [3].

Despite the EV’s environmental benefits, and the government’s incentives, their market
penetration and widespread adoption are affected by the high purchase cost, limited
charging station infrastructure, high charging time, and limited driving range. Indeed, one
of the main issues associated with the use of EVs is the so-called range anxiety problem [4].
To mitigate this issue, an accurate prediction of the driving range estimate is required, in
addition to increasing battery capacity and densifying the network of charging stations.

The estimation of the remaining driving range requires both the evaluation of the
battery’s remaining energy and the prediction of the future energy consumption. Several
factors affect the energy consumption of an EV, which can be divided into two main cat-
egories: internal factors and external ones [5]. Internal factors are related to the vehicle
itself, including vehicle characteristics, vehicle components efficiency, and auxiliary devices
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usage. The battery system is one of the core components of an EV. Its technical features
have a significant influence on energy consumption, as does the regeneration rate, which is
dependent on vehicle technology, vehicle speed, acceleration, state of charge, and other
factors. Other vehicle-related factors include motor and drive-train efficiency, as well as
the vehicle’s mass, frontal area, drag coefficient, and the rolling resistance which varies de-
pending on tire pressure and design. The heating, ventilation and air-conditioning (HVAC)
system is also considered as a relevant factor; its impact on energy consumption is largely
determined by the local environment and the driver’s thermal comfort preferences [6,7].
Other auxiliary components include lighting, power steering, radio, navigation system,
and other comfort-related devices, which are powered by a low-voltage battery supplied
by the traction battery; the total impact of these components on energy consumption is
rather small compared to other components [8]. External Factors associated with driving
conditions include environmental and traffic conditions, road type and topography, driving
behavior, etc. The natural environmental factors include the weather, especially wind
speed and its orientation due to the resulting aerodynamics forces, ambient temperature,
and humidity due to their impact on the use of HVAC systems. The topography can be
characterized by different parameters, one of which is the road’s slope angle. In general,
the slope gradient has a remarkable effect on the maximum driving range and route plan-
ning [9,10]. Indeed, positive slopes increase energy consumption while negative slopes
may help restore some energy to the traction battery. Furthermore, the driver’s behavior,
which is attributed to several characteristics depending on age, gender, attitude, etc., affects
considerably the energy consumption. Indeed, the more aggressive the driving style, the
higher the variations in acceleration and deceleration, and the average speed. The traffic
conditions also affect the overall energy consumption; these are generally characterized by
the levels of congestion or traffic flows.

EVs’ energy consumption estimation models can be classified into three main cate-
gories: analytical, statistical, and computational models [11]. Analytical models are based
on longitudinal vehicle dynamics and powertrain efficiencies [12,13]. Longitudinal vehicle
dynamics are modeled from the vehicle dynamics theory to calculate the required power
at the wheels to propel the vehicle. The model developed in [14] took into consideration
the efficiency of all powertrain components instead of that of the motor only. In [15], the
model expressed the relationship between EV speed, acceleration, power, and road grade to
determine the required power at the wheels. The model could be used to estimate the “in-
stantaneous” energy consumption over a trip for ecoroute planning. In [5], a power-based
EV energy consumption model was developed using a real EV, including its powertrain
system, longitudinal vehicle dynamics, transmission, battery model, and auxiliary devices.
The model was validated using the given driving cycles and energy consumption values
found in the literature. Furthermore, a regenerative braking strategy was developed to
model the real braking controller behavior.

Statistical models are based on real-world driving data to understand and deduce
empirical relationships between an EV’s energy consumption and different factors affecting
consumption. For example, in [16], a systematic energy consumption estimation approach
based on historical and real-world driving condition data collected from typical urban
travel routes was developed in order to derive polynomial combinations of an EV’s in-
stantaneous speed, acceleration, and battery state of charge under different driving modes.
In [17], by using the information on traffic situations, driving style, road features, and
environmental variables, multiple linear regression (MLR) models were built to find and
quantify correlations between the kinematic parameters of the vehicle and its energy use.
Each model aggregated input parameters at a different level, allowing predictions to be
made using a variety of input values. In [11], a data-driven energy consumption decompo-
sition analysis was conducted by investigating two newly constructed compound factors:
negative kinetic energy (NKE), and positive kinetic energy (PKE). To demonstrate the
usefulness of these two components, the prediction model was built on this decomposition
and feature selection analysis.
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Computational models based on artificial neural networks (ANN) were developed
to estimate the relationship between an EV’s energy consumption and factors affecting
consumption [11,18]. Having a learning ability, this type of model can be used as a function
of the input factors, where each factor is associated with weights depending on its relative
importance [11]. ANNs can be used also to predict driving behavior by classifying driving
patterns using real-world driving data. The adoption of an estimation approach depends on
data availability and the targeted application. Analytical models require less computational
effort than statistical and computational models, but the latter are generally more accurate
since they are data-driven. Some references employ hybrid methods that combine physics-
based and data-driven approaches to make use of each method, as is the case with an
Argonne National Laboratory simulation program called “Autonomie” [19]. This simulator
is based on data analysis and vehicle parameters and has demonstrated good accuracy
against test data.

This work aims to predict an EV’s energy consumption under real-world driving
conditions by taking into account different exogenous and endogenous factors. For this
purpose, an EV model is designed using MATLAB/Simulink software based on a real
EV, Renault’s Zoe Q210. The EV model comprises longitudinal vehicle dynamics and the
vehicle powertrain system. The driver model is developed to control the vehicle’s speed
and to realistically represent a human driver’s behavior. The storage system model is
parameterized using the battery datasheet including the rated capacity, the number of
cells in series/parallel, initial battery capacity, and other parameters. The electric motor
and drive electronics are designed using mapped motor and drive electronics operating
in torque-control mode. Furthermore, the longitudinal vehicle dynamics is designed to
model the overall required power at the wheels as a function of the kinematic parameters
describing vehicle movement. The EV’s energy consumption simulator is used to illustrate
different driving scenarios in order to construct a synthetic dataset including the mechanical
power at the wheels as well as the required power from the battery to drive the vehicle. The
constructed mechanical power is calculated using synthetic speed profiles and synthetic
driving conditions, covering all possible cases of slope angle, road topography, additional
load, and wind speed. The vehicle under test is monitored using an Android application
measuring and recording data from the vehicle controller area network (CAN) using an
on-board controller (OBD). The CAN data provide information in the form of the required
force and torque at the wheels, vehicle speed, battery current, and battery voltage. In the ac-
celeration mode, the real-world measurements are used to test the machine learning model
trained with the synthetic dataset. Moreover, in the deceleration mode, the experimental
data are used to determine the instantaneous regenerative braking function when releasing
the accelerator pedal with and without using the braking system, as well as to determine
the regenerative braking power efficiency as a function of deceleration level at the end.
The remaining sections of this paper are organized as follows. The EV’s model is described
in Section 2. Section 3 provides a taxonomy of the factors affecting energy consumption and
a description of standard driving cycles. The methodology used to construct the synthetic
dataset is explained in Section 4. The proposed energy consumption model is described in
Section 5, along with the presentation and discussion of the simulation results. Conclusions
are drawn in Section 6.

2. Vehicle Modeling

The Renault Zoe Q210 was considered here for the EV modeling as a case study. This
was based on this EV’s technical specifications, cost, and availability in our region. The
vehicle specifications are presented in Table 1.
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Table 1. Electric vehicle specifications.

Parameters Value

Curb weight 1468 kg
Battery capacity 22 kWh

Motor power 65 kW
Maximum velocity 135 km/h

Battery weight 275 kg
Frontal area 2.14 m2

Maximum torque 220 N.m
Drag coefficient 0.35

Wheel radius 0.3105 m

The modeling was implemented using MATLAB/Simulink software and comprised
the different subsystems listed below.

2.1. Driver Model

The driver model aimed to emulate the human driver’s behavior. Modeling driving
behavior is a difficult task because it depends on many subjective factors. In this study,
a simplified driver model was considered. This consisted in minimizing the error (ev)
between the drive cycle (reference desired speed, Vdesired) and the actual vehicle’s speed
Vactual . Depending on the sign of the error, the driver either accelerates of decelerates to
force the vehicle to follow the reference speed profile: when (ev) is positive, an acceleration
command is generated, whereas, when (ev) is negative, the driver has two options: either
release only the accelerator pedal to slow down the vehicle or press the brake pedal to
slow down the vehicle using the frictions brakes. In this study, a proportional–integral (PI)
controller was chosen to model the driver’s behavior; the command, in the Laplace domain,
was modeled as follows:

CPI(s) = P +
I
s

(1)

where P and I are the proportional and integral gains, respectively, and s is the Laplace variable.

2.2. Braking Strategy Model

The maximum available force to decelerate the vehicle, depending on the adhesion
between the tires and the road, and the normal load acting on the vehicle, can be expressed
as [20]:

FBMAX = φ(Z f + Zr) = φMvehg (2)

where φ is the adhesion coefficient between the tires and the road, Z f and Zr are the normal
loads on the front and rear axles in Newtons, respectively, MVeh is the vehicle mass in kg
and g is the acceleration due to gravity in m/s2. Typical values of φ are around 0.8 on
concrete surfaces and on dry or wet asphalt.

2.3. Electric Motor and Drive Electronics Model

In this study, a mapped motor and drive electronics operating in the torque-control
mode were used to reduce the simulation time; the user can specify the maximum motor
power and torque or mechanical torque range with a torque–speed envelope. The torque
demand was the input of the electric motor model, whereas the motor torque was the
model’s output computed by taking into account motor and inverter efficiencies. The
torque demand TDem was derived from the driver model as follows:

TDem = TMaxDacc (3)

where TMax is the maximum available torque in N and Dacc is the driver’s acceleration
command in a percentage from 0 to 100.
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2.4. Battery Model

The implemented battery model was based on discharge characteristics taken at differ-
ent temperatures. The model could be parameterized through experimental measurements
or using a typical battery datasheet. The advantage of this model was that it could be
used for different electric vehicle batteries and customized using lookup tables for the
battery’s open-circuit voltage and the internal resistance. The lookup tables were functions
of the state of charge and battery temperature. Further, the user can modify the number of
cells in series/parallel, rated capacity, initial battery capacity, and other parameters. The
battery model input was the total current demand for propulsion, and auxiliary devices,
which took into account energy losses along the powertrain. Furthermore, the outputs of
the model were the battery terminal voltage, current, state of charge obtained using the
following equations:

VBat = VCellNs (4)

IBat = ICellNp (5)

SOCt = SOCi −
∫ b

a Icell(τ)dτ

Ccell
(6)

where Ns and Np are the number of cells in series and in parallel, respectively, Vrmcell and
VBat are the single cell and the battery pack terminal voltage in V, Icell and IBat are the single
cell and the battery pack’s current in A, SOCt is the battery state of charge in (%), SOCi is
the initial battery state of charge in (%), Ccell is the single cell capacity in Ah, and ICell is the
single cell current demand in A.

2.5. Driveline and Transmission Model

The aim of the transmission system is to transfer the torque between the motor and
the driving wheels. The efficiency of the transmission system affects the EV’s energy
consumption and it is defined in traction mode as follows:

ηTr =
Twωw

Tmωm
(7)

where ωw and ωm are the wheels and the motor speed, respectively, in rad/s and Tm and
Tw are the motor torque and the torque at the driving wheels in Nm.

2.6. Auxiliary Devices Model

The power consumed by the auxiliary devices can affect considerably the total energy
consumption. These are powered by a 12 V battery that is charged via a DC/DC converter
by the high-voltage battery pack. The power demand of auxiliary devices can be calculated
as follows:

Pdem =
Paux

ηcηbat
(8)

where Pdem is the power demand in W, Paux is the power consumption of the auxiliary
devices in W, and ηc and ηbat are the efficiencies of the DC/DC converter and the 12 V
battery, respectively.

2.7. Longitudinal Vehicle Dynamics

The overall required power at the wheels as a function of the kinematic parameters
describing the vehicle movement can be expressed as follows:

Pmechanical = (Fi + Faero + Frr + Fgr)Vveh (9)

where Fi is the resistance force inertia related to the forces required for the linear acceleration
of the vehicle described as:

Fi = Ma, (10)



Energies 2022, 15, 6490 6 of 17

Faero is the aerodynamic drag force due to the friction between the air and the vehicle body
described as:

Faero =
1
2

ρACD(V2
veh + V2

w), (11)

Frr is the rolling resistance force due to the friction between the tires and the road defined as:

Frr = MgCrr cos(θ), (12)

and Fgr represents the resistance force due to the road inclination with regard to the
horizontal plane defined as:

Fgr = Mg sin(θ). (13)

In the above equations, M is the vehicle mass in kg, a is the vehicle acceleration in
m/s2, ρ is the air density in kg/m3, A is the vehicle frontal area in m2, CD is the drag
coefficient, Vveh is the vehicle speed in m/s, and Vw is the wind speed, g is the acceleration
due to gravity m/s2, Crr is the coefficient of rolling resistance, and θ is the inclination angle
of the road in °.

3. Standard Driving Cycles and Factors Impacting Energy Consumption
3.1. Standard Driving Cycles

A driving cycle is a velocity–time profile used to describe the characteristics of a vehicle
in a specific traffic environment [21]. Each drive cycle is constructed for a specific road
structure, driver behavior, and traffic flow characteristics to evaluate energy consumption,
driving range, and equivalent emissions of an electric vehicle [22,23]. Since the beginning
of the 1970s, many countries and regions have given great importance to the development
of driving cycles and established strict regulations [24]. The New European Driving Cycle
(NEDC), last updated in 1997, is designed to evaluate the emission levels of car engines
and fuel economy in passenger cars. It excludes light trucks and commercial vehicles. The
test offers a stylized driving-speed pattern with low accelerations, constant speed cruises,
and many idling events. The Extra Urban Driving Cycle (EUDC) is a part of NEDC which
accounts for more aggressive, high-speed driving modes. The maximum speed in a EUDC
is 120 km/h and its duration is 400 s. The Highway Fuel Economy Test (HWFET or HFET)
cycle is a chassis dynamometer driving schedule developed by the US Environmental
Protection Agency (EPA) for the determination of fuel economy of light-duty vehicles.
It is used to determine the highway fuel economy rating and its duration is 765 s. The
US FTP-72 (Federal Test Procedure) cycle, also called the Urban Dynamometer Driving
Schedule (UDDS) test, is designed to assess fuel economy. It is used for light-duty vehicle
testing. The cycle simulates an urban route of 12.07 km with frequent stops. The maximum
speed is 91.25 km/h and the average speed is 31.5 km/h. The Federal Test Procedure (FTP)
is composed of the UDDS followed by the first 505 s of the UDDS. It is often called the
EPA75. The dynamometer portion of the test procedure has a very complex timeline of
events including the cold start phase, transient phase, and hot start phase. The World
Harmonized Light-Duty Vehicles Test Procedure (WLTP) is a globally harmonized standard
for determining fuel consumption, the levels of CO2 emissions of traditional and hybrid
cars, as well as the range of fully electric vehicles. The WLTP Class 3 is divided into four
different subparts, each one with a dissimilar maximum speed, to simulate urban, suburban,
rural, and highway scenarios, with an equal division between urban and nonurban paths.
The characteristics of the discussed drive cycles are given in Table 2, and their velocity time
profiles are depicted in Figure 1, where (a), (b), (c), (d), (e) and (f) reffer respectively to
NEDC, UDDS, HWFET, UDDS, FTP and WLTP class 3.
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Table 2. Standard driving cycles characteristics.

Characteristics NEDC EUDC HWFET UDDS FTP WLTP C3

Duration(s) 1160 400 765 1369 1874 1800
Distance(km) 11.2 6.95 16.51 11.99 17.77 23.26

Max speed (km/h) 120 120 96.4 91.24 91.24 131
Average speed (km/h) 33.57 62.28 77.47 31.48 34.09 46.47

Max Acceleration (m/s2) 1.04 0.69 1.43 1.47 1.47 1.75
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Figure 1. Velocity time profile of some standard driving cycles. (a) NEDC; (b) UDDS; (c) HWFET;
(d) UDDS; (e) FTP; (f) WLTP Class 3.

3.2. Factors Impacting Energy Consumption

Numerous factors can impact the energy consumption of an electric vehicle. They can
be classified as exogenous and endogenous factors. Endogenous elements are related to
vehicle characteristics and driver behavior, whereas exogenous factors cover all the natural
and artificial environments. Temperature, wind speed and orientation, precipitation, road
topography, climate zone, and others can be grouped into the natural environment, whilst
traffic flow, congestion level, and road type can refer to the artificial environment.

3.2.1. Vehicle Technology Factors

The battery system is the core of the electric vehicle propulsion system. Its spec-
ifications, including the used chemicals, energy density, capacity, number of cells and
modules, regeneration rate, and state of health, affect the overall energy consumption. The
vehicle’s auxiliaries, and in particular the HVAC system, are also considered as significant
factors in its energy consumption due to the absence of a combustion engine [25]. Further,
the vehicle’s curb weight and additional mass have an influence on energy consumption
mainly when climbing hills and at starting torque. The vehicle’s frontal area determines
the aerodynamic resistive force which affects directly the energy consumption. Other
vehicle-related factors are the powertrain system and the motor efficiency, and the rolling
resistance referred to as tire pressure and design [9].
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3.2.2. Driver Behavior

A driver is associated with different attributes including age, gender, attitude, etc. [26].
Aggressive driving, which is characterized by a high variability in the acceleration and
deceleration driving patterns [25,27], is associated with a higher energy consumption [28].
Further, the desired thermal comfort may vary amongst drivers, which implies that energy
consumption due to the use of the HVAC system may depend on the driver. Other
factors impacting the energy consumption are the physical conditions of the driver and the
psychology of range anxiety [29].

3.2.3. Climatic Conditions

Climatic conditions have a direct impact on the vehicle’s driving range. Customers
reported up to a 40% decrease in the driving range on hot summer and/or cold winter days
compared to the maximum range [30]. This reduction is particularly pronounced in cold
weather conditions. Indeed, cold temperatures negatively impact the energy consumption
for two main reasons: electric cabin cooling consumes less power compared to heating [31]
and batteries require self-heating when the ambient temperature is low. Furthermore, wind
speed and orientation affect the energy consumption, and this impact provides additional
incentives for reducing the aerodynamic drag of electric vehicles.

3.2.4. Road Topography

Road gradients have a remarkable effect on the maximum driving range and route
planning [32,33]. Upward gradients lead to an increased energy consumption while down-
ward gradients help to restore the energy back to the battery with the use of the regenerative
braking system. The force associated with a downward gradient can be described as:

Fgr = Mg sin(θ) (14)

3.2.5. Road Conditions

Road conditions are considered as external factors impacting driving efficiency. In-
creasing traffic volume and congestion generally lead to a higher energy consumption due
mainly to higher rates of use of the HVAC system as journeys take longer [34].

4. Synthetic Dataset Construction Methodology

The overall mechanical energy at the wheels as a function of the kinematic parameters
can be expressed as:

Eij =
∫ tj

ti

Pmechanical(t)dt (15)

where Eij is, respectively, the mechanical energy required at the wheels from time instant ti
to time instant tj. For the construction of the dataset, energy values corresponded to one
second, i.e., tj − ti = 1 s.

4.1. Synthetic Speed Profile Construction

Any speed profile can be approximated by a piecewise linear function where each
segment/piece can be represented by an initial value (i.e., initial speed), and a slope
(acceleration). We used this idea to construct synthetic time–speed drive cycles to cover
different driving conditions scenarios (acceleration, deceleration, and cruise). Figure 2
depicts the speed profile references, and Table 3 illustrates the acceleration and initial
speed ranges.
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Figure 2. Synthetic speed profile construction: (a) Acceleration; (b) Cruising; (c) Deceleration .

Table 3. Initial speed and acceleration ranges variation.

Parameters Minimum Maximum Step

V0 (km/h) 0 120 20
a (m/s2) −3.5 2.5 0.5

To represent the real driving conditions, many factors were taken into consideration
in the construction of the dataset. In this study, wind speed, slope angle, road topography,
and additional load were considered.

The maximum speed allowed by the vehicle was 135 km/h. The maximum accel-
eration was that corresponding to a variation of the speed from 0 to 100 km/h in 13.5 s.
The speed profile ranges were therefore chosen to be within these limits. The wind speed
variations were chosen based on historical data in our region. Different slope angle values
were considered. The additional mass variations were selected according to the maximum
mass authorized by the vehicle. The coefficient of rolling resistance values were chosen to
mimic the tread patterns and road states assuming that the tires’ pressure was properly set.
Table 4 illustrates the range of different parameters.

Table 4. Internal and external parameters variation ranges variation.

Parameters Minimum Maximum Step

Vw (m/s) 0 40 10
θ (°) −9 9 3
Crr 0 0.08 0.02

m (kg) 1468 1968 100

In acceleration mode, the initial vehicle speed was set to zero and then incremented
by 20 km/h until it reached the maximum speed of the vehicle. In cruising mode, the
acceleration was set to zero and the initial vehicle speed was set to 20 km/h and incremented
by 20 km/h until it reached the maximum allowed value. In deceleration mode, the initial
vehicle was set at the maximum authorized value and then decreased by 20 km/h until
it reached the value of zero. Figures 3–5 depict the synthetic acceleration, cruising, and
deceleration profiles, respectively.
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Figure 3. Synthetic acceleration profile.
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Figure 4. Synthetic cruise profile.
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Figure 5. Synthetic deceleration profile.

4.2. Synthetic Dataset Construction

The main objective of the dataset construction was to build a model to predict the
energy consumption of the Q210 Renault Zoe Model on any given road by taking into
consideration exogenous and endogenous parameters including driving behavior, road
conditions, natural environment, and additional weight. The inputs were acceleration,
initial speed, slope angle, additional mass, wind speed, and coefficient of rolling resistance;
the outputs were the required mechanical power at the wheels and the equivalent electric
power to drive the vehicle. The parameters taken into consideration in this study are
described in Table 5.

Table 5. Factors impacting energy consumption used for dataset construction.

Parameter Designation Factor

Vvh Vehicle speed Driver behavior
a Vehicle acceleration Driver behavior
θ Slope angle Road topography

Crr Coefficient of rolling resistance Road topology
m Additional mass Vehicle Characteristics
Vw Wind speed Climatic conditions

5. Proposed Energy Consumption Model

The proposed energy consumption model was a combination of a physics-based model
and a machine learning model. The mechanical power at the wheels was calculated using
Equation (15). The mapping between the required mechanical power and the required
electric power was estimated using a machine learning model, which was built to char-
acterize the different interactions between the storage system, the powertrain, and the
propulsion system. The machine learning model was trained using the constructed dataset.
The schematic overview of the proposed hybrid model is presented in Figure 6.
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Figure 6. Schematic overview of the proposed energy consumption prediction model.

5.1. Real-World Measurement

The vehicle under test was monitored using an Android application that collected
data from the vehicle controller area network (CAN) using an on-board controller (OBD).
The CAN data provided information on the vehicle’s speed, required force at the wheels,
battery voltage, and battery current.

An example of the tests conducted for this study is depicted in Figure 7. It illustrates
the vehicle’s speed, required force at the wheels, battery voltage, and battery current (from
top to bottom). The tests were performed for disparate levels of acceleration, deceleration,
and different states of charge. In the acceleration mode, the vehicle’s speed and the
required force at the wheels increased to reach the maximum mechanical power, whereas
the battery voltage and current decreased to attain the maximum battery discharge current.
In the deceleration mode, the vehicle speed decreased until the vehicle achieved the idling
mode and the required force at the wheels changed direction to decelerate the engine.
Furthermore, the battery voltage gradient was incremented, and the current changed sign
to charge the battery.
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Figure 7. Data collected from vehicle CAN bus: vehicle speed, required force at the wheels, battery
voltage, and battery current (from top to bottom).
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Figures 8–10 illustrate the relationship between the storage system power and power
at the wheels in the traction and regeneration modes. In the traction mode, the energy
flows from the motor to the wheels. In this case, the power at the wheels is assumed to be
positive due to the fact that the power at the electric motor is higher than the power at the
wheels. In addition, the required power from the battery to drive the vehicle is assumed to
be negative ( see Figure 8). On the other hand, in the regenerative braking mode, energy
flows from the wheels to the motor. In this case, the power at the wheels is higher than the
power at the electric motor. Thus, it is assumed to be negative and the recovered power by
the battery is considered positive. In our study, regenerative braking could be performed
by acting on the braking pedal (see Figure 9), or by releasing the accelerator pedal where
the vehicle was in the freewheel mode (see Figure 10).
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Figure 8. Efficiency of electric vehicle in acceleration mode.
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Figure 9. Efficiency of electric vehicle in deceleration mode with using braking system.
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Figure 10. Efficiency of electric vehicle in deceleration mode without using braking system.
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5.2. Machine Learning Models
5.2.1. Acceleration Mode

In the acceleration mode, the machine learning model was built using the synthetic
dataset: 70% (respectively, 30%) of the data were used to train (respectively, test) the model.
As mentioned above, the coefficients of the machine learning model vary with the settings
of the physical models of the vehicle. Theses settings were then adjusted to fit real-world
data using curve fitting. Figure 11 depicts the battery power as a function of the mechanical
power while using real measurements, and Table 6 showcases the performance of the model
tested on synthetic and real measurements data.
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Figure 11. Battery power as a function of mechanical power in acceleration mode.

Table 6. Performance of elaborated model on both datasets.

Dataset R-Square RMSE (W)

Synthetic dataset 0.9954 716.14
Real-world measurements 0.9824 856.08

5.2.2. Deceleration Mode

The correlation between the mechanical power at the wheels and the required electrical
power to drive the vehicle in acceleration and deceleration mode with the use of the braking
system can be expressed by:

Pelectric = k1ek2Pmechanical + k3 ek4Pmechanical (16)

The above equation represents a two-term exponential curve-fitting model whose
parameters were obtained using a nonlinear least squares method based on a trust-region
algorithm. The maximum number of iterations was set to 600 and the tolerance function
was set to 1.0 × 10−6 . Moreover, in the case of deceleration without using the braking
pedal, the relationship between the mechanical and the electrical power was approximately
linear, i.e., Pelectric = k5Pmechanical + k6. The coefficients and the performance of each model
are given in Table 7, where the R-square and root-mean-square error (RMSE) were used as
metrics to assess the goodness of fit. Figures 12 and 13 illustrate the curve fitting functions
in deceleration mode with and without using the braking system, respectively.
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Table 7. Coefficients and performance of elaborated models.

Driving State Coefficients
(with 95% Confidence Bounds) R-Square RMSE (W)

Deceleration
(with braking)

k1 = −2.754 × 104 (−2.826 × 104, −2.682 × 104)
k2 = 0.0001613 (0.0001518, 0.0001708)
k3 = 2.494 × 104

(2.423 × 104, 2.565 × 104) k4 = −2.765 × 10−6 (−3.51 × 10−6, −2.02 × 10−6)
0.9955 547.4

Deceleration
(without braking)

k5 = −0.4419 (−0.4422, −0.4417)
k6 = −1356 (−1363, −1350) 0.9999 58.58
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Figure 12. Battery power as a function of mechanical power in deceleration mode with braking.
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Figure 13. Battery power as a function of mechanical power in deceleration mode without braking.

5.3. Regenerative Braking Power Efficiency as a Function of Deceleration

The efficiency of the EV powertrain in deceleration mode depends on the level and
the duration of deceleration and on the use of the braking pedal. In the case of changing
the braking pedal position, the efficiency of the powertrain in regenerative mode can
be expressed by an exponential function for different levels of deceleration, whereas the
simple linear regression can be used to express the relationship between the mechanical
and electrical power in the case of decelerating by releasing only the accelerator pedal.
Based on experimental measurements of regenerative braking power values and using
curve fitting as well as concatenation of the two modes of deceleration, the instantaneous
regenerative braking was found to be well approximated by

η = k7ek8a + k9ek10a (17)

In the above equation, a nonlinear least squares method was adopted using a trust-
region algorithm, where the maximum number of iterations and the tolerance function
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were set, respectively, to 600 and 1.0 × 10−6. η refers to the regenerative braking efficiency,
a is the instantaneous acceleration, which is negative in this case, and k7, k8, k9, and k10 are
coefficients whose values are given in Table 8, which also shows the performance of the
proposed curve fitting in terms of R2 and the root-mean-square error (RMSE). Figure 14
illustrate the variation in the instantaneous regenerative braking efficiency as a function of
the deceleration level.
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Figure 14. Variation in the instantaneous regenerative braking efficiency as a function of the decelera-
tion level.

5.4. Results and Discussion

Extensive simulations showed that in the acceleration mode (i.e., a ≥ 0), a good
mapping between the mechanical power and the electric power was obtained with a sum
of two exponentials. The values of the parameters of these two exponentials changed with
the settings of the physical models’ coefficients (e.g., driveline and transmission model).
Real data confirmed this modeling as described before. In the deceleration mode, real
data showed that the regenerated electric power was a linear function of the mechanical
power in the absence of braking and a sum of two exponentials in the presence of braking.
Based on experimental measurements, and by concatenating the two modes of deceleration,
the instantaneous regenerative braking efficiency as a function of deceleration level was
found to be approximated using a two-term exponential decay function. The results in
Tables 7 and 8 show that the proposed models performed well in terms of R2 and root-
mean-square error (RMSE).

Table 8. Coefficients and performance of the instantaneous regenerative braking efficiency as a
function of the deceleration level.

Coefficients (with 95% Confidence Bounds) R-Square RMSE (%)

k7 = 0.9645 (0.8555, 1.073)
k8 = −0.009234 (−0.05018, 0.03171)
k9 = −1.036 (−1.149, −0.9221)
k10 = 2.848 (2.006, 3.69)

0.9785 0.0548

6. Conclusions

In this work, we proposed a hybrid approach to predict EV’s energy consumption
under real-world driving conditions. Different exogenous and endogenous factors were
taken into account. These included driving behavior, road conditions, natural environment,
and additional weight. The proposed energy consumption simulator, which included the
vehicle’s powertrain system and longitudinal vehicle dynamics, was used to construct
a synthetic dataset. The latter, along with real-world data, was used to determine the
relationship between the mechanical power at the wheels and the electric power in both
acceleration and deceleration modes. Furthermore, the instantaneous regenerative braking
energy efficiency as a function of the deceleration level was investigated in this study. This
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EV’s energy consumption model can be updated using real-world data to quantify the
degradation of powertrain components. Furthermore, it can be beneficial to automotive
decision-makers for the optimal sizing of components such as battery and powertrain and
to EV drivers for route planning to alleviate range anxiety.
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