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Abstract: Renewable energy sources are preferred for many power generation applications. En-
ergy from the wind is one of the fastest-expanding kinds of sustainable energy, and it is essential
in preventing potential energy issues in the foreseeable future. One pertinent issue is the many
geometrical alterations that the scientific community has suggested to enhance rotor performance
features. Hence, to address the challenge of developing a model that resolves these problems, the
purpose of this investigation was to determine how well a scaled-down version of a Savonius turbine
performed in terms of power output using a wind tunnel. Subsequently, the effect of the blockage
ratio produced in the wind tunnel during the chamber test on the scaled model was evaluated. This
study discusses the influences of various modified configurations on the turbine blades’ torque and
power coefficients (Cp) at various tip speed ratios (TSRs) using three-dimensional (3D) unsteady
computational fluid dynamics. The findings showed that the scaled model successfully achieved
tunnel blockage corrections, and the experimental results obtained can be used in order to estimate
how the same turbine would perform in real conditions. Furthermore, numerically, the new models
achieved improvements in Cp of 19.5%, 16.8%, and 12.2%, respectively, for the flow-guiding channel
(FGC at
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= 30◦), wavy area at tip and end (WTE), and wavy area on the convex blade (WCB) models
in comparison to the benchmark S-ORM model and under identical wind speed conditions. This
investigation can provide guidance for improvements of the aerodynamic characteristics of Savonius
wind turbines.

Keywords: wind energy; Savonius wind turbine; S-ORM model; coefficient of power; CFX analysis;
rotor experimental testing

1. Introduction

Electricity production from renewable sources has increased in recent years, making
it one of the most significant commodities in contemporary civilization and one that has
no negative impact on the environment [1]. Wind power is widely regarded as one of
the most exciting and potentially useful new kinds of energy because of its seemingly
limitless potential. Wind turbines have also been used for mechanical needs and energy
production because of their widespread availability, low cost, and ease of assembly. Wind
turbine rotors typically fall into two categories: horizontal axis wind rotors (HAWRs) and
vertical axis wind rotors (VAWRs). These are named based on the orientation of their
revolving shafts. HAWRs, well-known for their better power efficiency, have long been
relied upon when efficient power is needed. There are several advantages to employing
a VAWR (particularly a Savonius model): a higher starting torque, a lower cut-in speed,
self-starting operation, and a low noise level [2].
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In view of this, the Savonius wind turbine, with its vertical axis, has become a popular
choice to produce electricity from wind power in small-scale applications [3]. Improvements
upstream of the turbine can be achieved by utilizing the wake energy for different boundary
conditions [4]. Consequently, applying the V-linear layout-arrangement turbine array
when considering the wake energy in a large wind farm was found to result in 11%, 5%,
22.89%, and 21% respective increases in total power [5–8]. Moreover, combinations of
other Savonius rotors, which rotate in opposite directions, have been found to increase
performance by 38%, 80%, and 6.8% [9–11] compared to conventional Savonius rotors. The
accumulative inner arc results have been determined to be 17.81%, 11.34%, 32.9%, 41%, and
10%, respectively. This shows an improvement over the conventional configuration [12–16],
but a two-dimensional (2D) simulation was used to avoid complex geometries. One of the
main methods used to improve rotor performance is adding an auxiliary structure, such as
a casing, nozzle, deflector, cylindrical cowling, rotor house, omni-directional guide vane, or
circular cylinder [17–27]. However, these structures might impact other efficiency criteria,
such as the overlap ratio and end plates, and require reevaluation following installation.

Three rotor parameters—factor in shape, overlap ratio, and tip speed ratio (TSR)—
are used as independent variables to create a regression formula and determine the best
parameter set for the power coefficients (Cp). This is undertaken using Minitab software
during the experiment design [28]. Note that the opening the valve on the blades at the
best angle has become a good technique and approach, exhibiting a 14% improvement
in performance [29]. Furthermore, fluid–structure interaction (FSI) modeling has been
used in the analysis of the boundaries of a wind turbine’s blades and can define the strain
(displacement) using an elastic stiffness matrix [30]. However, flexible designs rely on
wind speed and the TSR, whereas Savonius turbines, which have rigid blades, are not subject
to this limitation. Moreover, genetic algorithms (GAs) can be used to discover innovative
geometries automatically by using methods that produce random geometries, increasing the
Cp and achieving a maximum substantial improvement of up to 33% [31–36]. Nevertheless,
to prove this assumption is correct, this research utilized a technique called digital image
processing (DIP) with the assistance of an optimization technique that generated random
models. The particle swarm optimization (PSO) algorithm was applied to determine the
optimal design parameters in accordance with the response of a surface model developed
using the Kriging [37] and Taguchi [38] methods. The difference in Cp change between a
single-stage rotor and multiple-stage rotor indicated that the extra segmentation of rotor
plates reduced the rotor’s effectiveness. It is simple to envisage that the characteristics of
a multi-stage rotor directly result from its more challenging production process [39,40].
One investigation has been carried out with the Savonius turbine utilizing a configuration
of slotted blades on the rotor, which made it possible to draw a conclusion based on the
findings and the study that the installation of slotted blades on Savonius wind turbines
can increase their overall performance [41]. Here, the Cp increased with the TSR, with a
maximum value of 2.5% [42].

Many researchers have investigated the crucial optimized geometric parameters that would
significantly improve performance. The investigation carried out by M. Niyat Zadeh et al.,
used COMSOL software to simulate a Savonius-type turbine helical configuration at two
different wind speeds (6 and 8 m/s). This was performed by considering the influence of
one important parameter on performance: Bach’s section effect [43]. Mariem Lajnef et al., and
A. Damak et al., conducted experimental research using a three-dimensional (3D) printer
to model a Savonius rotor of a helical type in a wind tunnel, where the rotor’s static and
dynamic design factors were studied [44,45]. On the other hand, Nur Alom et al., utilized
vent augmenter blades to decrease the rotor’s drag-negative force using unsteady 3D
simulations of the vented elliptical profile rotor. This was done by estimating its drag
force (CD) and lift force (CL) [46] after the tests were conducted in a wind tunnel [47].
Likewise, S. Meri et al., proposed an elliptical inner wavy blade through unsteady two-
dimensional (2D) simulations in ANSYS Fluent and experimentally using a wind tunnel.
Further results have detected a considerable increase in power relative to the classical
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model [48]. Elmekawy et al. [49] performed computational analyses to examine the impact
of varying the twisting angle on the blade rotor. W. A. El-Askary et al. [50] suggested
a twisted Savonius rotor with a modified profile and a twist angle of 45 degrees was
investigated in both experimental and computational research. An investigation has been
carried out to identify the ideal overlap ratio of twisted blades and size ratio of endplates,
as well as their influence on the aerodynamic performance of a twisted Savonius rotor [51].
M. Tahani et al. [52] proposed enhancements that can be summed up as follows: (1) a
Savonius rotor twist with an adjustable cutting plane, (2) a plane that has a conical shaft
and a twisted Savonius rotor, (3) a Savonius rotor that twists with a conical shaft and a
movable cut plane, and (4) a conical shaft and a movable cut plane making up a twisted
wind rotor.

Based on the above relevant research analyses, it can be observed that geometric and
operating characteristics influence the Savonius wind turbine’s performance. Moreover,
the installing space, along with wide range of proposed methods and approaches, were
shown to affect the efficiency of typical Savonius wind turbines, as summarized in Figure 1.
However, one of the critical issues in developing the Savonius wind turbine is that the rotor
performance is less efficient than other types of wind turbines, such as the Darrius VAWR
and Archimedes wind turbine HAWR.
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Figure 1. Benefit categories for Savonius wind turbine efficiency.

In this study, we compared a chosen basic model [48] and an identical scaled-down
version of the same basic model to study the effect of the blockage ratio through the use of
3D simulation and a wind tunnel experiment. Subsequently, we conducted computational
fluid dynamics (CFD) analysis of the proposed new models, which was directed towards
developing the effectiveness of Savonius wind turbines in operation and minimizing the
quantity of negative torque. However, there are no previously recorded research efforts
that address the issues of performance enhancement and profile modification for the
two-blade elliptical Savonius turbine with inner wavy area configuration proposed in
this investigation. The novelty of this work consists in the adjustment of the wavy area
positions along the concave and convex blades and the further addition of a flow guide
channel with different angles to the wavy blade profile. This method does not need a
complex fabrication process; therefore, it can reduce the device’s production costs and be
performed in actual conditions.



Energies 2022, 15, 8808 4 of 23

2. Performance Estimation Calculations

The power produced by the wind turbine rotor was estimated by multiplying the
rotor torque (T) by the rotor angular velocity (ω). One other significant factor definition
used was the wind’s available energy, which was measured by the coefficient of power
(Cp) with respect to the tip speed ratio (TSR). Note that the Betz law provides the upper
bound for the efficiency with which wind energy may be converted into usable energy.
Accordingly, the CP describes the maximum efficiency with which the kinetic energy of the
air flowing from the wind turbine blades can be turned into rotational energy [53]. The CP
and TSR formula is as follows:

CP =
Pturbine
P wind

=
Tω

0.5 ρ A V3
∞

, (1)

TSR =
ω R
V∞

. (2)

Another definition is the that of the torque coefficient (CT), which defines the ratio of
the rotor’s actual torque (T) to the theoretical torque (T w) generated by the wind [54].

CT =
Actual torque

Theortical torque
=

Tturbine
T w

=
T

0.5 ρ A R V2
∞

=
CP

TSR
, (3)

where ρ is the density of air, which is equal to 1.165 kg/m3 at 30 ◦C; T represents torque
(N-m); T w represents the theoretical torque; A represents the swept blade area (m2); R
represents the effective radius of the turbine (m); and V∞ is the velocity of incoming air
(m/s).The experiment’s generated torque was computed as follows [45].

Tturbine = F r = 9.81 (W − S)(rp + dr), (4)

in which the pulley load (F) and pulley radius (r) are used. W is the side tight tension (kg),
S is the side slack (kg), rp is the pulley radius (m), and dr is the string nylon diameter (m).

3. Methods

This work modified (two adjustments were carried out) the original Savonius rotor’s
dimensions and geometry using three-dimensional (3D) modeling in Solid Works and
simulation in Ansys CFX 2020 R2 in tandem with experimental analysis. However, the
size of the test section of the aerodynamic lab was restricted, which led to a different range
for the blockage ratio (BR) in this investigation. Note that the definition of the BR is the
ratio of the rotor’s swept area (A = H × D) to the flow cross-section area (At = L × W). The
blockage percentage in this study was under 30%, which is acceptable [55]. Therefore, no
blockage correction measures were used or applied [56]. For the comparison of results,
the findings were reported against the dataset with the highest power coefficient (Cp) [57].
The first adjustment defined a numerical and experimental model. Here, the small model
was tested by scaling down the rotor size of the original model based on the scale factor
(SF) procedure [58]. For this, it was necessary to use enough experimental procedures
to measure the output performance of the configured turbine and computational fluid
dynamics (CFD) simulations. To preserve the same BR, a 1:1.3 scale model of the original
rotor model (S-ORM) was configured and erected in the wind tunnel test section. The
second adjustment involved the modification of the blade shape for multiple configurations,
resulting in new models with optimal parametric geometry and utilizing ANSYS CFX to
investigate the aerodynamic qualities of the modified models. A flowchart detailing the
relationship between the experiment and simulation of the processes and the connection
with the new modified model is shown in Figure 2.
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3.1. Establishment of Geometric Model

This work investigated two elliptical blades’ inner wavy areas (WAs) in Savonius
turbine models. Figure 3 shows the key features and dimensions of the geometry employed.
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e = D/5 = d/3 ≈ 0.2, and BLN = 2.

In accordance with the definitions of each term, H is the rotor height, D denotes
the diameter rotor, d represents the length of the blade chord, e is the distance between
overlaps, and Do expresses the end plate’s diameter. The investigation focused on two
input parameters of the geometrical numerical model that affected the model’s behavior.
Firstly, the aspect ratio (AR) was defined as the ratio found by subtracting H from D using
Equation (5) [59]. Second, the overlap ratio (OR) operator connected elements e and d,
similarly to Equation (6) [59]. Furthermore, the performance of the model was dependent
on the frontal swept area of turbine rotor A, which was evaluated using Equation (7) [45].

AR =
H
D

, (5)

OR =
e
d

, (6)

A = H × D. (7)

The software packages Solid Works and ANSYS CFX were adopted to design the
geometry and computational domain in two stages. The proposed rotor’s dimensions
were derived from the original model in the first stage. In the second stage, the geometry
of the original elliptical model (benchmark model), as highlighted earlier, was modified
by considering the modification of the wavy area positions and adding a flow-guiding
channel (FGC). Furthermore, a comparison between a benchmark Savonius rotor and ten
rotor blades is proposed in this study, as shown in Figure 4. A Savonius rotor was installed
vertically on the z-axis, with the flow oriented transversely on the y-axis. Subsequently, the
number of blades on the rotor was fixed at two; the maximum rotor diameter of Do was
165 mm, while the maximum H was 150 mm. Therefore, D equaled 150 mm of the rotor.
In terms of thickness, the rotor blade was assumed to be 3 mm, with an AR of 1 (H/D),
an OR of 0.2, and several stages of 1. Within the scope of this investigation, in order to
define an innovative blade geometry in Solid Works software, we considered ten different
configuration to enhance the performance of the base profile. First, the rotor models (M1,
M2, M3, and M4) defined the change in WA positions, which were named WTE, WCB,
FEW, and TQW. Secondly, the rotor models (M5, M6, M7, M8, M9, and M10) involved
adding the FGC to the WA in the vertical axis elliptical wind blade profile models, for
which the flow-guiding channel (FGC) model with fixed L equaled 0.33d at different angle
orientations (
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3.2. Numerical Model

In the examined cases, this work used ANSYS CFX 2020 R2 transient flows for nu-
merical simulation with the scaled model. The methodology that was applied during the
building of the CFX CFD model was formulated based on recommendations from relevant
studies [12,51,52,60] and on previous work by the authors [48,57]. The Navier–Stokes equa-
tions describe the fluid dynamics of a 3D incompressible Newtonian fluid flow. ANSYS
CFX was utilized to solve these equations, and the numerical model was rendered accurate
to second-order high-resolution time using the finite-volume method (FVM). Based on
previous investigations [61], the shear stress transport (SST) model was selected as the
turbulence model. When the SST turbulence model was used in a 3D simulation for this
study, the results were very close to the experimental measurements from other turbulence
models. The results could be used to solve the flow separation problem under different
pressure gradients. Figure 5 illustrates the domain in which 3D computation was used in
this work. Furthermore, the computational domain was based on the wind tunnel testing
dimensions. Two domains were established for the simulation, a rotating domain for the
rotor and a stationary domain for wind flow (test section). The boundary settings of the
stationary domain were the velocity inlet, outlet pressure, and no-slip wall. Note that the
rotary domain had a dimension of 1.1 D, and the diameter size of the rotor was specified
as 150 mm. Specifically, the rotor and stationary domains were two distinct parts of the
overall computation domain and the frozen rotor model was used to put them in contact.
The simulations were run at wind speeds of 6 and 9 m/s, which caused the rotor domain
to spin. In addition, an unsteady influence analysis with 40 time steps per revolution rotor
was used for all the situations under investigation. The time setup required five hours for
four periods, with 40 times steps in each period and six processor cores. The work also
implemented the interface model for 3D viscous flutter investigations using the transient
rotor stator (TRS 360), which assumes a general connection interface between the revolving
and stationary zones. To obtain a decent root mean square (RMS) at each time step, 1 one
to three loops of internal iteration with four rotor spins were typically needed.
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In this work, we present an unstructured mesh topology and describe how it can be
used to efficiently produce a mesh of good quality for both rotating and fixed domains.
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As illustrated in Table 1, we analyzed grid independence to determine the skewness and
orthogonal quality of the mesh. The total number of elements in the rotary and stationary
domains was about 4.056 million, since fine grid meshes were chosen in the end, as shown
in Table 2. Inflation on the rotor wall and fine meshing using the tetrahedral technique are
depicted in detail in Figure 6. We started from five maximal inflation layers at a 1.1 rate
of growth in the test simulation, as shown in Table 2. Under all operating conditions, the
thickness of the first layer normal to the wall had to be approximately 0.000122 m to obtain
y+ < 5 along all walls. When moving from the inner to the outer domain, the number of
grid nodes was reduced by making the outermost grids coarser.

Table 1. The grid independence statistics for the S-ORM model.

Grid
Stationary Domain Rotating Domain

No. of Elements No. of Nodes. No. of Elements No. of Nodes.

Coarse 83,352 27,871 1,757,235 925,883
Medium 194,725 37,101 2,129,990 2,746,720

Fine 231,272 327,557 2,488,752 3,729,226
Extra fine 632,023 235,274 4,391,444 5,254,209

Table 2. Justification of the grid independence statistics.

Density of Mesh Coarse Medium Fine Extra Fine

Total number of elements 1,840,587 2,324,715 2,720,024 5,023,467
Total number of nodes 953,754 2,783,821 4,056,783 5,489,483

Inflation numbering 5 10 15 20
Growth rate inflation 1.1 1.1 1.1 1.1

Skewness average 0.842 0.839 0.811 0.837
Orthogonal quality average 0.989 0.992 0.994 0.993

Blade sizing (mm) 2.5 2 1.5 1
Rotating circle face sizing (mm) 15 10 5 2.5
Outer domain face sizing (mm) 20 15 10 5

3.3. Experimental Work

The laboratory was equipped with a subsonic open-type wind tunnel, where a drive
section with a circular outlet was used for experimental testing, as demonstrated in Figure 7.
By adjusting the damper, the wind blowing rate at the wind tunnel’s test zone could be
varied between 1 and 32 m/s at the user’s discretion. As illustrated in Figure 7, an S-ORM
was installed in the test section area. Note that the size of this wind tunnel test piece
was 600 mm in length, 305 mm in width, and 305 mm in height. Correspondingly, clear
polycarbonate boards 10 mm in thickness were bolted to the inside of the wind tunnel
to create a contained testing environment. Subsequently, a 500 g range spring balance
(analog weighing) was employed to quantify the dynamic torque produced by the Savonius
wind rotor shaft. The rope brake dynamometer used a rope coiled around the rim of the
rotating pulley to simulate the friction belt, in which the belt rope was attached to the
spring balance (counterweight) [62]. However, a digital torque meter placed on the rotor
shaft to measure the dynamic torque was not used, which was a limitation of this study.
Wind speeds of around 6 and 9 m/s were used in the experiments. When it first started,
the turbine model was under no load. The rotating turbine model’s speed was slowed by
progressively applying a brake load by ratcheting up the tension on the pulley’s braking
belt. Consequently, forces generated when braking according to the spring weight at
different revolutions per minutes (RPMs) were measured and recorded to determine the
tip speed ratio (TSR), rotor torque (T), torque coefficient (CT), and power coefficient (Cp).
This procedure was carried out numerous times until the shaft no longer rotated, with
each subsequent increment being increased by 1 g. Hence, experiments were conducted
repeatedly for each configuration of the turbines to gather datasets. The efficiency of the
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S-ORM turbine’s power output was compared with the reference model in terms of Cp
and CT. However, qualitative observations using smoke flow visualization at various wind
speeds of turbulent flows were not undertaken in the region of the turbine model.
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Considering the errors throughout the test, the true values for all test outcomes could
be determined. The experimental results for this investigation were determined with un-
certainties, where conditions of various parameters were considered. Furthermore, the
ranges and accuracies of the velocity, turbine speed, and turbine torque were measured and
calculated. The measured data provided information about the accuracy of the tachometer
(DT-2268), which was ±0.05 for each revolution (RPM). Moreover, the upstream and down-
stream air velocity of the AF100 open-circuit subsonic wind tunnel was measured using a
Pitot static tube. Here, a traversing Pitot tube was adjusted to an accurate measurement.
We also calculated uncertainty [63]. Furthermore, we performed a regression analysis
for the independent variables of turbine torque and the TSR data when carrying out the
tests for each regression formula model. Subsequently, their probabilities were assessed,
and a confidence interval that covered 95% of the possible outcomes for compliance was
generated. Finally, the overall experiment model uncertainty was estimated for each prac-
tical replication of the experiment, was and the uncertainties were closely fit and could
be accepted.
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4. Verification of the Accuracy

Initially, to ensure the accuracy of our model, several different ANSYS CFX software
simulation scenarios were developed for the elliptical Savonius turbine, and comparisons
were made between the test results and the results given in [48]. Performance was measured
relative to the power coefficient (Cp) at varying turbine tip speed ratios (TSRs). A variety of
TSRs, ranging from 0.1 to 1.2, were simulated with a wind speed of 9 m/s. The Cp reached
its maximum value when the TSR was 0.7. Previous experimental and numerical results [48]
were used to validate the current findings. As shown in Figure 8, ratios ranging from 0.2 to
0.35 and 1.1 to 1.2 were related to the TSR, with an error percentage range of less than 5%.
These variation percentages may have been due to, first, the different grid resolutions when
comparing the present three-dimensional (3D) simulation with a two-dimensional (2D)
simulation, which has a higher number of grid cells in 3D simulation computations. Second,
different methods of analysis—CFX CFD and fluent—were considered. Finally, they may
have been due to the different time steps that were adopted in the current simulation and
the previous one. However, no statistically significant change (more than 5%) in the average
Cp was found in the comparison to the benchmark model. Hence, the maximum overall
relative error was less than 9% according to the simulation results obtained from this study;
this demonstrates that the numerical method used in this investigation could accurately
predict outcomes.
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Figure 8. Numerical model verification using Cp versus TSR [48].

Each time step in the transient simulations was set to twenty iterations, and the optimal
solution was convergence, which was achieved as a result of variables approaching [64,65].
Note that all simulations used an absolute convergence criterion to meet the residual targets
of 10−4 for continuity, velocity components, and turbulent characteristics calculated in CFX.
Figure 9 plots the instantaneous torque variation against the accumulated time step for
a Savonius turbine at TSR = 0.2 to 1.2, corresponding to a maximum Cp at TSR of 0.7. In
fact, the last two subsequent rotations converged after a total of four turbine revolutions.
Numerical simulations were used to measure the rotor axis torque coefficient (CT) for
each angular location. The last two complete revolutions were averaged to increase the
periodicity stability. This average CT was employed in the estimate of Cp using Equation (3)
for all the geometries.
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Subsequently, to verify the scale model of the original rotor model (S-ORM) and
deduce the link between results, the performance results were compared with the same
study’s performance results as used previous [48], as shown in Figure 10. Note that the
previous results’ performance data for wind turbines [48] were scaled to 1:1.3 according to
a scale factor (SF) procedure [58]. The matched curves, in which the same behavior was
presented, showed a maximum power coefficient (Cpmax) variation concerning flow time
for a wind speed of 9 m/s at a TSR of 0.7, justifying the scaled-down model. Nevertheless,
the performance Cp curve of the S-ORM was extended to a TSR of 1.8, which was greater
than the previous research. This means that the present model operated with a wider range
of TSRs and turbines at peak efficiency.
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5. Results and Discussion

Principally, this study aimed to produce an overall scaled model of the performance
of the original rotor model (S-ORM) turbine using numerical and experimental validation
approaches. The second objective was to deduce the optimum modified blade shape
configuration and compare it with the S-ORM rotor based on performance.

5.1. S-ORM Validation Study

To validate and approve the computational model of the S-ORM simulation results
and validate this study’s computational fluid dynamics (CFD) modeling, experimental and
simulation tests were utilized for wind velocities of 6 and 9 m/s. This was to determine
whether the numerical results were accurate and to determine the best wind velocity.
Figures 11 and 12 show the differences in the power coefficient (Cp) and torque coefficient
(CT) for some of the interval tip speed ratios (TSRs) used, which ranged from 0.2 to 1.8 at
an overlap ratio of 0.2. The numerical results for the wind velocity of 6 m/s matched very
well with the numerical results for the wind velocity of 9 m/s. The deviation in Cp and CT
compared to the experimental data was attributed to fluctuating experimental conditions,
and the torque values may have been a result of experimental uncertainty. The maximum
power coefficient (Cpmax) for the S-ORM numerical results was 0.22 at TSR = 0.7, while
Cpmax for the S-ORM experimental results was 0.21 at TSR = 0.7. It was possible to verify
that the most effective S-ORM design could be achieved from the CFD study. The maximum
relative errors in the values of Cp for both the velocities from the simulation results and
those from the experimental data for the S-ORM design occurred at TSRs ranging from 0.2
to 0.35 and 1.1 to 1.2, with the experimental data being about 8% lower than the simulation
results. Hence, this was an acceptable range. Figure 12 illustrates the link between the CT
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and the TSR. The graph was inversely related to the TSR, as can be observed. Therefore, CT
tended to decrease as TSR increased. The average CT increased linearly with an increase
in the TSR of approximately 0.7, and the highest average CT values were reached in all
instances with a TRS of 0.2. Nonetheless, comparing to the most outstanding Cp values for
velocities between 6 m/s and 9 m/s, the model with a velocity of 9 m/s performed slightly
better than the model with a velocity of 6 m/s. Thus, the newly proposed models used a
velocity of 9 m/s.
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5.2. Effect of Variations in Blade Configrations on the Turbine Performance

The performance of each profile was evaluated in terms of the Cpmax achieved for the
established TSR value equal to 1. Figure 13 shows the results of the tests for each profile.
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The Cp values obtained for various configurations showed that the wavy area at the tip
and end (WTE), wavy area on the convex blade (WCB), and flow-guiding channel (FGC)
models considerably overpredicted the Cp values compared to the others. Furthermore,
changes in the wavy area (WA) placements resulted in significant turbulence flow. The
addition of the FGC was a characteristic affecting the developing flow close to the entrance.
This had an effect on the measured values. Section 5.3 discusses the Cpmax obtained for the
best three blade profiles with the FGC at
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Abstract: Renewable energy sources are preferred for many power generation applications. Energy 

from the wind is one of the fastest-expanding kinds of sustainable energy, and it is essential in 

preventing potential energy issues in the foreseeable future. One pertinent issue is the many 

geometrical alterations that the scientific community has suggested to enhance rotor performance 

features. Hence, to address the challenge of developing a model that resolves these problems, the 

purpose of this investigation was to determine how well a scaled-down version of a Savonius 

turbine performed in terms of power output using a wind tunnel. Subsequently, the effect of the 

blockage ratio produced in the wind tunnel during the chamber test on the scaled model was 

evaluated. This study discusses the influences of various modified configurations on the turbine 

blades’ torque and power coefficients (Cp) at various tip speed ratios (TSRs) using three-

dimensional (3D) unsteady computational fluid dynamics. The findings showed that the scaled 

model successfully achieved tunnel blockage corrections, and the experimental results obtained can 

be used in order to estimate how the same turbine would perform in real conditions. Furthermore, 

numerically, the new models achieved improvements in Cp of 19.5%, 16.8%, and 12.2%, 

respectively, for the flow-guiding channel (FGC at  
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Figure 14 shows the velocity contour, and variations in the flow velocity of turbine
blades in the downstream section are shown in Figure 14. The rotor was permitted to rotate
for up to four revolutions, and the plots are from once the rotor had completed its fourth
rotation. The velocity of the contour plots’ inlet flows matched the boundary condition
initialization. High-speed rotating vortices formed at the tip of the advancing blade, and
wake zones were included downstream of the rotor. The wake zone started when there
was a sudden change in pressure between the regions upstream and downstream of the
rotor as a result of the rotor’s blockage. As can be seen in Figure 14, the velocity of the
benchmark model varied from 5 to 14.5 m/s for the advancing blade and 4 to 9 m/s for
the returning blade. The velocity of the FGC at
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= 30◦ model ranged from 5 to 15.25 m/s
for the advancing blade and from 2.5 to 7 m/s for the returning blade. The velocity of
the WTE model varied from 5 to 14.25 m/s for the advancing blade and 3 to 8.25 m/s for
the returning blade. The velocity of the WCB model varied from 5 to 14.25 m/s for the
advancing blade and 1 to 7 m/s for the returning blade. Figure 14 shows that the new
profile models had smoother velocity variations than the benchmark model. The new
profile models had lower negative and higher positive moments. Thus, the CT and Cp of
the new models were increased.
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Figure 14. Velocity contours and diagrams for velocity distribution along the test section for TSR 1.
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of the advancing and returning blades was lower. For the upstream pressure, the drag on
the returning blade was observed to be greater. The drag force act on both of the turbine’s
blades; however, the drag acting on the blade that moves forward drives the turbine, while
the drag acting on the blade that is moving backward restricts it. The distribution pressure
varied along the models’ test sections: for the benchmark model, from 80 to −160 N/m2 for
the advancing blade and −160 to 20 N/m2 for the returning blade. The pressure magnitude
of the FGC at
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= 300 model varied from 80 to −60 N/m2 for the advancing blade and
−60 to 0 N/m2 for the returning blade. The pressure magnitude of the WTE model varied
from 70 to −150 N/m2 for the advancing blade and −150 to 10 N/m2 for the returning
blade. The pressure magnitude of the WCB model varied from 70 to −140 N/m2 for the
advancing blade and −140 to −10 N/m2 for the returning blade. The new models had
a lower pressure difference for the advancing blade than the benchmark model, and this
increased the new blade profiles’ Cp and CT relative to the benchmark profile. The pressure
contour was lower for the concave parts and higher for the convex parts of almost all
profiles; this created negative torque for the returning blade, reducing overall performance.
However, this differential in pressure between the concave and convex portions of the new-
profile blades was less than that in the benchmark profile. Consequently, the new-profile
blades performed better than the benchmark profile.
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= 30◦, WTE, and WCB models, it was
essential to compare the proposed models’ performance to that of a well-established turbine
design that served as a benchmark design (S-ORM). Accordingly, the three new models
(FGC at
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= 30◦, WTE, and WCB) were used for the simulation test, which was undertaken
at selected free-stream wind speeds of 9 m/s. Figures 16 and 17 demonstrate the results
for the Cp max and CTmax values for each curve. Comparing the results for the Cpmax at
TSR = 0.6, the FGC at
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= 30◦, WTE, and WCB models performed well with Cp values of
0.22, 0.21, and 0.19, respectively. Furthermore, performance was boosted until it reached its
peak at a TSR of 1 and Cpmax values of 0.263, 0.257, and 0.245, respectively. Subsequently,
the Cp decreased with increasing turbine speed until it reached its minimal value at a TSR
of 1.8. Consequently, the highest Cp for the FGC at
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= 30◦ model had the best performance
with 0.263 for the Cp at a TSR of 1, which was a 19.5% improvement over the original model.
This comprehensive evaluation of the new and modified wind turbines showed that the
former achieved higher performance than the standard S-ORM turbine.
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6. Conclusions

This study investigated the performance of a scaled rotor model of an original model
(S-ORM) using three-dimensional (3D) ANSYS CFX and experimental work. Furthermore,
it examined the possibility of increasing the output power by changing wavy area positions
and adding a flow-guiding channel (FGC) model. Note that the initial step in validating
the original 3D simulation method was to use numerical and experimental data from the
published literature. A comparison showed that the calculated results agreed well with the
experimental ones. The main conclusions can be listed as follows:

1. For comparative investigations, the performance of the benchmark S-ORM model of
the basic Savonius wind turbine was calculated numerically;

2. The numerical analysis results and the respective values from the S-ORM model
utilized in this work were validated using experimental data. In order to evaluate
the accuracy of the S-ORM numerical approach for the mesh and turbulent model
employed in this study, the simulation results were compared with experimental data
results for the S-ORM model, and the comparison was accepted;
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3. The value of Cps was found to increase with further increases in the tip speed ratios
(TSRs) to 1.8 for all S-ORM configurations;

4. Through analysis of the power coefficient variations, the best design configurations
for the profiled blades were identified;

5. It was thus calculated that the values of the power coefficient for the best three out of
ten configurations, which were the named the flow-guiding channel (FGC) at
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= 30◦,
wavy area at tip and end (WTE), and wavy area on convex blade (WCB) models, were
increased by approximately 19.5%, 16.8%, and 12.2%, respectively;

6. The maximum power coefficient obtained with the FGC at
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= 30◦ model was 0.26 at
a TSR of 1, and the maximum power coefficients of the WTE and WCB models were
0.25 and 0.24, respectively, at the same TSR.

In future work, to achieve a higher level of precision with the S-ORM model, re-
searchers need to capture the interaction parameters, collect a more significant amount of
data from representative samples by fitting statistical tests for the optimized Savonius wind
turbine, and practically validate the turbine’s performance. In addition, an experimental in-
vestigation is needed to verify the optimal behavior of the improved blade shape. However,
according to the findings of this investigation, it appears that the proposed modifications
for the elliptical Savonius wind turbine show potential for usage in practical small-scale
power generation.
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Nomenclature

HAWR Horizontal axis wind rotor S-ORM Scaled original rotor model
VAWR Vertical axis wind rotor FGC Flow-guiding channel
WTE Wavy area at tip and end WCB Wavy area on convex blade
TSR Tip speed ratio SF Scale factor
GA Genetic algorithm BC Boundary condition
DIP Digital image processing CFD Computational fluid dynamics
PSO Particle swarm optimization RPMs Revolutions per minute
CD Drag force BR Blockage ratio
CL Lift force WA Wavy area
TW Theoretical torque PWA Position of wavy area
T Actual torque FEW Full-extent wavy area
CT Torque coefficient TQW Three quarters wavy area
Cp Power coefficient FVM Finite volume method
P Air density (kg/m3) OR Overlap ratio
A Wind turbine swept area (m2) e Overlap distance
At Cross-section area of test section (m2) BLN Blade number
V∞ Incoming wind speed (m/s) d Blade radius (m)
V Wind turbine outer diameter H Blade height (m)

tangent speed (m/s)
D Rotor diameter (m) A/R Aspect ratios
D0 End plate diameter (m) y+ Dimensionless wall distance
W Side tight tension (kg) S Side slack (kg)
dr String nylon diameter (m) rp Pulley radius (m)
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