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Abstract: Synchronized converters are being studied as a viable alternative to address the transition
from synchronous generation to power-electronics-based generation systems. One of the important
features that make the synchronous generator an unrivaled alternative for power generation is
its stability properties and inherent inertial response. This work presents a stability analysis of a
synchronverter-based system conducted through the bifurcation theory to expose its stability regions
in a grid-connected configuration with an aggregate load model conformed by a ZIP model and
an induction motor model. One and two-parameter bifurcation diagrams on the gain, load, and
Thévenin equivalent plane are computed and analyzed. All the results confirm the strong stability
properties of the syncronverter. Some relevant findings are that the reduction in a droop gain or
time constant results in Hopf bifurcations and inertia reduction, but the increase in the time constant
leads to decoupling between the reactive and active power loops. It is also found that the increment
of a specific time constant (τf > 0.02 s) increases the stability region on the droop gains plane to
all positive values. It is also found that a low lagging power factor reduces the feasible operating
and stable operating regions. For a lagging power factor above 0.755, subcritical Hopf bifurcation
disappears, and also, the feasible operating solution overlaps the stability region. Finally, it is also
found how the Thévenin equivalent affects the stability and that the stability boundary is delimited
by Hopf bifurcations. The bifurcation diagrams are numerically computed using XPP Auto software.

Keywords: bifurcation; eigenvalues; inertia; AC microgrid; planning methods; stability; synchronverter

1. Introduction

Virtual synchronous generators (VSG) are inverters that use a control law that allows
them to emulate, to a greater or lesser extent, the behavior of conventional synchronous
generators (SG). The synchronverter proposed by Zhong and Weiss in [1,2] is a VSG
topology that uses a proper control law that imitates the dynamics of the SG. Therefore,
this topology makes the interoperation between the SG and inverters possible, allowing
the power system to not present major changes in its operation or in the controllers and
studies currently used [3].

One advantage of the synchronverter regarding SG is that some of its parameters,
such as inertia and damping coefficient, can be changed online, changing the dynamics
of the system accordingly. This can be observed in [4], where a parameter design for this
synchronverter is presented. However, the variation of these parameters can lead the
system to an unstable state causing unexpected behaviors. Therefore, to guarantee the
reliable operation of the power systems that have these grid-connected synchronverters,
it is necessary to conduct a stability analysis to determine how the parameters affect
their stability.

Several theories and methods can be used to perform a stability analysis of power
electronic-based power systems, such as small-signal [5,6], robust stability [7], transient
stability [5,8], bifurcation analysis [9–11], and impedance methods [12,13], among others.
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The bifurcation analysis is the best-suited method to analyze the stability of the
nonlinear systems subjected to quasistatic parameter changes [14,15]. The bifurcation
theory allows for determining the stability regions in the parameter space [10,11]. The
stability region boundary can be computed using continuation methods to effectively track
the roots of the dynamical system against parameter variations. These stable regions reveal
the set of system parameters for which the system exhibits stable behavior. Although this
information refers to the stability of the small signal, it is valuable, and this type of stability
is essential for the correct operation of the system.

Previous work has presented a bifurcation analysis for synchronverter-based systems
where saddle-node and Hopf bifurcations were found as a result of the variation of the
droop coefficients [9], but small-signal stability has also been used to assess the effect of grid
impedance variation on the stability of synchronverters [16,17]. Other works use frequency
domain analyses, such as structured singular value analysis [18] and impedance-based
methods [12], to appreciate the variation of parameters of the synchronverter with fre-
quency dependence and observe its stability. In [10], the authors present a deep bifurcation
analysis of an islanded microgrid with a ZIP and a nonlinear load represented by an induc-
tion motor model, as in [19], for voltage stability. Recently, the stability boundary analysis
of islanded droop-based microgrids using an autonomous shooting method is presented
in [20], showing that instability is caused by supercritical Neimark–Sacker bifurcations.

This paper performs the stability analysis based on the bifurcation theory of a grid-
connected synchronverter with local ZIP and nonlinear loads. The analyses are conducted
in one and two parameters, considering the variation of the control gains, inertia, load
level, and grid equivalent. All the bifurcation diagrams are numerically computed with the
XPP Auto program built-in continuation method [21]. Unlike previous works, this article
presents stability boundary to qualitatively and quantitatively identify the relationship
and dependency between the main parameter of the synchronverter controllers and the
characteristics of the network. This analysis can be extended and applied to other network
topologies with several power electronic converters and loads to compute the stability
limits and the parameter relationship that contribute to the enhancement of the system
performance. Table 1 shows a comparison of the proposed work against some previous
works in terms of particular salient features. All of these works are focused on stability and
the synchronverter, except [10], but it presents a bifurcation analysis of a power electronic-
based microgrid with nonlinear and ZIP load, as in the present work. The main research
gap is the computation of the stability and feasible regions on the gain and Thevenin spaces.
The proposed work presents a qualitative analysis of the different systems and control
parameters that lead to smaller or larger stable regions.

Table 1. Stability analysis in previous works.

Features [5] [6] [7] [8] [9] [10] [17] [18] Proposed

Synchronverter X X X X X X X X
Small-signal stability X X X X X

Transient stability X X
Robust stability X

Stability boundary X X
Solution type X X X

Stability region (gain space) X X
Stability region (Thevenin space) X

Experimental validations X X X X X
Decoupling gains X

Feasible solution boundary X
Power-Hardware-in-the-loop validation X X

Nonlinear-ZIP load X X
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The rest of the paper is organized as follows. Section 2 presents the nonlinear model
of the test system. The results of the bifurcation analysis of the synchronverter and the
electrical parameters are presented in Section 3. Finally, Section 4 presents the conclusion
of the presented work.

2. Synchronverter Modeling with a Nonlinear Load Connected to the Network

This section describes the modeling of the test system shown in Figure 1 and all its
electrical elements. The models of each component are widely known in the literature but
are briefly described here.

Figure 1. Grid-connected synchronverter.

2.1. Synchronverter Topology
2.1.1. Operating Principle

The synchronverter was proposed by [1] as a generation unit that, thanks to its control
law, can imitate the dynamics of the synchronous generator. This has a power part and
an electronics part, as shown in Figures 1 and 2. The power part comprises a three-phase
inverter and an RLC filter. The measurements of the output current of the filter iL and the
voltage in the capacitor vo are sent to the electronic part to generate the switching signal of
the VSC, thus regulating the output voltage of the inverter e. The test system of Figure 1 is
based on [10,19,22] and has been widely used for stability analysis.

Figure 2. Electronic part of the synchronverter [1].
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The electronic part of the synchronverter comprises some basic equations that capture
the dynamics of the synchronous generator and two controllers; one for active power
regulation and the other for reactive power regulation, as shown in Figure 2. Next, the
mathematical model of the synchronverter proposed by [1] is briefly described.

The equations that emulate the mechanical part of the synchronverter are [1]:

Jω̇ =
P∗

ω∗
− Te − Dp(ω

∗ −ω) (1)

θ̇ = ω (2)

J = τf Dp (3)

Te = M f i f

〈
iL, s̃in θ

〉
(4)

where J is the combined moment of inertia of the generator and is prime-mover, Dp is the
frequency-drooping coefficient, Te is the electrical torque, iL is the inverter output current,
ω is the angular speed in rad/s, ω∗ is the reference angular speed in rad/s, θ is the angle
of the imaginary rotor in rad, P∗ is the power reference, and τf is the time constant of the
frequency-droop loop. In addition, M f and i f denote the virtual mutual inductance and
the imaginary rotor excitation current, respectively.

On the other hand, the voltage inverter e, the active power P, and the reactive power
Q are calculated with the following equations:

e = θ̇M f i f s̃in θ (5)

P = θ̇M f i f 〈iL, s̃in θ〉

Q = −θ̇M f i f 〈iL, c̃os θ〉
(6)

Dq is the voltage-drooping gain, τv is the time constant of the voltage loop, K is another
coefficient of inertia related to the gain Dq, vm is the amplitude of the synchronverter output
voltage, and v∗ is the amplitude of the reference voltage. More details of the synchronverter
model can be found in the original reference [1]. The vectors c̃os θ and s̃in θ are [1]:

c̃os θ =

 cos θ

cos
(
θ − 2π

3
)

cos
(

θ − 4π
3

)
 s̃in θ =

 sin θ

sin
(
θ − 2π

3
)

sin
(

θ − 4π
3

)
 (7)

2.1.2. Synchronverter Model

The synchronverter frame is considered the common frame of reference. All other
frames are referred to as this common frame of reference using the transformation technique
shown in [23], which is represented in Figure 3 and is defined by (8).

Figure 3. Relationship between the reference frame [23].
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[
FD
FQ

]
=

[
cos δ − sin δ
sin δ cos δ

][
fd
fq

]
(8)

where ω represents the virtual angular frequency of the synchronverter, ωk is the angular
frequency of the electrical component to refer to, δ is the difference between the phase
angle of the frame dq and the common frame of reference DQ of the synchronverter. FD
and FQ represent the electrical quantities in the common reference frame translated from
their original frame fd and fq.

Therefore, δ can be expressed as [1]:

dδ

dt
= ωk −ω (9)

Then, using the DQ transform, Equations (4)–(6) can be rewritten in the common
frame of reference as [1]:

eD = ωM f i f (10)

Te =
3
2

iLD M f i f (11)

Q = −3
2

ωiLQ M f i f (12)

Whereas the state equations for the RLC filter in the DQ frame can be described as
follows [1]:

Ls i̇LD = eD − voD − iLDRs + iLQωLs (13)

Ls i̇LQ = eQ − voQ − iLQRs + iLDωLs (14)

Cv̇oD = iLD − ioD + voQωC (15)

Cv̇oQ = iLQ − ioQ + voDωC (16)

Finally, by adding the three control equations shown in Figure 2, the synchronverter
model is complete and is represented by Equations (9)–(20) [1].

Jω̇ =
P∗

ω∗
− Te − Dp(ω

∗ −ω) (17)

θ̇ = ω (18)

M f ˙i f =
1
K
[
Q∗ + Dq(v∗ − vm)−Q

]
(19)

K = τvωDq (20)

2.1.3. Thévenin Equivalent Model

Using the transformation technique seen in (8), the network voltage referred to as the
common reference frame is expressed by Equations (21) and (22) [1]:

ugD = Vp cos(δ) (21)

ugQ = Vp sin(δ) (22)

On the other hand, the equation of currents of the short-line equivalent model is:

Lg i̇gD = voD − vgD − igDRg + igQωLg (23)

Lg i̇gQ = voQ − vgQ − igQRg − igDωLg (24)
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2.2. Induction Motor

In this research work, the squirrel cage induction motor (IM) is selected as a nonlinear
dynamic load [24]. The flux equations of the stator ψs and rotor ψr of the induction motor
model can be written as [25]:

ψsQ = LsisQ + LmirQ (25)

ψsD = LsisD + LmirD (26)

ψrQ = LrirQ + LmisQ (27)

ψrD = LrirD + LmisD (28)

Lm is the magnetization inductance, and Ls and Lr are the inductances of the stator and
rotor, respectively.

The IM voltage equations are described as [25]:

vsQ = RsisQ + ψ̇sQ + ωψsD (29)

vsD = RsisD + ψ̇sD + ωψsQ (30)

0 = RrirQ + ψ̇rQ + (ω−ωem)ψrD (31)

0 = RrirD + ψ̇rD − (ω−ωem)ψrQ (32)

where Rs and Rr are the stator and rotor resistances, respectively. ω is the angular velocity
of the common reference frame, and ωem is the electrical angular velocity of the motor. The
previous equations describe the model of the electrical part of the IM. The mechanical part
is governed by the oscillation equation [25]:

ω̇mm =
1
Jm

(Tem − Dmωmm − Tmm) (33)

θ̇mm = ωmm (34)

ωem = ωm p (35)

where Jm is the moment of inertia of the motor, ωmm is the mechanical angular speed of the
motor, p is the number of pole pairs, Dm is the damping constant, Tmm is the mechanical
torque, and Tem is the electromagnetic torque, which is described by [25]:

Tem = 1.5p
(
ψsDisQ − ψsQisD

)
(36)

2.3. ZIP Load Model

This model represents the relationship between the magnitude of the voltage and the
power in a polynomial equation [26]. The polynomial model for active power and reactive
power is given by:

PZIP = P0

(
a1

U2
b

U2
0
+ a2

Ub
U0

+ a3

)

QZIP = Q0

(
b1

U2
b

U2
0
+ b2

Ub
U0

+ b3

) (37)

where P0 and Q0 are the active and reactive nominal power, respectively, at nominal voltage
conditions U0. Ub defines the actual bus voltage magnitude. a1 and b1, a2 and b2, a3 and
b3 are the weights of constant impedance load, constant current load, and constant power
load, respectively.
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This model can also be represented as a variant conductance GZIP and a susceptance
BZIP in parallel [9]. This susceptance and conductance are described by the following
equations:

GZIP = P0

(
a1
U2

0
+ a2

U0Ub
+ a3

U2
b

)
BZIP = −Q0

(
b1
U2

0
+ b2

U0Ub
+ b3

U2
b

) (38)

The ZIP load current equations can be presented in the common frame of reference as:

τ i̇PD = GZIPuoD − iPD, τ i̇PQ = GZIPuoQ − iPQ
τ i̇QD = −BZIPuoQ − iQD, τ i̇QQ = BZIPuoD − iQQ

(39)

where τ is the time constant of the ZIP load model.
The power factor PF can be included in this load model, using an equation where the

reference reactive power Qo is a function of the reference active power Po and PF. This
equation is described by:

Q0 = ±P0

(√
1

PF2 − 1

)
(40)

The sign depends on whether the power factor is lagging (+) or leading (−).

3. Bifurcation Analysis
3.1. Synchronverter

In this section, the XPP Auto program built-in continuation method is used to compute
the stability regions of the test system shown in Figure 1. The system parameters are given
in Table 2, and the initial operating point for branch analysis is shown in Table 3.

Table 2. Synchronverter-based system parameters.

Parameter Value Parameter Value

p 2 Jm 0.4 kg ·m2

Rs 0.0996 Ω Ls 0.0103 H
Rr 0.0583 Ω Lr 0.0103 H
Lm 9.415 mH Dpm 0.02187

Tmm 250 N ·m C 1.56 mF
Lg 0.565 mH Rg 0.021 Ω
Ls 0.57 mH Rs 0.042 Ω
P∗ 80 kW Q∗ 0 kVAR
v∗ 375.58842 V Vp 375.588 V
ω∗ 376.99 rad/s ωgrid 376.99 rad/s
Dq 5324.97 Dp 140.7
τf 0.002 s τv 0.02 s
P0 50 kW Pbase 100 kW

a1, b1 0.2 a2, b2 0.3
a3, b3 0.5 U0 460 V
PF 0.61 (lagging) τ 0.01 s

Table 3. Equilibrium point for the synchronverter test case.

Variable Value Variable Value

iLD 139.8225 A iLQ −12.2405 A
voD 373.1030 V voQ −29.4594 V
igD −42.7562 A igQ 4.8043 A

ωmm 181.8135 rad/s ω 376.9911 rad/s
ψsD −0.0363 wb ψsQ −0.9492 wb
ψrD −0.3178 wb ψrQ −0.7483 wb
iPD 17.713 A iPQ −1.4 A
iQD −6.02 A iQQ −76.12 A

δ −0.0546 rad M f i f 1.0122 HA
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3.1.1. Bifurcation Analysis in the Gain Space Dp–Dq

The first parameter that was selected to vary was Dp, but no bifurcation was observed
from its initial value of 140.7 to 10,000. On the other hand, the resulting bifurcation diagram
from varying Dq is shown in Figure 4. In the unstable regions, the system presents two
types of bifurcations; a stable Hopf bifurcation (SHB) in Dq = 601.1, and a torus bifurcation
(TRB) in Dq = 383.5. At the SHB, two branches of stable periodic solutions are born, which
causes the variables of the system to oscillate. These branches of stable periodic solutions
change stability at the TRB point. In these stable periodic solutions, the system presents
an oscillatory behavior, for example, when the gain is decreased to a value of Dq = 571,
the system variables begin to oscillate with a frequency of approximately 62 Hz instead of
having a constant value; this is shown in Figure 5. The bifurcation diagram shows that for
Dq < 601.1, the system is unstable since, below this bifurcation value, periodic solutions
and even lower values emerge (Dq < 383.5), and thus, this unstable periodic solution
evolves into a quasiperiodic solution. This behavior demonstrates that, for the test systems,
a sign of loss of stability is the apparition of sustained oscillation on the amplitude of the
electric and control variables.

Figure 4. Bifurcation diagram by varying Dq: stable solutions in red, unstable solutions in black,
stable periodic solutions in green, and unstable periodic solutions in blue.

Figure 5. Periodic oscillations due to SHB bifurcation in Dq = 571.

The behavior of the TRB can be explained as follows. If the system suffers a disturbance
and the values of the variables fall at the point where the bifurcation parameter is greater
than the bifurcation point, for example, at Dq = 390, the system oscillates at over one
frequency until it stabilizes in a periodic orbit (Figure 6). If the bifurcation parameter is less
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than the bifurcation point, for example, Dq = 380, it oscillates with increasing amplitude
(Figure 7).

The eigenvalues are shown in Table 4, and Figure 8 presents the harmonic spectrum of
the corresponding quasiperiodic solution to exhibit the frequency components. The results
show that besides the oscillation frequency of 62 Hz captured by the eigenvalues, there
is a slower oscillation component at 3.25 Hz and two others with higher frequencies at
123 Hz and 185 Hz. The slowest and highest oscillation frequencies are not observed in the
eigenvalues, but this can be attributed to the fact that these components are nonlinear and
therefore are not captured by the eigenvalues.

Figure 6. Bounded oscillations with two frequencies due to the torus bifurcation in Dq = 390.

Figure 7. Increasing oscillations due to the torus bifurcation in Dq = 380.

Table 4. Eigenvalues that occur at the torus bifurcation.

Eigenvalues

λ1 = −21.8 + 2004j λ7 = 16− 392j λ13 = −7.1
λ2 = −21.8− 2004j λ8 = −55 + 372j λ14 = 8.77
λ3 = −30.2 + 1252j λ9 = −55.3− 372j λ15 = −95
λ4 = −30.2− 1252j λ10 = −33.7 + 121j λ16 = 8.77

λ5 = −490.8 λ11 = −33.7− 121j λ17 = −100
λ6 = 16 + 392j λ12 = −183.7 λ18 = −100
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Figure 8. Spectrum of the torus solution.

To observe the relationship between the gains Dp and Dq and the stability of the system,
a double-parameter bifurcation analysis is performed. Figure 9 exhibits the bifurcation
diagram between the gains Dp and Dq, where the blue curve corresponds to the limits
of the SHB of the case study. The proposed system becomes unstable by reducing Dp or
Dq, and this result is expected since by reducing these parameters, less reactive and active
power is injected against frequency and voltage variations. It can also be seen that the
bifurcation behavior is almost linear, except for Dp < 10 (approximately). This means
that the constants Dp and Dq hardly depend on each other, which is desired because the
selection of these gains can be selected independently since they are practically decoupled.
These limits depend on the system parameter and operating points. Figure 9 also shows
that the value of Dq < 601.1 leads to an unstable solution no matter the value of Dp. If lower
values of this gain are needed to reach specific transient response or power management
criteria, this system with the current set of control system parameters will be unstable;
however, some other parameters, such as time constants τf or τv, can be varied to reach
stable solutions.

Figure 9. Stability region, when the gains vary Dq–Dp, with τf = 0.002 s y τv = 0.02 s.

The impact of the time constants τf and τv on the stability region is shown in
Figures 10 and 11, respectively. The results show that, by increasing the time constant τf to
0.02 s, there is a small reduction in the stability region; however, the gained stability region
evidence a linear boundary. This means that the gains Dp and Dq are decoupled from each
other. When increasing this gain, it is not possible to appreciate any change in stability. In
addition, the results show that by increasing the constant τv to 2 s, the unstable regions
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practically disappear for positive values of Dp and Dq. This means that for any positive
value of the virtual inertia J, the system is stable since it depends on Dp and τf . This is a
strong result of the synchronverter proposed by [1], even with the highly nonlinear loads
of the test system, which establishes that all positive values of these droop gains make the
system stable for this set of parameters.

(a) τf = 0.02 s (b) τf = 0.2 s

Figure 10. Region of stability of the plane Dq–Dp before different values of τf .

(a) τv = 0.2 s (b) τv = 2 s

Figure 11. Region of stability of the plane Dq–Dp for different values of τv.

3.1.2. Bifurcation Analysis Varying the Load ZIP+IM

Load level is one of the main parameters affecting the stability; therefore, in this
subsection, a bifurcation analysis is performed by varying the parameter P0. As mentioned
above, the effect of reactive power Q0 is implicit because of the power factor. The influence
of load type, power factor, and control parameters are also investigated.

The bifurcation diagram that was obtained by varying the active power P0 for the
different loads is shown in Figure 12. For the constant impedance load, a supercritical Hopf
bifurcation (SUHB) occurs when P0 = 1.243 p.u. In the constant current load, a subcritical
Hopf bifurcation (UHB) can be observed when P0 = 2.248 p.u., while for the constant
power load, a saddle-node bifurcation (SNB) arises with the active power P0 = 3.796 p.u.
Here, the three load types of the ZIP model present different bifurcations, and therefore, all
three have a significant effect on the stability of the system.

The ZIP load and the ZIP+IM load present a UHB, but with the ZIP+IM load, this
appears in a higher value, thus increasing the stability region; however, the operating limit
(OL) is presented at a lower value, as shown in Figure 13. Focusing on the ZIP+IM load,
the UHB branch appears at P0 = 3.83 p.u., and Figure 14 presents the periodic solutions
that arise because of this bifurcation.
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Figure 12. Bifurcation diagram for the different types of ZIP load models.

Figure 13. Bifurcation diagrams for the ZIP and ZIP+IM models.

Figure 14. Bifurcation diagram when varying P0: in red are the stable solutions, in black are the
unstable solutions, in green are the stable periodic solutions, and in blue are the unstable periodic
solutions.

If the system is oscillating in this stable limit cycle again, but now the bifurcation
parameter is increased, a period-doubling bifurcation (PDB) occurs, which changes the
initial stable orbit by two orbits. The behavior of this bifurcation is shown in Figure 15 for a
value of P0 = 3.86 p.u.

By increasing the active power a little more than P0 = 3.864 p.u., the system experi-
ences a TRB, causing its variables to oscillate with two frequencies.
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If the active power increases, for example, at P0 = 3.89 p.u., the system will go from
having two oscillations of constant amplitude to presenting oscillations of increasing am-
plitude. Therefore, the angle between the load and the synchronverter increases, usually
causing voltage collapse or loss of synchronization before reaching the maximum loadabil-
ity point. However, as seen in Figure 16, although the system presents a loss of synchronism
because of the increasing angle δ, the other variables present constant oscillations. This
dynamic in the abc frame is observed as oscillations with two frequencies, as seen in
Figure 17.

Figure 15. Period-doubling oscillations at P0 = 3.86 p.u.

(a) (b)

(c) (d)

Figure 16. The behavior of the system when the loss of synchronism occurs at P0 = 3.89 p.u.: (a–c)
Time response of the voltage, angular velocity, and angle. (d) Steady-state phase portrait.

The appearance of the Hopf bifurcation can be controlled either by varying the gain
Dq or the power factor (PF); this can be seen in Figure 18. For the first case, when the
gain Dq is decreased, the subcritical Hopf branch tends to disappear; however, the stable
regions are reduced. On the contrary, when the gain Dq increases, the Hopf bifurcation
appears at a higher value, thus increasing the stable regions. Increasing the gain Dq implies
that the system must inject more reactive power in the event of minor voltage variations.
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Therefore, this way of controlling the bifurcations is not very effective, so a balance must
be found between the desired stable region and the maximum reactive power available by
the synchronverter.

Figure 17. Voltage response on abc in P0 = 3.89 p.u.

By varying the power factor, the results show that by having PF > 0.755 (lagging), the
UHB disappears and the OL increases, so this second form of controlling the Hopf branch
is a more practical option.

(a) (b)

Figure 18. Stability region when varying: (a) The control gain Dq. (b) The power factor PF.

3.1.3. Bifurcation Analysis at the Thévenin Equivalent

The Thévenin equivalent is constantly changing because of the constant connection
and disconnection of elements, loads, and generation, as well as the varying load demand
and generation. The circuit equivalent of the grid is commonly given in terms of its short-
circuit capacity, the nominal voltage, the X/R relation, and implicitly, the nominal grid
frequency. These four data comply with the Thévenin equivalent made up of an equivalent
voltage source in series with an RL branch. The relationship between the SCC and the
injected or demanded power across the PCC is known as a short-circuit ratio (SCR). Low
SCR values refer to weak systems, and high values refer to stiff systems. Regarding the
stability of grid-connected inverters, weak systems are more susceptible to losing stability.
To assess the impact of the grid equivalent on the stability of the synchronverter, the stability
region in the Lg − Rg plane is computed, as well as the bifurcation diagram with Lg as the
bifurcation parameter.

The inductance Lg varies, and the resulting bifurcation diagram is shown in
Figure 19. It can be seen that an SNB appears in the OL at Lg = 25.41 mH. This value is
very far from the initial value of Lg = 0.565 mH, which indicates a relatively large stability
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margin for Lg. Notice that the apparition of the SNB is just on the turning point of the
bifurcation diagram, which indicates that the stability limit overlaps the feasible solution,
i.e., operatively, it is the best performance in that all the values of Lg make the system stable.

Figure 19. Bifurcation diagram by varying Lg: stable solutions in red and unstable solutions in black.

Figure 20 shows the stability region at the Lg − Rg plane at different values of the
voltage magnitude of the Thévenin equivalent Vg (the magnitude of the line-to-line voltage
in RMS), where the base case is a Vg = 460 V. It can be seen that the system does not
present feasible solutions for large values of Rg and Lg. Furthermore, it can be observed
that by increasing the voltage of the network Vg, the region of stability increases. The
results obtained in Figure 20 are consistent with the fact that the reduction in the short-
circuit capacity (weak systems) leads to less stable systems. Although the stability of the
electrical system is lost with large values of network inductance and capacitance, these
values correspond to short-circuit capacities well below the nominal power of the PCC
and therefore are values that in a practical system could not be reached. This means that
the stability of the synchronverter is robust to changes in the Thévenin equivalent. Notice
that the stability boundary is limited by SNB, which is a more dangerous loss of stability
compared with the SHB or the UHB since the SNB makes the variables grow suddenly.
Fortunately, it is not something to worry about in this case, since these limits correspond to
very low levels of SCR, which makes them unrealistic in practical systems.

(a) Vg = 400 V (b) Vg = 500 V

Figure 20. Stability region in Lg − Rg plane for different Thévenin voltages Vg.
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4. Conclusions

In this paper, a bifurcation analysis was carried out to determine how synchronverter
parameters variation affects the system stability. We can conclude that:

1. A reduction in the droop gain Dp or the time constant t f leads to a reduction in the
synchronverter inertia, which causes the system to present Hopf bifurcations, making
the system susceptible to showing oscillations.

2. The increase in the time constants t f or tv allows the decoupling of the active power
loop and the reactive power loop, which is important in the synchronverter parameters
selection. Furthermore, the increase in the time constant tv allows for improving the
stability region on the Dp − Dq plane.

3. The increase in the droop gain Dq or of the power factor PF allows for an increase in
the system OL.

4. In general, large values of Rg and Lg and low voltage magnitude (Vg) lead to a less
stable system.

Some future works aim to extend this analysis to microgrids, islanded and connected to
the grid, with multiple synchronverters, linear and nonlinear loads, battery storage systems,
and other types of power electronic inverter controls for the integration of renewable
energies.
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Abbreviations
The following abbreviations are used in this manuscript:

DQ direct-quadrature reference frame
IM induction motor
OL operating limit
PCC point of common coupling
PDB period-doubling bifurcation
PF power factor
RLC resistive-inductive-capacitive
RMS root mean square
SCC short-circuit current
SCR short-circuit ratio
SG synchronous generators
SHB supercritical Hopf bifurcation
SNB saddle-node bifurcation
SHB stable Hopf bifurcation
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SUHB Supercritical Hopf bifurcation
TRB Torus bifurcation
UHB Subcritical Hopf bifurcation
VSC Voltage source converters
VSG Virtual synchronous generators

Nomenclature

δ Angle between the frame dq and the common frame of reference DQ.
eD, eQ Voltage at inverter terminals (D and Q axis).
e Voltage at inverter terminals.
M f i f Excitation of the imaginary field.
J Virtual moment of inertia of the synchronverter.
Dp Frequency-drooping coefficient.
Dq Voltage-drooping coefficient.
Te Electromagnetic torque of the synchronverter.
Tmm Electromagnetic torque of the motor.
θ Angle of the synchronverter.
ω Angular frequency of the synchronverter.
ωm Angular velocity of the rotor.
ωem Electrical angular velocity of the motor.
ωgrid Angular frequency of the grid.
ω∗ Reference angular frequency.
P Active power.
Q Reactive power.
PZIP Active power of the ZIP load.
QZIP Reactive power of the ZIP load.
GZIP Conductance of the ZIP load.
BZIP Susceptance of the ZIP load.
P∗ Reference active power.
Q∗ Reference reactive power.
K Coefficient of inertia related to the gain Dq.
τf Time constant of the frequency droop loop.
τv Time constant of the voltage droop loop.
iL Synchronverter output current.
iLD, iLQ Synchronverter output current (D and Q axis).
voD, voQ Synchronverter output voltage (D and Q axis).
igD, igQ Grid output current (D and Q axis).
vgD, vgQ Grid output voltage (D and Q axis).
ψsD, ψsQ Flux links of stator windings (D and Q axis).
ψrD, ψrQ Flux links of rotor windings (D and Q axis).
iPD, iPQ Conductance output current (D and Q axis).
iQD, iQQ Susceptance output current (D and Q axis).
v∗ Amplitude of the reference voltage.
vm Amplitude of the synchronverter output voltage.
Vp Amplitude of the grid voltage.
p Number of pole pairs.
Lsm Stator inductance.
Rsm Stator resistance.
Lr Rotor inductance.
Rr Rotor resistance.
Lm Magnetization inductance.
Jm Virtual moment of inertia of the motor.
Dm Damping constant.
C Capacitor.
Lg Grid inductance.
Rg Grid resistance.
Ls Synchronverter inductance.
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Rs Synchronverter resistance.
P0 Reference active power of the ZIP load.
Q0 Reference reactive power of the ZIP load.
a1, b1 Percentages of the constant-impedance load.
a2, b2 Percentages of the constant-current load.
a3, b3 Percentages of the constant-power load.
PF Power factor.
τ Time constant of the ZIP load.
U0 Nominal magnitude voltage of the ZIP load.
Ub Actual voltage magnitude of the ZIP load.
ωk Angular frequency of the component to refer.
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