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Abstract: The terminal equipment interconnection and the network communication environment
are complex in power cyber–physical systems (CPS), and the frequent interaction between the
information and energy flows aggravates the risk of false data injection attacks (FDIAs) in the power
grid. This paper proposes an active defense framework against FDIAs of power CPS based on
data-driven algorithms in order to ensure that FDIAs can be efficiently detected and processed in
real-time during power grid operation. First, the data transmission scenario and false data injection
forms of power CPS were analyzed, and the FDIA mathematical model was expounded. Then, from
a data-driven perspective, the algorithm improvement and process design were carried out for the
three key links of data enhancement, attack detection, and data reconstruction. Finally, an active
defense framework against FDIAs was proposed. The example analysis verified that the method
proposed in this paper could effectively detect FDIAs and perform data reconstruction, providing a
new idea for the active defense against FDIAs of power CPS.

Keywords: data-driven; power cyber–physical systems; false data injection attacks; active defense;
variational auto-encoder

1. Introduction

With the deep integration of the new generation of information technologies into the
power system [1–3], large amounts of electrical, sensing, and computing equipment are
interconnected through two physical networks: the power grid and the communication
network. The conventional power system with physical equipment at its core has gradually
evolved into highly coupled cyber–physical systems (CPS) [4–6]. The power CPS is a com-
plex network of cyber–physical integration based on a physical power grid (which includes
primary energy flow equipment) and a cyber network (which conducts secondary control
and protection of information flow) [7–9]. Its primary objectives are to open information
islands by fully utilizing advanced grid entities, as well as information and communication
technologies related to generation, transmission, transformation, distribution, utilization,
dispatching, and other links in the power system. The integration of multi-type energy
systems and spatiotemporal information reflects the characteristics of holographic state
perception, ubiquitous interconnection of people and things, open platform sharing, and
internal and external business innovation [10–14]. Given the development trend of the
construction of new power systems, their dependence on CPS will only increase. At the
same time, the risk of a cyber-attack on the power grid has also increased due to the
more frequent information interactions resulting from the close integration of power CPS
computing systems, communication networks, sensor networks, control systems, and
physical systems.
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In recent years, there have been frequent incidents of hackers or other personnel
intruding into the power grid through cyber-attacks and ultimately destroying the power
system (Figure 1). For instance, the Iranian nuclear facilities were attacked by the Stuxnet
virus in 2010, the Ukrainian power grid was attacked by the BlackEnergy virus in 2015, an
American wind farm was attacked by the ARP cache virus in 2017, and the control center of
Venezuela’s hydropower plant underwent a cyber-attack in 2019 [15–17]. These are typical
cases of large-scale regional blackouts caused by damage to power CPS.

Figure 1. Actual cases of cyber-attacks against power grids.

As one of the most threatening attack methods in many power CPS cyber-attacks, false
data injection attacks (FDIAs) have strong accessibility, interference, and concealment [18].
The FDIAs for power grid state estimation were first introduced by Liu Yao et al. [19] in 2009.
They reported that the attacker invades the system through the power CPS information
and communication network, obtains the power CPS network parameters and topology
by manipulating the measurement device, and then creates false measurement data that
satisfy the constraints of state estimation, avoids the bad-data-detection process, and
launches attacks without being noticed by the control center. The control center thus loses
its ability to perceive the current system operating state or topology, thereby producing
wrong estimates and issuing wrong instructions, which disrupt the normal operation of
the power grid [20,21]. Power CPS FDIAs completely invalidate the conventional bad-
data-detection mechanism and pose a serious threat to the robustness and safe operation
of the power grid. Therefore, conducting a thorough cyber–physical analysis of state
attacks in FDIAs, researching its active defense methods from a data-driven perspective,
and strengthening the power CPS’ FDIA defense mechanism are all performed in light of
the characteristics of the close integration and interdependence of power CPS’ cyber and
physical components [22]. It is, therefore, very important to promote the secure and stable
operation of power CPS.

Current studies on the defense methods of power CPS against FDIAs mainly focus on
several aspects: data processing [18,23–28], network communication [29,30], resource allo-
cation [31–39], network parameters [40–42], topology structure [43–45], and spatiotemporal
coordination [46–52].

In terms of data processing defense methods, a spatially concealed FDIA online de-
fense method for smart grids was proposed in [18]; it detected, eliminated, and corrected
false data measured by the supervisory control and data acquisition (SCADA) instru-
ment and phasor measurement unit (PMU). XGBoost-loaded prediction state variables
and unscented Kalman filter (UKF) dynamic estimation state variables were used in [23]
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for adaptive hybrid prediction, and the distribution of random variables was compared
through the central limit theorem to detect and correct FDIAs. A set of safe and reliable
PMU measurements and Huber robust estimation were used in [24] to detect FDIAs by
determining the consistency of measurement data. Wavelet transformation and deep neural
networks were used in [25] to obtain the dynamic spatiotemporal characteristics of the
system state through machine learning, and the differences in the state variables at the
current moment were analyzed to detect FDIAs. The Kullback–Leibler (KL) divergence
method was used in [26] to obtain the probability distribution difference of the measured
variables’ changes and determine whether the current system was subject to FDIAs. The
phase angle deviation of state estimation was deduced in [27] according to the attack model,
the existence of FDIAs was detected, and the most likely attack position was searched
for; then, a correction matrix was derived to correct the attacked phase angle data. A
reconstruction method of injecting attack signals was proposed in [28], an adaptive sliding
mode observer was used to obtain the errors of the system state and control variables, and
the FDIA signals received by the system were then derived and excluded.

In terms of network communication defense methods, the control signals of the energy
storage system participating in frequency modulation were taken as an example in [29],
and an adjustment method of the feedback controller gain parameters was analyzed in
the presence of false measurement and communication delay. A random concatenation
technique of data packets was proposed in [30] to prevent hackers from obtaining the
length and timing information of measurement data, thereby effectively curbing FDIAs
constructed by disrupting data communication.

In terms of resource allocation defense methods, a cross-layer defense mechanism was
proposed in [31]. It identified the attacked PMU by comprehensively analyzing the prior
probability of the attack by FDIAs from the physical layer and the location determination
information of the attack by FDIAs from the upper layer. In [32], it was assumed that the
PMU was absolutely safe and reliable. The minimum number of measuring instruments
an attacker would need to breach and complete FDIAs was discussed, and an optimal
configuration strategy was provided to replace the PMU required by the instruments.
Graph theory was used in [33] to select a set of protected measurement variables and
curb the generation of FDIAs. Mixed integer linear programming, greedy algorithm
search, and other methods were proposed in [34–36] to select the optimal measurement
variables’ protection target, prevent it from being tampered with, and ensure that covert
FDIAs cannot be achieved. To ensure that the secondary equipment can still execute the
commands issued by the cyber side when it loses its original power supply on the physical
side, it was equipped with an uninterruptible power supply in [37] to achieve operation
on the physical side. Static zero-sum game, multi-stage random game, and other models
were established in [38,39] from the perspective of the benefits of both attack and defense,
and the game equilibrium point was solved to form a combination of attack and defense
strategies for both parties to obtain optimal returns.

In terms of network parameter defense methods, in order to prevent an attacker
from discovering moving target defense (MTD) and thereby strengthen system parameter
information sniffing, [40] used a covert distributed flexible AC transmission system (D-
FACTS) device to improve the MTD method and analyzed the cost of MTD at the same
time. Several sets of D-FACTS equipment parameter setting schemes were proposed in [41]
to make the loss power fluctuation of the transmission line smaller, and parameter setting
schemes were randomly selected from the scheme library to curb FDIAs. The construction
process of the D-FACTS equipment parameter scheme library was improved in [42] so that
the system could return to the operating state of the previous moment, and false data were
quantified by comparing the returned measurement data.

In terms of topology structure defense methods, the potentially vulnerable nodes
in the power grid were classified in [43] by optimizing the clustering algorithm, and the
conventional autoregressive model state prediction results were used to detect false data
for various nodes. A set of strategies were proposed in [44] to dynamically reconfigure
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the microgrid so that false data attacks could not be injected. MTD and line redundancy
were used in [45] to switch usage routes, and the network topology was changed so that
the attacker could not steal accurate system parameters, thereby preventing FDIAs.

In terms of spatiotemporal coordination defense methods, a preliminary exploration
of FDIA cyber–physical coordination analysis and defense methods was conducted in [46].
Cyber–physical bilateral information and the expert experience discretization method were
combined in [47], and a collaborative FDIAs identification method was proposed based
on a cyber–physical event chain. The distributed smart grid attack strategy was discussed
in [48], and the impact of FDIAs on the secondary power system and power system’s
security was analyzed. DSAToolsTM was used in [49] to simulate the FDIAs of the static
var compensator (SVC) and static synchronous compensator (STATCOM) in an IEEE-39 bus
system, and the impact on the transient stability of the system was studied. FDIAs were
examined in [50] with the influence of the random failures and anomalies of the information
system itself on the power grid. A cyber–physical coordinated defense research framework
for FDIAs was proposed in [51], going beyond the traditional unilateral security defense
system. The cybersecurity cyber–physical coordination defense system and framework of
FDIAs were presented in [52] for the spatiotemporal dimensions, and a network security
identification and protection scheme, including the device side and the master station side,
was proposed.

In general, current studies on the defense methods of power CPS FDIAs have been a
hundred flowers blooming, each showing its splendor. However, no matter the perspective,
current data-driven research findings mainly have the following limitations: (1) FDIAs
are low-probability events, and the attack data are unbalanced and noisy, leading to low
detection accuracy and real-time detection efficiency. (2) The high dimension of historical
measurement data leads to high model complexity, and the existence of redundant features
has a serious impact on FDIA detection. (3) Conventional fault and FDIA measurement
data have high similarity, and it is challenging to accurately classify difficult samples,
resulting in high false and missed detection rates. (4) When a large amount of false data
are detected, directly excluding the attacked measurement data will result in unobservable
parts of the power grid.

In response to the above issues, this paper proposes an active defense framework
against the FDIAs of power CPS based on data-driven algorithms. The main contributions
are as follows:

(1) Solving the problem of data imbalance and high dimensionality. By improving the
generative adversarial network (GAN) model, balanced processing of historical mea-
surement data was achieved. At the same time, through the joint mutual information
maximization (JMIM) algorithm, the selection of the optimal feature set for attack
detection was realized;

(2) Solving the challenging problem of difficult sample detection. By introducing the
focal loss function, the light gradient boosting machine (LightGBM) is optimized to
achieve accurate detection of FDIAs;

(3) Solving the unobservable problem of a local power grid. The data reconstruction of
FDIAs is achieved by training a variational auto-encoder (VAE).

The remainder of this paper is organized as follows: the related principles of power
CPS FDIAs are analyzed in Section 2. The active defense framework against FDIAs is
proposed in Section 3. The effectiveness of the proposed method is verified and analyzed
in Section 4. Finally, the conclusions of this paper are given in Section 5.

2. FDIAs Principles
2.1. Data Transmission Scenario and False Data Injection Forms

The real-time data transmission scenario and false data injection forms for power CPS
are shown in Figure 2. The data collected by the PMUs were aggregated to the primary
domain controller (PDC). The real-time measurement data collected by smart meters,
sensors, or remote terminal units (RTUs) were aggregated to the SCADA system in the form
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of data packets. Afterward, the control center performed state estimation on the collected
data [53], and the output results could be used for the decision analysis of other software
applications in the energy management system (EMS) [18]. There are three forms in which
attackers inject false data:

Figure 2. Data transmission scenario and false data injection forms of power CPS.

Form 1: tampering with the data in the SCADA system, PDC, or communication net-
work;

Form 2: directly tampering with the data of the RTU;
Form 3: invading the control center. Compared with the previous two, the realiza-

tion of form 3 is extremely difficult because the actual power grid data center has strict
security protection.

2.2. FDIAs Mathematical Model

Taking nonlinear state estimation, which is suitable for practical power grids, as an
example [23], the FDIA mathematical model can be expressed as:

z′i =

{
zi + ai, i ∈ v
zi, i /∈ v

, (1)

where z′i represents the system measurement variable after injecting false data, ai represents
the i-th element of attack vector a, v represents the index set of the attacked measurement
variable in the power system, and false data are injected into all quantity measurements
in v.

According to the EMS bad-data-detection mechanism, when there are no bad data in
the power system, ||δ||2 < τ , where τ represents the detection threshold and δ represents
the system measurement residual. Assuming that there are no bad data in the current
system, if it undergoes FDIAs and the attack vector a satisfies Equation (2), that is, the
system residual δ′ after being attacked satisfies ||δ′||2 ≤ τ , the false data can successfully
avoid the conventional bad-data-detection mechanism [18].

||a− h(x + c) + h(x)||2 ≤ τ−||δ||2. (2)
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In Equation (2), h(·) is the system measurement function, which represents the rela-
tionship between the state variable x and the measurement variable z, that is, z = h(x) + r,
and r is the measurement noise.

3. Active Defense Framework against FDIAs

Most of the false data defense methods assume that the PMU measurement variable
is safe and reliable. Although the protection of the PMU measurement variable can be
achieved by continuously monitoring the measurement data or encryption, it does not
mean that the PMU is not at risk of FDIAs. On the contrary, excessive trust in the PMU
measurement variable will reduce the trust in other redundant measurement variables.
Once the PMU undergoes FDIAs, and FDIAs are not identified, unpredictable security
risks will be left in the power CPS. In this paper, an active defense framework against
FDIAs for PMU is established based on a data-driven detection method. The framework is
divided into three parts: (1) data enhancement methods against FDIAs, including balanced
processing of historical measurement data and optimal feature set selection of attack
detection; (2) detection method against FDIAs; and (3) data reconstruction against FDIAs.

3.1. Data Enhancement Methods against FDIAs
3.1.1. Balanced Processing of Historical Measurement Data

Most of the data used for FDIA detection are periodic measurement data, such as the
current, voltage, and sequence components, while the occurrence of FDIAs in power CPS
is an event with low probability. At present, there has been no instance of FDIAs being
captured in the real power grid [54], leading to a serious data imbalance problem in the
data-driven FDIA detection method. The performance of the algorithm directly trained
on the imbalanced dataset was poor, which could lead to misjudgment [55–57]. GANs
have been applied to generate different types of data in power grids, as they are able to
learn the probability distributions of complex data and generate artificial samples [58]. If a
GAN could be trained to generate high-quality normal measurement data and FDIA data,
it would be of great significance to address the issues of a lack of real data in power CPS
and low attack detection rate caused by data imbalance.

(1) Improved GAN

GANs consist of a generative model and a discriminative model. The two models
form a zero-sum game process. The discriminative model judges whether the new data
generated by the generative model are good or bad. When the generative model generates
enough real data, the discriminative model cannot accurately distinguish true and false
data and the GAN reaches the Nash equilibrium. The GAN objective function is shown in
Equation (3):

min
M(x)

max
N(y)

Qy∼Wt [log N(y)] + Qỹ∼Ws [log(1− N(ỹ))], (3)

where M(·) represents the sample function generated by the generative model, x is random
noise, N(y) represents the probability of judging the original sample as the real sample,
y is the real sample, Q(·) denotes the mathematical expectation, Wt is the probability
distribution of the real sample, ỹ is the output of the generative model, ỹ = M(x), Ws is
the probability distribution of ỹ, and N(ỹ) represents the probability that the generated
samples are judged as real samples.

The first GAN was proposed by Ian Goodfellow et al. in 2014 and was originally
designed for image sample generation. Compared with image-based sample data, FDIA
table-based data do not follow a Gaussian distribution and exhibit multi-modality. There-
fore, if the data are processed directly using the original GAN, problems such as mode
collapse, vanishing gradient, and non-convergence will arise. To improve the ability of the
original GAN to learn tabular sample data and capture the correlation between the data,
this paper adopts the combination of the Copula function and conditional tabular GAN
(CTGAN) [59] to form CCTGAN. The Gaussian Copula function can learn the probability
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distribution of the data and describe the nonlinear correlation between random variables.
The CTGAN improves the network structure and learning steps of the original GAN [60,61].

Let the k-dimensional random variable y = (y1,y2, . . . ,yk) in the power CPS measure-
ment data, where the marginal distribution function of yi(i = 1, 2, . . . , k) is G(yi). Let
vi = G(vi), so vi is a random variable subject to uniform distribution between [0, 1]. Then,
the relationship between the joint probability distribution function L(y) and the Copula
distribution function D(v) (v = (v1,v2, . . . ,vk)) is shown in Equation (4):

L(y) = L(y1, y2, . . . , yk) = D(v1, v2, . . . , vk) = D(v). (4)

The corresponding joint probability density function can be obtained by the derivation
of Equation (4), as shown in Equation (5):

g(y1, y2, . . . , yk) = d(v1, v2, . . . , vk)
k

∏
i=1

g(yi) = d(v)
k

∏
i=1

g(yi), (5)

where g(y1,y2, . . . ,yk) represents the joint probability density distribution, d(v) is the k-
dimensional Copula density function representing the correlation structure, and g(yi)
represents the marginal probability density function of yi.

(2) Data balance process

The balancing process of historical measurement data is shown in Figure 3. This
process supplements each type of data on the original dataset by improving the GAN
data-generation model, and finally merges various types of sample data to form a balanced
historical measurement dataset.

Figure 3. Balancing process of historical measurement data.

The data balancing process based on CCTGAN in this paper is as follows:

(1) Data preprocessing. Use the Gauss Copula function to learn the probability distri-
bution of the power CPS historical measurement dataset, describe the correlation
between n-dimensional random variables in the dataset, and perform data conversion.
Normalize the transformed data;

(2) GAN structure design. The Lipchitz restriction is added as a regular term to the
Wasserstein loss of the WGAN-GP (Wasserstein GAN with Gradient Penalty) gradient
penalty. The network structure adopts the full connection method. The generative
model uses batch normalization and the ReLU activation function; scalar values are ac-
tivated by the tanh function and discrete values are activated by the softmax function.
The discriminative model uses the leaky ReLU function and dropout method [62];

(3) Hyperparameter optimization. The generative and discriminative models conduct
alternate adversarial training. Generate multiple sets of datasets containing the same
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number of normal operation data and FDIA data, and de-normalize each dataset. Use
the Kolmogorov–Smirnov (K-S) test and KL divergence to calculate the similarity
of data between the generated and original datasets, and obtain the similarity score
A. Select the hyperparameters with similarity scores A closest to 1 as the optimal
model parameters;

(4) Data balance processing. The original historical measurement data are used as the
input of CCTGAN to generate a balanced historical measurement dataset.

3.1.2. Optimal Feature Set Selection of Attack Detection

The power CPS has massive amounts of historical measurement data. For the FDIA
detection algorithm of power CPS based on physical data mining, the high-dimensional
data will increase the complexity of the model and waste computing resources. At the
same time, the redundant features can greatly affect the FDIA detection accuracy [63]. The
JMIM algorithm can fully consider the mutual information between the selected features
and the data labels, and the selected optimal feature set can optimally represent the state of
the power grid. If the JMIM algorithm can be used reasonably, the model can be lightened,
the training time can be reduced, and the efficiency of the FDIA detection model can
be improved.

(1) JMIM algorithm principle

For the feature set F = {f 1,f 2, . . . ,fN} in the historical measurement dataset D, the data
are N-dimensional. Based on the joint mutual information measurement method, the JMIM
algorithm selects k features from the original feature set to form a new feature subset, k ≤ N.
The new feature set maintains high mutual information between features and labels, so the
classifier can obtain a higher accuracy rate on the feature set.

Define the mutual information I(X, C) between variable X and variable C, as shown in
Equation (6):

I(X,C) = H(C) − H(C|X), (6)

where H(x) represents the entropy of variable x, and H(x|y) represents the conditional
entropy of variable x under condition y.

The calculation process of joint mutual information between variables X, Y, and C is
shown in Equations (7) and (8):

I(X,C|Y) = H(X|C) − H(X|C,Y), (7)

I(X,Y;C) = I(X;C|Y) + I(Y|C). (8)

Suppose F is the original feature set and S is the currently selected feature set, feature
fi ∈ F− S and feature fS ∈ S. If feature fi is highly correlated with one feature fS in S, then
I(fi;C) ∼= I(fS;C) ∼= I(fi,fS;C). When feature fi is to be selected, the currently selected feature fS,
and data label L satisfy the constraints of Equations (9) and (10):

I(fi,fS;L) = I(fS;L) + I(fi;L|fS), (9)

I(fi,fS;L) = H(L) − H(L|fi,fS). (10)

To further derive the candidate features, the joint mutual information between the
currently selected features and the labels is computed as shown in Equation (11):

I( fi, fS; L) = [ ∑
c∈C

p(l) log(p(l))]

−[ ∑
l∈L

∑
fi∈F−S

∑
fS∈S

log p( fi · fS ,l| fS)
p( fi | fS)p(l| fS)

]
(11)

The final feature selected by the JMIM algorithm is shown in Equation (12):

f JMIM = argmax fi∈F−S(min fS ∈ S(I( fi, fS; L))). (12)
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(2) Optimal feature set selection process

The optimal feature set selection process for attack detection is shown in Figure 4. In
this process, the JMIM feature-selection algorithm sequentially selects k features with the
highest mutual information of the data labels in the original feature set to form the optimal
feature set for attack detection.

Figure 4. Optimal feature set selection process of attack detection.

The detailed steps for selecting the optimal feature set of attack detection based on
JMIM in this paper are as follows:

(a) Input features, such as currents, voltages, and phase angles into the original feature
set F, and initialize the set S to store the optimal features for screening;

(b) Initialize parameter k, where k is the number of features finally screened by the algorithm;
(c) Calculate the mutual information I(C;fi) between the features and data labels in

the original feature set one by one, filter out the feature with the largest mutual
information between the original feature set and the data labels, and add it to set S as
the first feature;

(d) Calculate the remaining features fF in feature set F, the selected features fS in S, and
the joint mutual information I(fF,fS;L) between the data labels in turn;

(e) Screen the next features in turn as fi = arg max fi∈F-S(min fS∈S(I(fi,fS;S))) until the k
features are screened, add the features of the subsequent screening to the set S, and
the final set S is the optimal feature set for attack detection.

3.2. Detection Method against FDIAs

FDIA measurement data are very similar to conventional fault measurement data.
It is challenging to accurately classify difficult samples using simple statistical analysis
and bad-data-detection algorithms, and there are drawbacks associated, such as high false-
detection and non-detection rates. The LightGBM algorithm has good scalability, supports
large-scale parallel data processing, and has the advantages of a short training time, low
model complexity, and fast feature splitting in classification problems. If the LightGBM
algorithm can be reasonably optimized, it can effectively improve the algorithm’s learning
ability for difficult samples in the dataset and increase the classification accuracy of the
attack detection model.

3.2.1. Optimize LightGBM

Gradient boosting decision tree (GBDT) is an ensemble learning framework based
on decision trees. It is more lightweight than deep learning algorithms in terms of model
complexity, and it does not easily fall into overfitting. It has good tolerance to noise and
outliers, and has good scalability and parallelism for high-dimensional data classification
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problems [64]. LightGBM is improved based on GBDT, and the improvement strategy
mainly integrates a histogram algorithm, depth-limited growth strategy, and parallel
computing operation. The histogram algorithm reduces memory consumption and shortens
the training time. The depth-limited growth strategy reduces model complexity and
improves training accuracy. The parallel computing operation reduces the number of data
operations and improves the data processing speed. Through the improvement of GBDT,
LightGBM has a stronger ability to process massive amounts of data.

When power CPS FDIAs occur, some difficult samples were not accurately classified
due to abnormal spatial distribution. To further improve the classification accuracy of the
LightGBM classifier for difficult samples, a focal loss function was introduced to optimize
the LightGBM algorithm to form OLGBM. For the s-th decision tree before optimization,
the original logarithmic loss function of LightGBM is shown in Equation (13):

Boriginal = −
K

∑
i=1

B(xj, Es−1(yj; Cs−1)) = −
K

∑
i=1

xj log(qi), (13)

where K represents the number of categories, Cs−1 is the parameter set of the top s−1
trees, including {c1,c2, . . . ,cs−1}, Es-1(yj;Cs−1) represents the prediction value of the model
composed of the current s−1 decision trees for input sample yj under the condition that the
parameter is Cs−1, B(xj,Es−1(yj;Cs−1)) represents the error function between the real value
xj and the predictive value, and qi represents the probability that sample j is predicted to be
in class i. The focal loss function is shown in Equation (14):

B f ocal_loss = −
K

∑
i=1

(1− qi)
βxj log(qi), (14)

where (1− qi) is the adjustment factor and β represents the influence of the adjustment factor.
When the sample is misclassified, qi ≈ 0 and (1 − qi) ≈ 1, the loss is not affected and

is close to the original logarithmic loss function. When a sample has a high probability
of correct classification, qi ≈ 1, (1 − qi) ≈ 0. At this time, the weight of a sample with a
high probability of correct classification is reduced and will receive less attention in the
next iteration. The role of parameter β is to adjust the rate at which the weight of easily
classified samples decreases; increasing β can enhance the influence of the adjustment
factor. The focal loss function makes the classifier pay more attention to the contribution of
misclassified samples during the training process, so the probability of correct classification
in the next iteration process is improved, thereby improving the training accuracy of
the classifier.

3.2.2. Attack Detection Process

The FDIA detection process is shown in Figure 5. In this process, the OLGBM al-
gorithm is used to train and optimize the optimal feature set; finally, the FDIA detec-
tion model is constructed and the detection performance is evaluated according to the
evaluation indicators.

The detailed steps for FDIA detection based on OLGBM as proposed in this paper are
as follows:

(a) Divide the optimal feature set into a training set and testing set; the training set is
used to train the attack-detection model;

(b) Train the OLGBM algorithm on the train set and determine the optimal number of
base classifiers according to the early stopping mechanism;

(c) Under the optimal number of classifiers, the Bayesian optimization algorithm is used
to search the optimal set of some important parameters of the OLGBM algorithm;

(d) Train the OLGBM algorithm under the optimal parameter set to obtain the final FDIA
detection model;
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(e) Select the test set in (a) to evaluate the detection performance of the model and present
the model detection results in the form of a confusion matrix and a statistical chart.

Figure 5. FDIA detection process.

3.3. Data Reconstruction against FDIAs

When the presence of FDIAs in the power CPS is detected, the operator of the control
center will remove the attacked measurement data. However, in the actual power grid, if
too much false data are detected, direct removal will make the local area of the power grid
unobservable. As an unsupervised generative network model, VAE combines the idea of
deep learning with Bayesian inference and can supplement the measurement data required
for the normal operation of the system based on the remaining normal measurement data.
If the VAE could be trained to generate simulated data that differed from the original
measurement data but conformed to the correct characteristics, it would be very helpful
to address the issue of unobservable power grids in local areas caused by the excessive
removal of false data from the power CPS.

3.3.1. VAE Algorithm Principle

VAE consists of an encoder and a decoder. The encoder produces the hidden vector Z
of the hidden layer by encoding the original training data X. Given the mean µ and variance
σ of the Z distribution, according to the generated variational probability distribution of
the hidden variable Z, the decoder is used to restore the approximate original training
data X’, and the hidden layer features that can characterize the original training data X are
obtained, in which the encoder and the generator are fitted with a neural network. Figure 6
shows the basic structure of VAE.

Figure 6. Basic structure of VAE.

The distribution of the latent variable Z in the VAE can be represented by the posterior
probability density function pθ(Z|X) , where θ is the network parameter learned during
the training process. As the real posterior distribution cannot be directly observed, to solve
this problem, a recognition model qϕ(Z

∣∣X) is introduced as the approximate posterior
probability of Z, where ϕ is the network parameter learned during the training process, and
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the KL divergence (DKL) is used to describe the similarity between the two distributions of
pθ(Z|X) and qϕ(Z

∣∣X) , as shown in Equation (15):

DKL(pθ(Z
∣∣X)
∣∣qϕ(Z

∣∣X)) = log pθ(X)− L(θ, ϕ, X), (15)

where log pθ(X) represents the log-likelihood function of X. As the KL divergence is non-
negative, it is always true that minimizing the KL divergence can be transformed into
maximizing the variational lower bound L(θ, ϕ, X). After deduction, the variational lower
bound optimization objective function of VAE is shown in Equation (16):

L(θ, ϕ, X) = Eqϕ(Z|X) log pθ(Z
∣∣∣X)

−DKL(qϕ(Z
∣∣X)
∣∣pθ(Z))

(16)

where Eqϕ(Z|X) log pθ(Z
∣∣∣X) is the likelihood expectation of pθ(Z|X) . To simplify the

calculation process, the normal distribution N(0,1) is used as the prior distribution pθ(Z).

3.3.2. Data Reconstruction Process

The FDIA data reconstruction process is shown in Figure 7. In this process, the VAE
data reconstruction model is used to complete the remaining normal measurement data
after excluding the attacked measurement data in order to ensure the measurement data
required for the normal operation of the system and solve the unobservable problem in
local areas of the power grid.

Figure 7. FDIA data reconstruction process.

The detailed steps of FDIA data reconstruction based on VAE as proposed in this
paper are as follows:

(a) The remaining normal measurement data samples after excluding the attacked mea-
surement data are used as the input to the VAE, and the VAE learns its sample
distribution characteristics through the encoder;

(b) The latent variable from the Gaussian distribution N(µ, σ) is sampled and input into
the decoder. The decoder generates the same number of simulated data samples as
the attacked measurement data;

(c) The simulation data generated by the VAE are merged with the remaining normal mea-
surement data to complete the original sample, thereby completing the reconstruction
of the FDIA data;

(d) The reconstruction rate and mean absolute error (MAE) evaluation indicators are
selected to judge the data reconstruction performance of the VAE model.
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3.4. Active Defense Framework against FDIAs

The active defense framework against FDIAs proposed in this paper is shown in
Figure 8.

Figure 8. Active defense framework against FDIAs.

The detection process is based on the OLGBM model. Specifically, the PMU historical
measurement dataset is first collected. It contains normal data and abnormal FDIA data.
The dataset is then balanced and the optimal feature set is selected and split into training
and testing sets in a 7:3 ratio. The training set is used to train the model. After training, the
test set is used for performance evaluation, and the model’s detection effect is judged by
the evaluation indicators.

The data reconstruction process is based on the VAE model. Specifically, the normal
measurement data samples remaining after excluding the attacked measurement data are
input into the VAE model, producing the same amount of simulated data as the attacked
measurement data. Evaluation indicators are then used to assess the data reconstruction
performance of the model.

4. Example Analysis

The experimental environment in this paper is Python 3.8.2, Guido van Rossum,
Google, Mountain View, Santa Clara County, CA, USA and the related third-party libraries
mainly include imblearn, mifs, scikit-learn, ligthgbm, matplotlib, and scikit-plot. The
proposed method is validated by taking the FDIA dataset provided by Mississippi State
University and Oak Ridge National Laboratory as an example. The simulation system for
collecting this dataset is shown in Figure 9.
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Figure 9. Schematic diagram of the power CPS simulation system structure.

The system consists of three layers: a perceptual executive layer, communication layer,
and decision control layer. The perceptual executive layer includes two generators, G1
and G2. BR1 to BR4 are circuit breakers, which are monitored by Intelligent Electronic
Devices (IEDs) R1 to R4 that can open or close the corresponding circuit breaker. There
are two lines in the power grid; the first line L1 extends from BR1 to BR2, and the second
line L2 extends from BR3 to BR4. Each IED uses a distance protection scheme when a
fault is detected, as they do not have internal verification to detect anomalies. No matter
whether the fault is real or valid, it will trigger the circuit breaker. The communication
layer includes a substation switch connected to IEDs, a PDC, and a router to complete the
uplink (information collection) and downlink (optimized control) communication processes.
Uplink communication requires a PDC to summarize the phasor data collected by IED and
upload it to OpenPDC. The decision control layer includes the Snort intrusion detection
system, system log, control panel, and OpenPDC. Snort performs intrusion detection on
the communication layer substation switch, and the control panel displays the real-time
time-series data processed by OpenPDC. One then analyzes and makes decisions about the
operating status, and the system log records the communications, detected intrusions, and
system operating status.

The original dataset can be divided into four types of scenarios after processing and
re-labeling, as shown in Table 1.

Table 1. Description of 4 types of scenarios after processing and re-labeling.

Relabel Scenario Label Scenario Category Original Scenario Label

0 Non FDIAs 1–6, 13, 14, 41
1 Measurement data FDIAs 7–12
2 Control signal FDIAs 15–20
3 Device information FDIAs 21–30, 35–40

The original dataset contains a total of 128 physical features. The features and their
descriptions are shown in Table 2.
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Table 2. Original dataset features and feature descriptions.

Feature Feature Description Feature Feature Description

PA1:VH-PA3:VH Phase A-C voltage
Phase angle PM10:V-PM12:V Pos.-Neg.-Zero current

phase magnitude

PM1:V-PM3:V Phase A-C voltage
Phase magnitude F Frequency for relays

PA4:IH-PA6:IH Phase A-C current
Phase angle DF Frequency delta (dF/dt)

for relays

PM4:I-PM6:I Phase A-C current
Phase magnitude PA:Z Appearance impedance

for relays

PA7:VH-PA9:VH Pos.-Neg.-Zero voltage
phase angle PA:ZH Appearance impedance

angle for relays

PM7:VH-PM9:VH Pos.-Neg.-Zero voltage
phase magnitude S Status flag for relays

PA10:VH-PA12:VH Pos.-Neg.-Zero current
phase angle

4.1. Data Balanced Processing Effect Evaluation

After the CCTGAN model balances the data in a class with a fewer number of samples,
the size of that class becomes comparable to that of the class with the largest number
of samples. The large sample dataset composed of 15 data subsets is processed by the
CCTGAN model. The distribution of the number of samples before and after balancing is
shown in Figure 10.

Figure 10. Large sample dataset quantity distribution map before and after data balance processing.
(a) Before data balance processing; (b) after data balance processing.

After data balance processing by the CCTGAN model, samples are supplemented
with three types of scenarios: the number of non-FDIAs, measurement data FDIAs, and
control signal FDIAs. The number of non-FDIA scenarios and the three types of attack
scenarios in the final dataset are basically equal, and the imbalance rate of the dataset is
about 0%, resulting in the balanced processing of sample data.

In order to further verify the effectiveness of the CCTGAN model and quantitatively
analyze the impact of the OLGBM algorithm on the detection accuracy of FDIAs after data
balance processing, the dataset adopts a large sample dataset fused with 15 sub-sample sets.
The confusion matrix of the FDIA detection results before and after data balance processing
is shown in Figure 11.
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Figure 11. Comparison of FDIA detection results before and after data balance processing. (a) Before
data balance processing; (b) after data balance processing.

The analysis of Figure 11 shows that, after data balance processing, the detection accu-
racy of measurement data FDIAs and control signal FDIAs was improved by 16.72% and
17.33%, respectively, and the false detection rate between the other two types of scenarios
was significantly reduced. The CCTGAN data balance processing model constructed in
this paper is effective and plays an important role in improving the detection accuracy and
reducing the false detection rate.

4.2. Optimal Feature Set Selection Effect Evaluation

The original data contained a total of 128 features, and a step-by-step search strategy
was used to select the optimal feature set. The key parameter that the JMIM algorithm
needs to determine is the optimal feature dimension k. Taking additional 10-dimensional
features as the step size, the algorithm is executed 10 times in total. The F1-Score of the
LightGBM algorithm on the test set is taken as an objective, and the feature dimension
k is selected when the maximum F1-Score value is the optimal special number. Feature-
selection algorithms involved in the comparison included information gain (IG), maximum
relevance minimum redundancy (mRMR), joint mutual information (JMI), principal com-
ponent analysis (PCA), kernel principal component analysis (KPCA), linear discriminant
analysis (LDA), and the LW index with a sequence forward search algorithm (SFS-LW).
The performance comparison results of different feature-selection algorithms are shown in
Figure 12.

Figure 12. Performance comparison of different feature-selection algorithms.
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The analysis of Figure 12 shows that the best performance was achieved by the JMIM
algorithm, the optimal feature dimension was 60, and the data dimension was reduced
by 53.125%. Compared with other feature selection algorithms, the JMIM algorithm has
stronger applicability, and the feature selection and de-redundancy effects are obvious.

The 60-dimensional features selected by the JMIM algorithm and their mutual infor-
mation values are shown in Table 3. These features are the key features of power CPS FDIA
detection, and together constitute the optimal feature set for FDIA detection. The optimal
characterization of the grid state under the influence of FDIAs was determined.

Table 3. Optimal features and mutual information values selected by the JMIM algorithm (TOP 30).

Feature TOP (1–15) Mutual Information
Value Feature TOP (16–30) Mutual Information

Value

R2-PA3:VH 1.3633 R1-PA4:IH 1.2026
R1-PA3:VH 1.3628 R2-PA10:IH 1.2023
R4-PM6:I 1.3622 R2-PA7:VH 1.2007

R3-PA4:IH 1.3602 R2-PA:Z 1.1989
R3-PA3:VH 1.3596 R2-PA4:IH 1.1953
R4-PA4:IH 1.3438 R4-PM1:V 1.1951
R3-PM1:V 1.3276 R2-PM10:I 1.1919
R1-PM6:I 1.3238 R2-PM6:I 1.1898

R1-PA7:VH 1.3206 R3-PA:ZH 1.1890
R4-PA6:IH 1.3201 R2-PM4:I 1.1439
R4-PA1:VH 1.3170 R1-PA:Z 1.1274
R1-PA10:IH 1.3007 R4-PA:ZH 1.0992
R3-PA1:VH 1.2674 R4-PA:Z 1.0911

R3-PA:Z 1.2637 R1-PA:ZH 1.0671
R3-PA6:IH 1.2600 R2-PM3:V 1.0397

In order to further verify the effectiveness of the JMIM algorithm, the large sample
dataset was used as the experimental data to analyze the influence of the optimal feature
set on the FDIA detection performance. The confusion matrix of the FDIA detection results
before and after JMIM feature selection is shown in Figure 13.

Figure 13. Comparison of FDIA detection results before and after feature selection. (a) Before feature
selection; (b) after feature selection.

The analysis of Figure 13 shows that the detection accuracy of FDIAs before the
optimal feature set selection was 94.34%, the training time was 423.95 s, and the testing
time was 0.62 s. After the optimal feature set was selected, the detection accuracy of FDIAs
reached 96.22%, the training time was 214.93 s, and the prediction time was 0.34 s. The
detection accuracy of FDIAs was improved, and the training and prediction times were
also significantly shortened. It can be seen that the optimal feature set selection method
based on JMIM as proposed in this paper achieved data de-redundancy to a certain extent,
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improved the detection accuracy of FDIAs, and further strengthened the reliability and
stability of the model.

4.3. FDIAs Detection Effect Evaluation

The accuracy, precision, recall, and F1-score were used as performance indicators to
assess the attack detection method. First, the influence of the focal loss function and the
Bayesian-optimized OLGBM algorithm on the detection accuracy of FDIAs were quanti-
tatively analyzed. Based on the large sample dataset, the confusion matrices of the FDIA
detection results before and after applying LightGBM algorithm optimization are shown in
Figure 14.

Figure 14. Comparison of FDIA detection results before and after algorithm optimization. (a) Before
algorithm optimization; (b) after algorithm optimization.

The analysis of the confusion matrix shows that, on the one hand, the detection per-
formance for various types of FDIA was improved after applying the focal loss function
and Bayesian optimization. On the other hand, the proposed method had a strong abil-
ity to distinguish FDIAs and normal events, and the overall performance of the model
demonstrated its reliability. There was a maximum of 1.07% of false detections between the
various types of FDIAs and non-attacks, and sometimes, no false detections were observed.

In order to further verify the applicability of the proposed method to small samples, the
F1-Score indicator and the LightGBM algorithm in each optimization stage were compared
and analyzed under 15 small sample datasets. The comparison results are shown in
Figure 15.

Figure 15. Comparison of model performance in each optimization stage of the proposed method.
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The analysis of Figure 15 shows that, on the small sample dataset, the average
F1-Scores were 92.69%, 94.95%, and 96.07%, respectively, for the conventional LightGBM,
the CCTGAN-LightGBM, and the CCTGAN-JMIM-LightGBM methods. The average
F1-Score of the proposed CCTGAN-JMIM-OLGBM method for FDIA detection was as high
as 96.85%. It can be seen that, for each optimization step of the proposed method, the
FDIA detection performance showed a steady upward trend. Compared with the classic
LightGBM method, after three optimization stages, the average F1-Score for FDIA detection
was improved by 4.16%.

The proposed CCTGAN-JMIM-OLGBM was then compared with other FDIA de-
tection algorithms, including the SOTA models. The SOTA model algorithms included
convolutional neural networks–gate recurrent unit (CNN-GRU) and enhanced ensemble
extreme learning machine (E3LM). The ensemble learning algorithms included extreme
gradient boosting (XGBoost), gradient boosting decision tree (GBDT), random forest (RF),
adaptive boosting (Adaboost), and voting classifier (VC). The classic machine learning
algorithms included decision tree (DT), artificial neural network (ANN), logistic regression
(LR), k-nearest neighbor (KNN), and support vector machine (SVM). Using a large sample
dataset, the comparison results are shown in Figure 16.

Figure 16. Performance comparison of different FDIA detection algorithms.

By analyzing the results in Figure 16, it can be seen that, compared with the SOTA
model algorithms, the proposed method improved the accuracy of FDIA detection by
13.81%, the precision by 13.23%, the recall rate by 15.84%, and the F1-score by 15.79%.
Compared with the conventional ensemble learning algorithms, the proposed method
improved the accuracy of FDIAs detection by 18.66%, the precision by 9.67%, the recall
rate by 32.81%, and the F1-score by 26.79%. These improvements respectively became
48.02%, 84.96%, 75.54%, and 82.61% when compared with conventional machine learning
algorithms. It can be seen that the FDIA detection model based on the proposed OLGBM
had higher detection accuracy and stronger applicability for FDIAs than other machine
learning algorithms, including SOTA model algorithms.

4.4. Data Reconstruction Effect Evaluation against FDIAs

To verify the reconstruction effect of the proposed data reconstruction method on false
data, a reconstruction rate evaluation indicator is suggested. The indicator is defined as:

Rrate =
Nrec

Ndet
, (17)

where Nrec represents the number of reconstructed false data samples and Ndet represents
the number of false data samples detected before the reconstruction.
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Four historical measurement data samples of 10,000 pieces of data, containing 1000 pieces,
500 pieces, 100 pieces, and 10 pieces of false data, are considered. They were respectively
numbered 1–4, and FDIA detection was applied to each sample. The detected false data
were reconstructed once and then FDIA detection was performed. If there were still false
data in the detection result, the detected new false data were reconstructed twice, and so on.
The effect after each reconstruction was evaluated, and the results are shown in Table 4.

Table 4. Evaluation of false data reconstruction effect.

Sample
Number

Number of
Original False
Data Samples

Number of
Detected False
Data Samples

Number of
Reconstructed

False Data
Samples

First
Reconstruction

Rate/%

Second
Reconstruction

Rate/%

1 1000 1000 988 98.8 100
2 500 500 497 99.4 100
3 100 100 100 100 -
4 10 10 10 100 -

From the results in Table 4, it can be seen that the reconstruction rates of samples 1
and 2 were 98.8% and 99.4%, respectively, during the first reconstruction, and only reached
100% after the second reconstruction.

To further verify the effect of data reconstruction, the MAE evaluation indicator
was selected:

MAE =
1
M

M

∑
i=1
|xi − yi|, (18)

where M represents the number of sample features, xi is the i-th eigenvalue of the recon-
structed sample, and yi represents the i-th eigenvalue of the random sample after excluding
the attacked measurement data. MAE describes the population mean deviation between
the reconstructed and random sample eigenvalues.

The MAE value was calculated for the 15 pieces of false data that needed to be
reconstructed twice in Table 4, and the calculation results of the MAE evaluation indicator
are shown in Table 5.

Table 5. Calculation results of evaluation indicator MAE.

Sample
Number

MAE
Value/p.u.

Sample
Number

MAE
Value/p.u.

Sample
Number

MAE
Value/p.u.

1 0.00535419 6 0.00533444 11 0.00544320
2 0.00524969 7 0.00528232 12 0.00536028
3 0.00535279 8 0.00521685 13 0.00536291
4 0.00533873 9 0.00533234 14 0.00536626
5 0.00530187 10 0.00532769 15 0.00530528

The analysis of Table 5 shows that the overall MAE values of the 15 false data samples
were in the range of 0.0052–0.0055 p.u.; the minimum value was 0.00521685 p.u., the
maximum value was 0.00544320 p.u., and the overall mean was 0.005340692 p.u., which
was relatively small. Due to the accuracy and reliability of the FDIAs detection method
in this paper, secondary reconstruction was only required when the attack amplitude was
small. False data with a small amplitude generally have an insignificant effect on system
operation. It can be seen that the proposed VAE-based FDIAs data reconstruction method
had a high reconstruction rate, and the experimental results also verified its effectiveness.

In summary, the proposed active defense framework against FDIAs could detect
FDIAs and reconstruct data under the conditions of serious data imbalance, high data
dimension, difficult samples to classify, and extensive false data removal. It could also be
used with a small amount of sample data. It was still applicable to the set and was not
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greatly affected by noisy data samples, providing a feasible idea and scheme for the design
of an active defense system for power CPS FDIAs.

5. Conclusions

For highly coupled cyber–physical power CPS, information–energy flow interactions
are becoming increasingly frequent, which not only improves the grid sensing, computing,
communication, and control capabilities, but also aggravates the FDIA risk of the power
grid. This paper first analyzed the principle of power CPS FDIAs, then designed data
enhancement, attack detection, and data reconstruction algorithms from a data-driven
perspective, and proposed an active defense framework against FDIAs for PMU. The
effectiveness of the proposed method provides a new idea for further improving the active
security defense capability of power CPS.
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