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Abstract: Battery degradation is a main concern for electric vehicle (EV) users, and a reliable capacity
estimation is of major importance. Every EV battery management system (BMS) provides a variety of
information, including measured current and voltage, and estimated capacity of the battery. However,
these estimations are not transparent and are manufacturer-specific, although measurement accuracy
is unknown. This article uses extensive measurements from six diverse EVs to compare and assess
capacity estimation with three different methods: (1) reading capacity estimation from the BMS
through the central area network (CAN)-bus, (2) using an empirical capacity estimation (ECE) method
with external current measurements, and (3) using the same method with measurements coming
from the BMS. We show that the use of BMS current measurements provides consistent capacity
estimation (a difference of approximately 1%) and can circumvent the need for costly experimental
equipment and DC chargers. This data can simplify the ECE method only by using an on-board
diagnostics port (OBDII) reader and an AC charger, as the car measures the current directly at the
battery terminals.

Keywords: battery capacity; electric vehicle; DC charger; on-board charger; BMS data

1. Introduction
1.1. Motivation

Due to the rapid growth of electric vehicle (EV) adoption, it is becoming increasingly
important to understand how batteries degrade over a vehicle’s lifetime. Li-ion battery
packs used in EV applications are always equipped with a battery management system
(BMS) [1]. This measures, controls, and manages battery usage [2], while keeping the
voltage, current, and temperature of the battery in a safe operating area [3]. In addition, a
BMS estimates capacity, a metric used to evaluate battery capacity loss. However, capacity
estimations are not standardized between car manufacturers, and internal BMS estimations
can vary from car to car depending on the applied method, frequency of recalibration, etc.
Additionally, a few commercially available solutions have been developed to estimate the
capacity of EV batteries, by using charge or discharge processes and relying on the BMS
data. However, we are left with the question, Are EV BMS capacity estimations always
reliable and accurate?

1.2. Capacity Estimation Techniques

BMS estimation techniques are divided into two groups: adaptive and experimen-
tal [4]. In adaptive methods capacity is estimated from parameters that are sensitive to
the degradation of the battery cell. Examples are neural networks [5] or Kalman filters [6],
which can provide accurate results. However, high computational needs and costs limit
their application in commercial systems [4]. In experimental methods the cycling data
history of the battery is stored, and capacity is estimated as a comparison with previously
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gained knowledge. The computational effort of experimental methods is lower, simplifying
their implementation to the disadvantage of lower accuracy. An example is given when
BMS capacity estimations are performed onboard by correlating the ampere hours charged
or discharged with the voltage difference [1]. Estimation errors accumulate when ampere-
hour counting is performed over a long period of time, resulting in inaccuracies and the
need for recalibration. Nevertheless, thanks to its simplicity, the combination of Coulomb
counting and state-of-charge (SOC)–open circuit voltage relation is used in current BMSs.

Hybrid adaptive/experimental methods, which first characterize chemical reactions
and aging mechanisms are also proposed. They are based on approaches such as incremen-
tal capacity analysis (ICA) and differential voltage analysis [7], which have been mainly
used as reliable offline tools, and have been investigated for online BMS applications [7].
The ICA method relies on plotting the derivative of the capacity with respect to voltage
as a function of voltage (incremental capacity (IC) signature) [8,9]. As the battery expe-
riences degradation, the peaks of the IC signature change location. Peaks and valleys of
an aged battery can then be compared to the ones of a new battery, and thereby derive
the capacity of the aged one [10]. This method has been applied at the EV level in [10,11],
showing comparable characteristic peaks and valleys of the IC signature between cells and
pack. However, the authors of [12,13] claim that the pack signature may not be directly
extrapolated from the already available cells, given that those are not always subject to
similar conditions.

Given the wide range of commercially available BMSs and the lack of transparency,
it is important to be able to estimate battery capacity with a methodology that is agnostic
to BMS data processing and can be applied on any EV battery chemistry, size, and usage.
A methodology with such potential is an empirical capacity estimation (ECE) method,
used for the first time in our previous work [14], but only applied to a 24 kWh Nissan
Leaf. The method consists of a full charge of the battery without disassembling it from the
vehicle and violating the warranty. When charging with onboard (AC) chargers, battery
voltage and current are not accessible for measurement due to the presence of the AC/DC
converter. Therefore, an external DC charger is used, where charging voltage and current
can be measured with external equipment at the DC charger terminals. Capacity is then
determined as the energy flowing into the battery during the full charge. The disadvantage
of this method is that it is time consuming and requires the use of external equipment (EE)
that is expensive and not readily accessible.

1.3. What Data Is Available

In series-produced cars, valuable BMS data can be read from the central area network
(CAN)-bus via the on-board diagnostics port (OBDII). Available data includes instanta-
neous measurements, like battery voltage and current, and BMS-derived battery capacity
estimations. On the one hand, this allows the use of BMS voltage/current measurements in
the ECE method instead of that from EE, after first evaluating their accuracy. On the other
hand, BMS estimations can be evaluated and compared with values obtained through a
BMS-agnostic method.

The three levels of data which are considered in this work are displayed in Figure 1.
They are

• voltage and current measured with EE during a full charge (in green), used to estimate
capacity with the ECE method;

• voltage and current BMS measurements read through the OBDII port (in blue), used
to estimate capacity with the ECE method; and

• capacity readings from the CAN-bus (in red), which are internally estimated by the
BMS, the exact estimation process of which is unknown to the authors.
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Figure 1. Data collection overview. On the left, current and voltage measurements are collected
from the DC charger with current clamp, differential probe, and datalogger. On the right, raw
measurements (in blue) are collected from the BMS and CAN-bus, together with estimations derived
by the EV microcomputer.

1.4. Paper Contributions

In this work, we investigate and compare three capacity estimation approaches for six
different EV batteries, without disassembling them from the vehicles. The main objective is
to assess whether BMS readings can be used to circumvent the need for costly and invasive
experimental measurements.

The main contributions can be summarized as follows.

• First, capacity readings from the CAN-bus are compared with estimations from the
ECE method, while providing insight regarding the observed differences.

• Secondly, the validity of BMS instantaneous current and voltage measurements is
assessed by comparing them with EE measurements.

• Thirdly, EE and BMS current/voltage datasets are used to estimate battery capacity
with the ECE method, and a comparison between the two is provided.

1.5. Paper Organization

The rest of the paper is structured as follows. Section 2 presents the theoretical
background for the capacity derivation. Section 3 presents the measurement methodology
for the estimation of EV battery capacity. Section 4 overviews the case study, along with
battery pack information and vehicle usage characteristics. Section 5 compares the battery
capacity estimations with the different datasets. Section 6 concludes the manuscript with
the main outcomes.

2. Theoretical Background
2.1. EV Battery Capacity

The total capacity of a battery (Q) is the amount of energy the pack can hold. This is a
function of the initial energy capacity (Qi), and it decreases over time due to irreversible
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degradation mechanisms, calendar, and cycle aging. Qi represents the amount of energy
that the battery can theoretically hold when it is new. The total battery capacity at time t is
expressed as

Q(t) = Qi(1 − (qcal(t) + qcycle(t))). (1)

qcal and qcycle are the accumulated calendar and cycle degradation, respectively, expressed
as a percentage of Qi. Calendar aging is a function of time, temperature, and SOC, and
occurs even when the battery is not used. Cycle aging is a function of the active usage, in
terms of full equivalent charge cycles at a certain temperature and current C-rate [14,15].
To maintain the battery lifespan of EVs, BMSs can restrict capacity usage by introducing
energy reserves [16]. Thus, EV battery pack capacity can be distinguished between total
and usable. Total capacity is the amount of energy the pack can hold without accounting
for external restrictions. Usable capacity is the amount of energy that can be stored in
the pack, limited by the BMS to protect the battery. If there is no reserve, then the usable
capacity coincides with the total capacity. Moreover, it is important to point out that
capacity depends on the test conditions and cannot be defined irrespective of them. Indeed,
battery capacity changes with different temperatures and C-rate, and the test conditions
are not standardized [17].

2.2. ECE Method

The usable energy capacity of a battery can be derived based on the ampere-hour
exchange, or the energy exchange during a full charge or discharge cycle. Capacity in
Ah is used for the vehicle internal capacity estimation, whereas capacity in Wh is usually
provided as nameplate rating by EV manufacturers. Therefore, in this article, we consider
both definitions.

Without disassembling the battery from the EV, the usable capacity can be measured
during a full EV battery pack charging, and this corresponds to the total capacity if there
are no reserves. In Ah (QAh), capacity can be derived by integrating the current I(k) during
the full charge. With a time resolution of τ = 1 s, ∆T= 3600 s/h and Ns being the number
of seconds on the full charge, QAh is derived as

QAh =
1

∆T

Ns

∑
k=1

I(k)τ. (2)

Notice that time index t is dropped in QAh and subsequent capacity values to simplify
notation. These values will refer to the time when an experiment to estimate capacity was
conducted.

When considering the battery capacity in Wh, the charging capacity accounts also for
the heat dissipation in the battery internal resistance [14]. If charging is conducted with
a low current C-rate, the heat dissipation should be limited and influence the results by
a few percentage points. The capacity in Wh (QWh) is derived by integrating the product
between the pack voltage V(k) and current I(k) as

QWh =
1

∆T

Ns

∑
k=1

I(k)V(k)τ. (3)

3. Measurements Methodology

The battery needs to be fully discharged and then fully charged to measure its capacity.
The measurable capacity, without disassembling the battery from the EV and violating the
warranty, is the usable capacity, which coincides with the total if no reserve is present. This
section presents the system—EV and charger—used for conducting the measurements in
Section 3.1, the collected datasets in Section 3.2, and finally the methodology for performing
the tests in Section 3.3.
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3.1. System Layout

EVs can be charged via DC or AC chargers. When using an AC charger, power is first
converted from the AC/DC onboard charger in the vehicle, and then flows into the Li-ion
EV battery, see Figure 2. By using a DC charger, the power-dependent losses of the AC/DC
on-board charger are avoided. The DC charger directly injects power into the 400 V bus,
as shown in Figure 2. While charging, the motor side is off and no power is absorbed.
Therefore, the power going to the 400 V bus is shared between the Li-ion EV battery and
the 12 V bus supplying the auxiliary systems.

Figure 2. Overview of EV power flows. Modified from [14].

3.2. Data Collection

As shown in Figure 1, three types of data are available to determine EV battery capacity
with three different estimation methods.

3.2.1. EE Data

This dataset consists of the voltage and current measured at the DC side of the charger
(point A) and at the 12 V bus (point B) (see Figure 2). Current and voltage values are
collected by using EE: current clamps for the former and voltage differential probes for the
latter, with an overall measurement accuracy of 2.3% [14]. Measurements and estimated
capacity are referred to as EE data.

3.2.2. BMS Data

This dataset consists of the voltage and current measured on point C in Figure 2 from
the BMS of the vehicle. This data is collected with a maximum resolution of one value
per second. It is read through the CAN-bus and OBDII port by using the Nissan Leaf
Spy app [18], and becomes available to the user in a spreadsheet form. The accuracy of
the EV internal measurement equipment is unknown to the authors and will be further
investigated in this article. These measurements are referred to as BMS data.

3.2.3. CAN-Bus Data

The last dataset consists of battery capacity readings from the CAN-bus OBDII port.
These values are internally estimated by the vehicle. The estimated capacity values are
referred in the following as CAN-bus readings.

3.3. Measurement Process

EV battery pack capacity is measured with the ECE method, which is explained and
extended in this section. The method is applicable for all car brands that can be charged
with DC power via an external charger [14].

The ECE method involves a full charge of the battery pack from the minimum to
the maximum SOC. The charging process consists of two phases. The first is constant
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current, in which the current is kept constant until voltage reaches the maximum value.
The second is constant voltage, where battery voltage is at its maximum value, and current
decreases until the charger stops charging. During the measurements it was observed that
DC chargers stop charging when the current drops to approx. 3 A. This limitation was
experienced with four chargers of two different brands and all investigated vehicles. This
behaviour is assumed to be a common feature of DC charging due to the unnecessarily
long charging time with very low efficiency. After the DC charger stops, the battery can still
be charged if connected to an AC charger (see Figure 3). The amount of energy depends on
the minimum current reached by the DC charger. The higher the minimum current, the
higher the energy that can be charged with the AC charger.

If the battery pack is small, this energy can be a significant share of the total capacity.
Therefore, the methodology in [14] has been revised in this work as follows. After the
DC charger stops, the charging process is complemented with the final tail obtained by
connecting an AC charger (AC charging tail). Two such examples are provided in Figure 3.
Differently from the DC charger, the power coming from the AC charger goes through
the AC/DC inverter and then to the Li-ion EV battery (see Figure 2). Measuring the
current at the AC side would account for the inverter losses; therefore, this is avoided
by considering the current measured at the terminals of the battery (point C in Figure 2).
Without disassembling the battery, these values can only be obtained by the BMS.

0 1 2 3 4 5 6 7 8
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50

DC charger AC
charger

C
ur

re
nt
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] (a) 20 kW charger + AC charger
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] (b) 10 kW charger + AC charger

Figure 3. Current charging profiles of a 62 kWh battery pack with a 10 kW and a 20 kW DC charger,
including the final tail with an AC charger.

Battery capacity can be derived by considering the current and voltage measured
during the charging period with the two datasets (EE and BMS). Figure 4 shows the
respective measurement locations. Voltage and current read from the BMS are internally
measured at the battery terminals in point C, whereas EE data is measured at the DC
charger side (point A) and at the 12 V bus (point B). To compare voltage and current, EE
data are processed to derive the current at the battery terminals. This is calculated as the
difference between the current in points A and B*. To derive the current in B* (IB*(k)), the
current in B is scaled to the 400 V bus by considering the voltage measured in A (400 V bus,
VA(k)) and B (12 V bus, VB(k)) as in (4):

IB*(k) = IB(k) · VB(k)
VA(k)

. (4)

DC/DC converter losses between the 400 V and 12 V buses are assumed to be negligi-
ble.
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AC/DC
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DC charger 400 V bus
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(400 V - main)
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Figure 4. Measurement location overview. In A and B, voltage and current are measured with the
external equipment. The BMS voltage and current data are measured from point C. B* is the derived
current measurement with the external equipment.

By using (2), capacity is derived by (5) considering the external measurements in points
A and B and the additional AC tail, and by (6) considering the BMS current measurements
in point C:

QAh
EE =

1
∆T

(Ns
DC

∑
k=1

(
IA(k)− IB*(k)

)
τ +

Ns
DC+Ns

AC

∑
k=Ns

DC+1
IC(k)τ

)
, (5)

QAh
BMS =

1
∆T

Ns
DC+Ns

AC

∑
k=1

IC(k)τ, (6)

where Ns
DC and Ns

AC is the number of seconds while charging with the DC and AC charger,
respectively. Similarly, battery capacity can be derived in Wh by adapting (3).

In the following sections, the normalized capacity q (ratio between the measured
and the initial energy capacity) will be used. The superscript Ah or Wh will denote the
convention used to express capacity, and the subscript will refer to the used dataset (EE,
BMS or CAN).

4. Case Study
4.1. Battery Characteristics

Six EVs with different battery size, chemistry, and usage have been chosen, to demon-
strate that results are applicable independently of these factors. Additionally, to account
for the rapid technology development during the last decade, EVs introduced in 2014 and
2020 are considered. The EVs names and their characteristics are provided in Table 1.

The Ah nominal capacity (Qi) of the EVs can be read through the BMS and Leaf Spy
app [18]. Nominal voltage is derived as the average open-circuit voltage measured during
the constant current phase of the full charge. To the authors’ knowledge, the chemistry
of the 30 kWh is still unknown in the literature; however, it is expected to be similar to
previous and newer battery versions.
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Table 1. Vehicles’ battery pack and cell characteristics. The number next to E and L indicates the
nominal capacity in kWh.

EVs Env-200
24 kWh

Env-200
24 kWh

LEAF
30 kWh

LEAF
30 kWh

LEAF
40 kWh

LEAF
62 kWh

Name E24-1 E24-2 L30-1 L30-2 L40 L62

Chemistry LMO [19] LMO + NMC(?) NMC [19] NMC [19]

Voltage [V] 369.6 360.0 350.4 350.4

Number of cells 192 192 192 288

Cells in series 96 96 96 96

Cells in parallel 2 2 2 3

Capacity [Ah] 65.4 79.5 115.4 176.4

Capacity [kWh] 24.2 28.6 40.4 61.8

4.2. Vehicle Daily Usage

All four E24 and L30 vehicles are driven during the day by the local municipality of
the Danish island of Bornholm, and provide frequency regulation (FR) during the night
since the end of 2016 [20]. Frequency control is provided for approximately 14 h during the
weekdays, and during the weekends for the entire day. An external ±10 kW vehicle-to-grid
(V2G) charger with CHAdeMO connector is used to provide FR. L40 is parked in the
laboratory of the Technical University of Denmark, and is only used for measurements a
few times per year [15]. L62 is privately owned and driven daily in Denmark [21]. Usage
characteristics are summarized in Table 2. EV battery production date is not provided to the
owners; therefore, it is here considered to be two months prior to the registration date. Only
for L40 is the battery production set eight months prior because the vehicle was previously
used for exhibition purposes [15]. The energy throughput for the distance driven per day
is derived considering an average consumption of 6 km/kWh [22]. The energy throughput
for the FR service of all four E24 and L30 vehicles is considered as in [14], because the
service is based on the same frequency and control strategy.

Table 2. Average vehicles usage, distance driven, and FR throughput. * The vehicle provided FR only
during the first year.

EV E24-1 E24-2 L30-1 L30-2 L40 L62

Registration
date 7 July 2016 23 June 2017 21 September 2017 6 December 2016 1 August 2018 30 November 2020

Distance per
day [km/day] 10 21 20 21 0 35

Throughput
drive
[kWh/day]

3.3 7 6.6 7 0 11.7

FR Yes No * Yes Yes No No

Throughput
FR [kWh/day] 45 45 45 45 0 0

Tot. throughput
[kWh/day] 48.3 52 51.6 52 0 11.7

Active cooling Yes Yes No No No No
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4.3. Charging C-Rate

External 10 kW DC chargers with CHAdeMO connector are used for charging the
EV batteries. During the constant current phase, the current is approximately 24 A. For
the considered vehicles, this corresponds to a C-rate (defined as the current divided by
the nominal capacity in Ah) between 0.37 for the smallest battery and 0.14 for the largest
one, see Table 3. In both cases, C-rate should be sufficiently low to keep the battery heat
dissipation limited to a few percentage units and estimate the battery capacity [14].

Table 3. Current and C-rate during the constant current phase of the charging process.

EV E24-1 E24-2 L30-1 L30-2 L40 L62

Capacity [Ah] 65.4 79.5 115.4 176.4
Current [A] 24 24 24 24
C-rate [-] 0.37 0.30 0.21 0.14

5. Results

Results are presented in three main steps, as shows in Table 4. During the first step
(Section 5.1), capacity estimations over five years derived via testing with ECE method and
EE data, and readings from the CAN-bus are compared. This step shows the uncertainties
arising from the nontransparent BMS estimations. Thus, in the second step (Section 5.2), the
instantaneous current and voltage values provided by the BMS are compared with those
from EE. These values are then used in the last step (Section 5.3) to compare the capacity
estimated with the two datasets, i.e., EE and BMS. Finally, Section 5.4 concludes the section
with field test insights on capacity estimation methods and data collection.

Table 4. Steps for results comparison.

STEP 1: EE capacity estimate (qEE) VS CAN-bus capacity estimate (qCAN)
STEP 2: EE current and voltage data VS BMS current and voltage data
STEP 3: EE capacity estimate (qEE) VS BMS capacity estimate (qBMS)

5.1. Step 1: EE and CAN-Bus Readings Capacity Comparison
5.1.1. Capacity EE Estimation

Figure 5 compares the normalized capacity of the different vehicles versus their age,
both in Ah and Wh. As discussed in Section 3.3, DC chargers stop charging at low current
values and more energy can still flow to the battery via AC charging. Despite the fact that
this energy is limited for newer and larger batteries, it is important to consider this effect in
the overall capacity estimation. A more detailed explanation is provided in Appendix A.2.

The used initial battery capacity values in Ah and Wh are provided in Table 1 and used
in this section for normalizing the measured capacity values. By comparing the normalized
capacity (qAh

EE and qWh
EE ) versus age, the different battery chemistry and size do not seem

to have a large impact on the degradation trend. L40 ages more slowly, which can be
explained by the sole existence of calendar aging, constant battery temperature of 22 ◦C,
and SOC of 50% [15]. Another interesting finding is that kWh capacity values are 3–4%
higher than the Ah values. The difference is caused by the battery joule losses that depend
on the C-rate during charging. For example, taking a vehicle with battery resistance in p.u.
as 6%, if charged with 1 C-rate losses are 6%, whereas if charged with 0.2 C-rate, losses are
approximately 1.2%. Therefore, the smaller the battery, the larger the C-rate and the joule
losses, and the difference between Ah and Wh normalized values.

Based on Figure 5 the measured capacity does not present a smooth, or even monotonous,
decrease. This can be due to different factors. First, battery temperature varied during
testing. Despite the fact that measurements were conducted in spring and autumn with
similar ambient temperatures, it is not possible to keep the temperature of the batteries
constant. Battery temperature variations during the charging phase are kept below 8 ◦C for
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most of the cases, with temperatures ranging between 15 ◦C and 25 ◦C (see Appendix A.1).
Only twice were the battery temperatures of E24-1 and L40 approximately 35 ◦C, due to
usage before the measurements.

0 1 2 3 4 5 6
0.80
0.85
0.90
0.95
1.00

qA
h

EE
[p

.u
.]

(a) Normalized Ah capacity values

E24-1 E24-2 L30-1 L30-2 L40 L62

0 1 2 3 4 5 6
0.80
0.85
0.90
0.95
1.00

Vehicle age in years

qW
h

EE
[p

.u
.]

(b) Normalized Wh capacity values

Figure 5. Normalized capacity measurements versus age of the vehicles in years.

Secondly, the ±1% accuracy of current and ±0.1% accuracy of voltage measurements
are propagated in the final capacity with an accuracy of 2.3% [14]. Thirdly, for what
concerns the discharging process, the reached minimum voltage is not always the same,
and it does not always correspond to the same minimum SOC (see Table A1). This is
because during the discharging phase the BMS stops the discharging process when the
lowest cell voltage reaches a level between 2.8 and 3.1 V. Thus, the minimum voltage can
differ from test to test, due to a different cell imbalance each time. Nevertheless, because
voltage increases quickly in the beginning of the tests (due to the initial steep relationship
between SOC and open circuit voltage of Li-ion batteries), the difference of the minimum
pack voltage has a limited effect on the measured battery capacity [14].

5.1.2. Comparison of EE and CAN-Bus Readings

Figure 6 compares the normalized measured capacity via the ECE method and EE
data (qAh

EE ) with those collected via the CAN-bus readings (qAh
CAN). Because vehicle internal

estimations are usually based on Ah values, this section is only focused on those.
CAN-bus capacity readings are always higher than the measured ones, with the

exception of L302. Moreover, CAN-bus readings above the initial capacity value (larger
than 1 p.u.) are observed for E24-1 and E24-2, whereas L30-1 dropped from 0.78 p.u.
to 0.69 p.u. in less than 6 months. For older vehicles, E24 and L30, larger differences
between the EE measurements and CAN-bus readings are observed. The CAN-bus capacity
readings cannot be fully explained by the authors, because they depend on internal vehicle
estimation.

Furthermore, the computing power, available memory and accuracy of the current
measurements can impact capacity estimations [1]. Although it is not possible to assess the
first two (and the method used by the EV microcomputer), current and voltage measure-
ments at the battery terminals can be collected from the BMS through the OBDII. Therefore,
in the next subsection the accuracy of voltage and current measurements is investigated by
comparing them with EE values.
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Figure 6. Normalized Ah capacity comparison between the measured EE (represented by asterisks)
and CAN-bus readings (represented by circles).

5.2. Step 2: EE and BMS Current and Voltage Comparison

In this subsection, the accuracy of the battery voltage and current BMS measurements
is investigated. This is done by comparing the values measured from the BMS with those
measured by the EE dataset. As shown in Figure 4, the EE current at the battery terminal
(point B*) is derived from the EE measurements in A and B considering (4). Measurements
are compared in terms of the instantaneous percentage difference in Figure 7 during the
first charging hour of the measurements. Table 5 provides the standard deviation (SD)
and mean values of the percentage difference of the current and voltage values during the
constant current phase of the charging process.

Subplot (a) shows that the voltage difference is always limited to ±0.5%, whereas
in (b) the current difference varies between ±8% for E24 and L30, and ±2% for L40 and
L62. In addition, there seems to be a bias in the current difference of E24-2 and L30-2 of
approximately 1 A. The offset of EE current at the beginning of each measurement is always
reset to zero, whereas this cannot be done with the BMS because there is no control over
the measurement equipment. Perhaps the aforementioned biases can be attributed to such
calibration issues. By comparing the SD in Table 5, it is visible that current differences are
much more volatile than the voltage ones.

Table 5. Standard deviation and mean values of the percentage difference during constant current
phase between EE and BMS datasets.

E24-1 E24-2 L30-1 L30-2 L40 L62

Voltage difference SD [%] 0.05 0.04 0.04 0.03 0.03 0.01
Voltage difference mean [%] 0.11 0.21 0.22 0.27 0.1 0.03
Current difference SD [%] 3.46 2.82 3.43 1.35 0.35 0.28
Current difference mean [%] 1.92 3.79 1.26 4.96 0.39 1.39

Additionally, we should be reminded that the current measured with the EE also ac-
counts for the DC/DC inverter losses present between the 400 V and 12 V buses, which can
also be an explanation of the current differences. Furthermore, the unknown performance
of the measurement equipment inside the EV is also expected to affect the accuracy of
current values. However, given that the differences of voltage and current with the BMS
and the EE are limited for most of the cars, in the next subsection capacity is estimated
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with the two datasets to determine the impact of the different measurements on capacity
estimation.
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Figure 7. Comparison of voltage and current difference measured between EE and BMSs datasets.
Subplot (a) shows the percentage voltage difference whereas (b) the percentage current difference.

5.3. Step 3: EE and BMS Capacity Estimation Comparison

The capacity estimated with the EE and BMS voltage and current datasets is reported
in Table 6, in Ah and kWh. The difference between EE and BMS is limited to 3.8% for
E24-2 and L30-2, and less than 1.5% for the remaining ones. This is in accordance with the
findings from Figure 7b and Table 5, wherein currents for E24-2 and L30-2 prove to have an
initial offset. Thus, the larger currents lead to a higher capacity estimation.

Thanks to the limited difference between the capacity estimated with the two datasets,
it can be concluded that the BMS current and voltage values are accurate enough for
estimating capacity with the ECE method. Because the BMS current and voltage data are
directly collected at the battery terminals, this also means that the limitation of using DC
chargers in the ECE method is lifted, and both chargers (AC and DC) can be used.

Table 6. Comparison of capacity derived with the ECE method with EE and BMS datasets in Ah and
in kWh.

Capacity in Ah Capacity in kWh

Data EE BMS EE BMS

E24-1 55.3 55.5 20.9 20.9

E24-2 56.3 58.2 21.3 22.0

L30-1 65.9 65.1 24.2 23.8

L30-2 65.3 67.9 24.2 24.9

L40 104.4 104.0 38.1 37.9

L62 165.3 163.0 59.7 58.9

164.4 162.5 59.6 58.9
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5.4. Discussion

This section compares the findings, highlighting advantages and disadvantages of
each estimation approach. The main results are summarized in Table 7.

Table 7. Data collection comparison.

Characteristic/Data EE BMS CAN-bus

Measurement accuracy High Medium/high, still unknown Medium/high, still unknown
Measurement location DC charger and 12 V bus Battery terminals Battery terminals
Equipment Expensive Limited (app to read data) Limited (app to read data)
Electrical knowledge Advanced Limited Limited
Data processing info Full knowledge Full knowledge Limited knowledge

The CAN-bus capacity readings cannot be fully interpreted by the authors, due to
restricted knowledge on methodology and internal vehicle calculations. Therefore, this
subsection mainly focuses on capacity measurements using EE and BMS current data, and
insights regarding the quality and accessibility of the datasets is provided.

First, with the ECE method and EE measurements both a DC and an AC charger,
current clamps, voltage differential probes, and a data logger are necessary. Such equipment
with a reasonable accuracy is expensive and not readily available. In contrast, battery
current is continuously measured by the BMS, but the accuracy of the measurements is
unknown to the authors. The instantaneous difference between the current measured with
EE and the BMS was found to be higher for older vehicles, and limited to 2% for the newest
Nissan Leafs. In this comparison, it should be taken into account that EE measurements
also include the DC/DC converter losses between the 400 V and the 12 V buses, which are
instead bypassed with the BMS current measurement.

Secondly, DC chargers are used to bypass the AC/DC converter located between the
AC charger and the 400 V bus. In addition to being more expensive, DC chargers have
higher charging currents that result in higher joule losses during charging. By considering
BMS data, current is directly measured at the battery terminals, meaning that both DC and
AC chargers can be used. Given the observed limited difference between current readings
from BMS and EE, it can be concluded that capacity estimation can be performed by using
only onboard chargers and the BMS, without the need for expensive experimental setups.

Thirdly, to connect the external equipment to the 400 V side of the DC charger, it has
to be possible to open the charger door and have access to the correct terminals, which also
means that electrical component knowledge is required. On the other hand, BMS data is
collected from the OBDII-CAN bus of the vehicle. For Nissan Leaf vehicles, information
from the OBDII is made accessible by the Leaf Spy app, but similar applications could be
developed for other cars.

The accessibility to BMS current measurements could greatly simplify ECE applicabil-
ity by only using an OBDII, a mobile phone, and an AC charger. Thus, costs are decreased
and collection time is limited, e.g., by charging the vehicle during night. Nevertheless,
this comes with a need for BMS data reading and translation availability, which is at the
moment accessible only for a few vehicles. A few commercial solutions are already using
charging/discharging events to estimate battery capacity. These rely on data from the BMS,
e.g., current, voltage, etc., to estimate the battery capacity. Because the full methodology is
unknown to the user, our future research will compare the capacity estimations from these
solutions with the methodology presented in this work.

6. Conclusions

The present paper investigated and compared capacity estimation approaches for six
different EV batteries without disassembling them from the vehicles. The main objective
of this work was to assess whether BMS readings can be used to circumvent the need for
costly experimental measurements.

By connecting an OBDII to the vehicle CAN-bus, it is possible to read capacity esti-
mates derived from the BMS. These were compared with the estimates from an empirical



Energies 2022, 15, 9656 14 of 17

capacity method based on experimental measurements, showing large differences for older
and smaller vehicles but acceptable deviations in newer and larger EVs. However, CAN-
bus estimates are not transparent, they depend on the car manufacturer, and the underlying
method may change over time, so no certain conclusions can be drawn regarding their use.

The empirical capacity estimation method, which consists of a full charge of the EV
battery with a DC charger, was also used to estimate battery capacity. A DC charger is
needed to bypass the AC/DC converter in the EV, and external measurement equipment is
used to obtain reference capacity estimations independently of the ones reported by the
BMS. However, with the OBDII connection it is also possible to collect current and voltage
data directly measured at the battery terminals from the OBDII. This gives the possibility
to estimate capacity with the empirical method by using the BMS current and voltage.

The instantaneous current and voltage measured from the BMS and the EE were compared,
showing differences limited to ±2% for the newest vehicles and resulting in a capacity estimation
difference of 1.5 percentage points. This confirms that BMS current values can be used to derive
capacity, and that EV battery capacity tests can be greatly simplified by using an AC charger
and an OBDII, without any electrical equipment know-how.

Future work should focus on the development of translation tools/apps to access
and download BMS data. The tools/apps should be simple to understand and to apply,
and should be compatible with as many EV brands and versions as possible. Finally, it
is important to observe that the approaches presented in this paper are expected to be
applicable to all car brands. However, complications in understanding the results can occur
in the event that, for certain car models, the car releases battery capacity over the vehicle
lifetime. This aspect will be further investigated in our future work.
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IC incremental capacity
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OCV open circuit voltage
ECE empirical capacity estimation
SD standard deviation
EE external equipment

Appendix A

Appendix A.1. BMS Data

Table A1. Leaf Spy data (N/A stands for not available).

Vehicle
Years

Distance
[km]

Vin
[V]

SOCin
[%]

SOCend
[%]

Tin
[◦C]

Tend
[◦C]

Tout
[◦C]

E24-1

2.6 9073 277 4.6 92.5 20 16 N/A

3.5 14,380 282 8.9 91.8 35 15 5

4.1 16,374 291 4.7 91.0 19 16 17

4.5 17,061 296 7.5 90.3 20 16 19

5.5 18,422 286 6.0 91.6 27 17 N/A

E24-2

1.6 14064 275 5.6 94.2 16 21 N/A

2.6 22,687 274 10.9 97.8 20 25 11

3.1 24,724 308 4.9 94.0 19 24 14

3.5 26,735 303 3.8 94.0 22 28 17

4.0 30,999 307 9.4 94.1 13 19 10

4.5 33,644 N/A 1.8 93.4 21 27 16

L30-1

1.3 8147 266 3.2 97.7 26 25 N/A

1.9 13,152 265 2.1 95.9 16 20 N/A

2.3 17,058 258 2.4 97.6 22 24 12

2.9 20,248 272 2.4 91.8 16 19 14

3.2 22,999 N/A 0.7 97.7 21 22 18

3.8 26,657 289 0.2 96.8 9 16 10

4.2 30,719 286 0.0 97.8 25 28 16

L30-2

2.1 17506 277 2.2 97.7 26 25 N/A

2.7 21,676 285 3.4 96.5 19 21 N/A

3.1 25,310 277 2.5 96.0 17 21 10

3.7 28,202 264 3.2 97.7 14 20 13

4.6 34,040 272 3.4 96.8 15 20 10

5.1 38,524 297 0.6 97.8 23 27 16

L40

1.1 35 271 0.9 N/A 37 32 23

2.0 38 304 1.5 93.8 23 30 22

2.9 43 294 0.1 93.9 24 32 23

3.6 43 294 1.1 98.0 23 31 23

3.8 43 283 1.2 98.0 24 31 23
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Table A1. Cont.

Vehicle
Years

Distance
[km]

Vin
[V]

SOCin
[%]

SOCend
[%]

Tin
[◦C]

Tend
[◦C]

Tout
[◦C]

L62

0.3 961 302 1.8 96.5 18 26 22

1.0 12,631 290 1.8 96.9 26 30 22

1.1 14,343 292 0.4 96.4 18 25 20

Appendix A.2. Effect of AC Charger Tail

DC chargers stop charging at approximately 3 A. If an AC charger is then connected,
more energy can be stored in the battery. Consequently, a more accurate measurement of
the actual capacity can be achieved by force-charging each vehicle in AC mode. Table A2
provides values for energy measured in A, B, and C, battery capacity, AC charging energy
tail, and derived capacity, both with Ah and kWh.

The additional AC charged energy is limited, but not always negligible. For both E24
it represents 3–4% of the total capacity, with a minimum DC charging current of 3–4 A.
This value was also observed for the E24 vehicles investigated in [14]. A lower value
of 0.6% is measured for the L30-1, which is expected due to the low minimum current
values reached with the DC charger of 1–2 A. L30-2 results are not provided because
the DC charger stopped charging when the current was still constant at 24 A, due to
equipment malfunction while conducting the experiment. For L40, the additional energy
of 4% is caused by the considerable minimum DC charging current of 6 A. During the L62
measurements, the DC current reached 3 A, resulting in an additional energy of 0.7%. Given
that the minimum current is typically 3 A, its influence on capacity is greater for smaller
batteries, and for 62 kWh models it seems negligible. Results cannot be easily generalized
though, because the minimum DC charging current also plays a role, and it seems to
depend both on the DC charger and vehicle. Nevertheless, because it is still unclear why
and when DC chargers stop charging, it is recommended to check the minimum DC current
and consider the impact of the additional AC charging tail.

Table A2. Energy, battery capacity, and share of AC charging both considering Ah and kWh values.

Energy
in A

Energy
in B

Energy AC
Charge (in C)

Battery
Capacity

Share AC
Charge

[Ah] [%]

E24-1 55.1 2.0 2.2 55.3 4.0

E24-2 56.2 1.9 2.0 56.3 3.5

L30-1 66.6 1.1 0.4 65.9 0.6

L40 101.9 1.8 4.3 104.4 4.0

167.1 2.9 1.1 165.3 0.7L62
166.2 2.9 1.1 164.4 0.7

[kWh] [%]

E24-1 20.8 0.8 0.9 20.9 4.3

E24-2 21.2 0.7 0.8 21.2 3.7

L30-1 24.4 0.4 0.2 24.2 0.8

L40 37.0 0.6 1.7 38.1 4.5

60.3 1.1 0.5 59.7 0.8L62
60.2 1.0 0.4 59.6 0.7
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