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Abstract: This paper compares multiple techniques to detect suboptimal conditions in the PV system.
Detection of suboptimal conditions in the PV system is required to achieve optimal photovoltaic (PV)
systems. Therefore, maintenance managers need to choose the most suitable techniques objectively.
However, there is a lack of objective information comparing the effectiveness of the methods. This
article calculates and compares the effectiveness of Infrared thermography (IRT), visual inspection
(VI), and electrical analysis (EA) in detecting soiling, partial shadows, and electrical faults experi-
mentally. The results showed that the VI was the best at detecting soiling and partial shading with
100% of effectiveness. IRT and EA had an effectiveness of 78% and 73%, respectively, detecting the
three types of conditions under study. It was not possible to achieve maximum detection using
only one of the techniques, but that VI must be combined with IR or EA. This research represents
a significant contribution by achieving an objective comparison between techniques for detecting
suboptimal conditions, being very useful to guide PV system maintainers and designers of fault
detection techniques.

Keywords: solar PV system; fault detection performance; partial shading; soiling; electrical faults;
thermography; electrical analysis

1. Introduction

In the area of PV systems engineering, an important topic is the operation, perfor-
mance, and maintenance of PV Sytems, that is, all the activities related to the monitoring,
predictive and corrective maintenance, system failure analysis, system reliability, and
operational safety.

PV Systems’ benefits depend on their performance over their lifetime. Suboptimal
conditions and faults such as electrical failures, partial shading, and soiling make the power
delivered by solar modules decrease and may even generate irreversible damage [1]. There
are design assumptions to avoid future suboptimal conditions such as partial shadows [2];
however, they can still occur in the future due to changes in surrounding installation factors.
Therefore, it is critical to be able to detect these conditions effectively.

Using fault detection techniques it is possible to detect suboptimal conditions to act
promptly before there is a significant impact on delivered power or a fire [3]. Research
into fault detection techniques has led to their implementation in inverters [1], however
there are still many limitations. In [4] a summary of the types of faults and available
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techniques is made, among which, we can find visual inspection, the use of drones for
infrared thermography [5] and the analysis of electrical variables such as power [6].

Efforts to make photovoltaic (PV) system maintenance more effective and efficient
have led to the development of continuous monitoring systems and extensive research into
fault detection techniques (e.g., [2,7]). However, a lack of quantitative information to assess
its effectiveness has been identified as it is mentioned in [8]. In [9] an initial contribution
to this situation was presented. In this case, a methodology was proposed to compare the
effectiveness of failure detection of infrared thermography (IRT) and visual inspection (VI),
however the electrical analysis (EA) technique was not considered.

This paper presents an extension of the work mentioned above. Besides IRT and VI,
a third fault detection technique has been included, namely, EA, which detects faults by
analyzing the estimated and actual electrical power. More specifically, the work assesses
the effectiveness of IRT, VI, and EA to detect failures by partial shading (PS), soiling (S), and
electrical faults (E). The previously mentioned faults are detailed in the next subsection.This
research contributes to:

• the generation of quantitative indicators of effectiveness for failure identification
methods, which are very limited or do not exist at the experimental level,

• a more detailed experimental characterization of each method, identifying strengths
and limitations under different types of conditions,

• a more objective selection of the method(s) to be used at a PV installation for a more
efficient operation and maintenance of the plant.

The rest of the paper is structured as follows: the following subsection presents the sub-
optimal conditions considered. Section 2 describes the material and methods used. Section 3
presents the main results and discussion, and Section 4 describes the main conclusions. The
list of nomenclatures and abbreviates are listed at the end of this document.

1.1. Related Work and Research Gap

Other works have characterized and compared fault detection techniques in order
to understand the limitations and possibilities of each technique (see Table 1). Table 1
shows that the research developed so far for the comparison of techniques for the detection
of suboptimal conditions has been based on literature reviews, without experimental
evaluation. Experimental investigation has been done mainly on each particular method
and under specific suboptimal conditions, which does not allow a direct comparison
between the different techniques.

Table 1. Some relevant research related to the characterization or comparison of failure detection
techniques.

Author Research Description Literature
Review

Experimental
Tests

[10]
Identifies the main faults in PV arrays
and identifies detection techniques that
can detect them

X

[8]

Establishes a metric to compare fault
detection techniques according to their
capabilities for: (1) detection and
classification, (2) real-time detection,
(3) localization, (4) fault isolation.

X

[3]

Compares fault detection techniques
considering aspects such as: faults
detected, level of diagnosis provided
by the technique, on-line or off-line use,
integration complexity and cost.

X
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Table 1. Cont.

Author Research Description Literature
Review

Experimental
Tests

[5]
Evaluates the possibilities of detecting
failures by IRT and VI X

[4]

Compares fault detection techniques
considering, for example: required
measurements, DC or AC type fault
detection, type of technique and
whether it was validated by simulation
or experimentally.

X

[11]

Determination of the effectiveness of
a fault detection algorithm by means
of an experiment inducing electrical
faults.

X

Although there is previous research that characterizes or compares failure detection
techniques, there is a lack of quantitative indicators that would allow a comparison to guide
maintenance managers in choosing the most effective method. It was recently reviewed 40
failure detection techniques and found that quantitative indicators such as accuracy were
lacking in order to make a better comparison between them [8]. This research specifically
addresses the comparison of techniques for the detection of suboptimal conditions, based
on an experimental approach, generating quantitative effectiveness indicators.

1.2. Suboptimal Conditions Considered

A suboptimal condition is a situation, event, or disturbance that causes a PV system
to produce less than it could if that condition did not exist. In this paper, only the most
common suboptimal conditions are considered, namely,

• Partial shadowing: A partial shadow on a PV array creates a specific region in which
the irradiance is lower, resulting in a decrease in the power of the entire array [3].
Figure 1a shows a PV array with a shaded region due to a tree on the left, and Figure 1b
shows a PV array with dirt on the PV module. Both cases cause a decrease in power,
which will depend on the size and degree of shading [12,13].

• Soiling: The presence of dust, leaves, dirt, and generally any dirt will cause a decrease
in the power generated by a solar array, which will be more significant as the amount
of dirt increases [13]. Uniform dirt (evenly distributed dust) and non-uniform dirt
(patches of dirt or bird drops) will have an affection on the power; the latter can also
be classified as shading since it creates a decrease in the irradiance that affects the PV
module, equivalent to a partial shade [14]. The effect on the power due to non-uniform
dirt causes a hot spot to be formed [13]. Figure 2 shows a PV array with natural dirt,
in which non-uniform dirt can be observed.

• Electrical Faults: From the electrical point of view, and according to [1], failures can be
classified as (1) Ground faults, (2) Interline faults, (3) Open circuit faults, (4) others. It
has been reported that faults cause a decrease in the power delivered and an increase
in the temperature that varies according to the type of fault [8,15–17]. The following
faults were applied in this investigation: short circuit in a PV module, ground fault,
and open circuit. These are represented in Figure 3 with red lines.



Energies 2022, 15, 1841 4 of 20

Figure 1. (a) PV-chain with partial shade due to a tree, (b) PV-chain with dirt due to a bird drop.

Figure 2. Monocrystalline PV module analyzed with the presence of natural non-uniform dirt.

Figure 3. Types of electrical failures analyzed in this research. (1) Short circuit to ground, (2) Short
circuit in PV module and (3) Open circuit.

2. Materials and Methods

This section details the installation, protocols, measuring instruments and the main
methodological aspects used for the experimental tests.

2.1. The PV Installation Analyzed

The photovoltaic installation used is located in the northern part of Costa Rica, 10°32′

latitude and −84°31′ longitude. According to the Köppen-Geiger system, the climate in
this location is classified as tropical rainforest climate (Af). The PV plant it is located at the
San Carlos Local Technological Campus in Santa Clara, Costa Rica. It is made up of six PV
arrays, of which, three of monocrystalline technology were used for the development of the
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experiment because the EA method is designed for monocrystalline modules. The details
of the PV arrays used are shown in the Table 2.

Table 2. Information about the PV arrays under study.

Parameter Value
Longitude −84.51
Latitude 10.36

Azimut angle 0° with respect to the South
Inclination angle 15°

Peak DC power (kW) 3.36
Number of PV modules 12

PV module models Canadian Solar CS6k-280M
Total surface (m2) 19.6

Date of commissioning 31 May 2017

The installation used in the research consists of 6 PV arrays of 12 monocrystalline and
polycrystalline modules in series, each connected to a Sunny Boy 3000TL-US SMA inverter.
The monocrystalline PV arrays selected for the experiment in this research are identified by
the numbers 2, 4, and 6 in Figure 4.

Figure 4. Diagram of the analyzed PV installation. The monocrystalline PV arrays 2, 4 and 6 were
used in this research.

2.2. Protocol for the IRT and VI Missions

The procedure used was based on the one used by [9]. In this research, for each
suboptimal condition, a flight was made with the UAV capturing RGB and infrared images
of the PV chains. The flight height was set at 25 m, considering that this allows detecting
possible failures with a resolution of the photovoltaic cell [9]. The irradiance was always
higher than 700 W/m2 with an angle around 20° from the PV module’s perpendicular, the
sky was clear and there were no wind currents. Emissivity was 0.85 for IRT. Consecutive
images were taken every 1 s for the IRT and 2 s for the VI. The thermal images were
configured to contain the radiometric information in RJPEG format.

For each test, the irradiance, ambient temperature and relative humidity were recorded.
Each suboptimal condition was applied 15 min before the measurement was taken to ensure
that thermal equilibrium existed [18].

2.3. Description for Electrical Measurements

This method was based on comparing the real generated power and the estimated
theoretical power. The model used to estimate the generated power is the one proposed
by [19]; the model starts from estimating the efficiency with Equation (1).

ηT(T, G) = −765.231× 10−6 · T + 7.484× 10−6 · G + 182.712× 10−3 (1)

For greater accuracy in the model, wiring and aging losses were included as shown below:
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ηl(T, G) = ηT(T, G)(1− lw)(1− ly) (2)

where, lw = 0.01 and represents the electrical wiring losses and ly = 0.03625 represents the
aging losses according to the manufacturer’s information. Then, in order to calculate the
power and compare it with the power measured in the inverters, Equation (4) was used.

P(T, G) = 12 · AP · G · ηl(T, G) (3)

Finally, the system was tested under normal conditions to be empirically calibrated
using the control PV array (string 2), so a correction factor k was applied, and a constant a
was added to obtain the equation used by the EA method:

PE(T, G) = 1.0111 · P(T, G)− 35.734 (4)

When applying each suboptimal condition, it was waited at least 5 min to take the mea-
surements of the required physical variables, ensuring that the measurement corresponds
to the steady-state of the failure. In order to establish this parameter, it was considered that
in case of a variation in the PV array conditions (e.g., a failure), the inverter takes time to
reach the stability of the new operation point [20], although this time can be less than 1 s, it
was decided to leave a longer time.

Each measurement was obtained from the average of 1 min to have a measurement that
was not affected by external fluctuations, namely: (a) sudden changes in weather conditions
and (b) difference between the sampling times of the real power and the variables to
estimate the theoretical power.

2.4. Fault Detection Criteria

The criteria used for the detection of suboptimal conditions were established from the
review of scientific literature with experimental information. Taking [21,22] as a reference,
the suboptimal conditions for infrared thermography considered were: (1) hot spot with a
temperature differential of 10 °C or more, (2) PV string with a differential of 3.5 °C or more.
For VI, the detection of shadows or dirt was established as a criterion [23]. For the electrical
analysis, a power drop of 4% or more was considered as a suboptimal condition [24].

Table 3 details the suboptimal detection criteria used in the experiment.

Table 3. Criteria used for each technique evaluated to detect the failures induced from each subopti-
mal condition.

Technique Criteria for Fault Detection

IRT
Hot spot with a delta ≥ 10 °C
PV-chain with a temperature delta 3.5 °C in relation to a neighboring chain

VI
Presence of radiation attenuation on the PV module due to shade
Appearance of light or heavy soiling

EA Reduction of 4% or more compared to the theoretical power

2.5. Instrumentation

Figure 5 shows a diagram of the instruments used for the experiment. Below the many
characteristics of the instruments and equipment used:

• Drone Phanton 4 Pro with a FLIR VUE PRO R 336 thermal camera (see Figure 6).
• The RGB camera used for the VI has the following features: 1′′ CMOS sensor, lens with

an 84° FOV of 8.8 mm/24 mm, 4096 × 2160 resolution, JPEG format images, image
size of 3:2; 4:3; 16:9 and an ISO range of 100–3200 (auto).

• The thermal camera has an uncooled microbolometer sensor, specifications are in [25,26],
which are: HFOV × VFOV of 25° × 19°, 5.764 mm × 4.351 mm sensor, 13.00 mm focal



Energies 2022, 15, 1841 7 of 20

length, 336 × 256 resolution, 9 Hz frequency, accuracy of ±5 °C or 5% from reading
and thermal sensitivity of 40 mK.

• Vantage Pro2 Weather Station with temperature sensor to measure the ambient tem-
perature required for thermogram analysis. The accuracy of the temperature sensor is
±0.3 °C.

• Spektron 210 pyranometer to verify that minimum irradiance conditions are met and
to apply the EA method. The accuracy is ±5% of the annual measurement of the
annual mean.

• Invert for the measurement of real power required by the EA. Accuracy is class 0.5 in
accordance with ANSI C12.20.

• Digital contact temperature sensor model DS18B20 to apply the EA. Accuracy is
±0.5 °C.

Figure 5. Schematic diagram of the instrumentation and communication links used to access the
information sources of the experiment.

Figure 6. Side (left) and front (right) view of the UAV with infrared and RGB cameras used in the
investigation.

2.6. Experiments

An experiment was developed by inducing the suboptimal conditions of interest and
the three fault detection techniques were applied to each one.

The experiment used a repeated measurement design because multiple suboptimal
conditions had to be applied to the same PV array [27]. A total of 28 cases were analyzed
from the 11 suboptimal conditions applied to the two PV arrays. (Strings 4 and 6). String 2
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was used as a control subject to establish a reference condition in each case for the normal
operation of the PV strings, i.e., without applying failures. The factors and levels evaluated
are shown in Table 4.

Table 4. Factors (types of failures) and levels used to generate the diverse suboptimal conditions to
be evaluated in the experiment.

Suboptimal Condition Factor Level
S1

Soiling

10 months of natural soil
S2 30 months of natural soil
S3 12 cells with white spots
S4 12 cells with dry leaves from the site
S5 21 cells with white spots
S6 21 cells with dry leaves from the site

PS1
Partial shading

Shading of approximately 70% of a
module’s area

PS2
2 shadows, each approximately 30%
of the area of a module

E1
Electrical fault

Short circuit in module
E2 Ground fault in second module
E3 Open circuit in the array

The suboptimal conditions were applied to the PV arrays without interaction between
the type of suboptimal conditions analyzed. Each level was applied in both PV arrays
making two repetitions (Except S1 and S2, which were each applied to a single PV array
because it was natural soiling). The selection of the modules of each string to which the
failure was applied was chosen at random. It was assumed that there is an independent
relationship between the suboptimal conditions because they were randomized and did not
generate a residual effect in the PV array [28], i.e., the PV string returned to their normal
state once the suboptimal condition is removed. Each of the suboptimal conditions are
described in the following section.

2.7. Description of Each Factor and the Levels of the Experiment

To continue the work started by [29], the same suboptimal conditions of soiling and
partial shading were used, and the suboptimal conditions corresponding to electrical
failures were included. Each is described in this section.

• A. Soiling

Six soiling conditions were used; these are identified as S1-S6 in Table 4. The subopti-
mal conditions S3 and S5 were prepared by applying white paint to the glass. Suboptimal
conditions S4 and S6 used leaves and seeds found on-site around the solar PV modules.
These suboptimal conditions are described as strong shading [13]. The glasses used to
emulate the soiling condition are described in detail in [29].

• B. Partial shading

The PS1 and PS2 suboptimal conditions generated a natural shade allowing the
incidence of diffuse radiation [30]. For this, an object was placed next to the PV array (see
Figure 7) at 9:30 a.m. for PS1 and at 10:30 a.m. for PS2.
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Figure 7. Object used to generate partial shade conditions. The shadow generated corresponds to the
PS1 suboptimal condition.

• C. Electrical faults
In previous research work, electrical failures were evaluated at the experimental level
by modifying the electrical connections of the PV system, e.g., open circuits and short
circuits. Using [31] as a reference, switches were installed in the study PV arrays to
emulate that effect; an electrical diagram of how this was implemented is shown in
Figure 8. The E1 suboptimal conditions was randomly located in each of the evaluated
cases. E2 was applied, maintaining the fixed position to generate a short circuit at a
low voltage and not to expose the circuit to electric arcs. The E3 suboptimal conditions
has the same effect in any location due to all the modules’ series circuit configuration.
Therefore, the location of the switch was not changed.

2.8. Date and Conditions of the Experiment

The IRT and VI measurements were made between 18 August and 2 September 2020.
EA measurements were made between 17 September and 30 October. The average ambient
temperature was 30 °C, the relative humidity 60%, and the reflected temperature 22 °C.

2.9. Power Normalizing

A comparison was made of the average power generated between the study PV arrays
(strings 4 and 6) and the control PV array (string 2). The measurement was made during
two hours with an irradiance greater than 700 W/m2. A difference of 0.67% and −0.59%
was obtained for strings 4 and 6, respectively. These results allowed us to consider that the
strings are equivalent.



Energies 2022, 15, 1841 10 of 20

Figure 8. Diagram of the location of the switches used to generate the electrical suboptimal conditions
evaluated in the experiment.

3. Results and Discussion
3.1. Power Affect for Each Case Evaluated in the Experiment

Each suboptimal condition was applied to the study PV arrays (strings 4 and 6) and
was compared with the control PV array (string 2); with this, it was verified that all the
cases had an affectation of at least 4%, i.e., that it met the criteria of failure. The results are
shown in Table 5; these considered the normalization of the power measurements with
respect to the reference array [29].

3.2. Results of the Experiment

For each case evaluated, a discrete output variable was generated to indicate whether
or not the technique detected failure; the results are shown in Table 6. This table incorporates
the VI and IRT measurements that had been reported by [29] for consideration in this
new analysis.
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Table 5. Validation of the effect on power of each of the suboptimal conditions evaluated in the experiment.

Case
Evaluated

Irradiance
W/m2

Reference Array
Power (W)

Tested Array
Power (W)

Power
Reduction

Fault
(Yes/No)

1 783 2148 1885 12% Yes
2 783 2148 1472 31% Yes
3 724 2126 1872 12% Yes
4 724 2126 1449 32% Yes
5 775 2528 1876 26% Yes
6 887 2883 1915 34% Yes
7 836 2671 2150 20% Yes
8 1040 3421 2541 26% Yes
9 984 3086 2593 16% Yes

10 943 3077 2066 33% Yes
11 1059 3285 2884 12% Yes
12 956 3201 2141 33% Yes
13 971 3197 2611 18% Yes
14 866 2911 2215 24% Yes
15 873 2897 2399 17% Yes
16 944 3077 2288 26% Yes
17 890 2839 2366 17% Yes
18 868 2841 2370 17% Yes
19 1041 3416 2892 15% Yes
20 793 2533 2091 17% Yes
21 782 2589 2148 61% Yes
22 958 2662 1889 34% Yes
23 887 2582 2146 61% Yes
24 1035 3045 2586 26% Yes
25 782 2601 246 18% Yes
26 892 2870 721 75% Yes
27 887 2582 2127 18% Yes
28 1079 2890 2207 24% Yes
29 1030 2904 0 100% Yes
30 1238 3226 0 100% Yes
31 1030 2904 0 100% Yes
32 1033 2814 0 100% Yes
33 907 2637 2435 7% Yes
34 949 2662 2458 8% Yes
35 1053 2832 0 100% Yes
36 996 2622 0 100% Yes
37 906 2637 2348 8% Yes
38 949 2662 2446 11% Yes
39 1027 2743 0 100% Yes
40 998 2637 0 100% Yes
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Table 6. Summary of the results of the experiment. D = Detected, ND = Not detected, NA = Not
apply, S = soiling, PS = partial shading and E = electrical fault.

Case Factor Suboptimal Condition IRT Result VI Result EA Result
1 S S1 D D D
2 S S2 ND D D
3 S S1 D D D
4 S S2 ND D D
5 S S4 ND D D
6 S S6 D D D
7 S S4 D D ND
8 S S6 D D D
9 S S4 D D ND
10 S S6 ND D D
11 S S4 D D ND
12 S S6 D D D
13 S S5 ND D D
14 S S3 ND D D
15 S S5 ND D ND
16 S S3 D D D
17 S S5 D D ND
18 S S3 D D ND
19 S S5 ND D ND
20 S S3 ND D ND
21 PS PS1 D D ND
22 PS PS2 D D D
23 PS PS1 D D D
24 PS PS2 D D D
25 PS PS1 D D D
26 PS PS2 D D D
27 PS PS1 D D D
28 PS PS2 D D D
29 E E2 D NA D
30 E E2 D NA D
31 E E2 D NA D
32 E E2 D NA D
33 E E1 D NA ND
34 E E1 D NA D
35 E E3 D NA D
36 E E3 D NA D
37 E E1 D NA ND
38 E E1 D NA D
39 E E3 D NA D
40 E E3 D NA D
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3.3. Image Analysis

Each case evaluated was analyzed manually for IRT and VI. The thermographs were
processed with Flir Tools 5.13, and the RGB images were analyzed with traditional photo
viewing software. Figures 9–11 show some electrical failures analyzed with IRT. Employing
the VI, it was not possible to detect electrical failures.

Figure 9. IR image analyzed for case 37. In this one, the heating generated in a solar PV module due
to the presence of a short circuit is observed.

Figure 10. IR images analyzed for case 39. String 2 (left) and string 6 (right). In this one, it can be
seen that string 6 had a higher temperature than the control PV array (string 2) due to the open circuit.

Figure 11. IR images analyzed for case 30. String 2 (left) and string 4 (right). In this case, the short
circuit to earth caused the inverter to open the circuit (electrical protection), causing an increase in
the temperature of the entire string.
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3.4. EA Analysis

Table 7 shows the detail of the measurements with the EA. It is observed that for all
types of failures, in some cases, the failure was not detected; this is due to the fact that
the estimated power was less than it should be under conditions without failure (cases 18,
21, and 33). Also, cases were found in which the estimated power affect deviated by less
than 1% from the criteria for detecting failure (cases 13, 19, 20, and 34); which shows that
accuracy errors of less than 1% will affect the effectiveness of the technique. This requires
high precision in the instrumentation, in the parameters of the mathematical model, and in
the processing of the information, with their respective experimental validation.

Table 7. Electrical measurements for the evaluation of each suboptimal condition with the EA
technique. The last column on the right indicates the output variable of this method.

Case Irradiance
(W/m2)

Tested Array
Avg Temp. (°C)

Tested Array
Power (W)

Estimate
Power (W)

Power
Reduction

Fault
(Yes/No)

1 783 50.4 1885 2191 14.0% Yes
2 783 52.5 1472 2167 32.1% Yes
3 724 50.5 1872 2015 7.1% Yes
4 724 52.3 1449 1996 27.4% Yes
5 775 56.9 1876 2092 10.3% Yes
6 887 57.5 1915 2407 20.5% Yes
7 836 57.8 2236 2258 1.0% No
8 1040 53.6 2541 2910 12.7% Yes
9 984 59.0 2593 2668 2.8% No

10 943 49.0 2066 2686 23.1% Yes
11 1059 57.1 2884 2914 1.0% No
12 956 51.0 2141 2697 20.6% Yes
13 971 52.0 2611 2728 4.3% Yes
14 866 49.1 2215 2454 9.7% Yes
15 873 53.0 2399 2424 1.0% No
16 944 48.9 2288 2688 14.9% Yes
17 890 57.0 2366 2423 2.3% No
18 868 58.5 2370 2339 −1.3% No
19 1041 48.9 2892 2985 3.1% No
20 793 55.5 2091 2163 3.3% No
21 782 56.5 2148 2118 −1.4% No
22 958 60.3 1889 2574 26.6% Yes
23 887 55.1 2146 2437 12.0% Yes
24 1035 59.4 2664 2808 5.1% Yes
25 782 57.8 246 2102 88.3% Yes
26 892 54.0 721 2468 70.8% Yes
27 887 54.2 2127 2449 13.2% Yes
28 1079 56.6 2207 2980 26.0% Yes
29 1030 55.0 0 2858 100.0% Yes
30 1238 59.0 0 3408 100.0% Yes
31 1030 57.0 0 2828 100.0% Yes
32 1033 58.0 0 2822 100.0% Yes
33 907 62.8 2435 2396 −1.6% No
34 949 58.2 2458 2578 4.7% Yes
35 1053 56.0 0 2913 100.0% Yes
36 996 57.0 0 2730 100.0% Yes
37 906 63.2 2348 2388 1.7% No
38 949 54.7 2446 2626 6.9% Yes
39 1027 56.0 0 2837 100.0% Yes
40 998 55.0 0 2765 100.0% Yes

Cases that were at 1% or less of the limit defined as criteria for failure detection are identified in light blue. Cases
that showed an increase in power in the presence of the fault were marked in green.

3.5. Comparison of the Three Techniques

Considering that visual inspection does not detect the electrical faults examined, we
initially compared the effectiveness of the techniques for detecting soiling and partial
shading; this is shown in Figure 12. It was found that IV achieved the maximum effective-
ness (100%), outperforming the other two techniques (68% each). These results reinforce
the findings found in [29] on the high effectiveness of VI in detecting this type of failure
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concerning other techniques. Comparing the number of cases detected by IRT and EA
shows that EA outperformed IRT in the soiling tests but had lower performance in the
partial shadowing tests.

Figure 12. Percentage of failures detected by the techniques under study for soiling and partial
shading conditions.

Figure 13 shows the number of failures detected for IRT and EA for the three types of
failures studied in this research. It can be observed that, in general, the IRT detected more
faults, being surpassed by EA only for soiling detection.

Figure 13. Percentage of failures detected by IRT and EA for the three types of failures analyzed in
this research.

From Figures 12 and 13 it can be seen that in general, soiling is the type of condition
that was least detected, while partial shading was the most detected. Electrical faults were
also mainly detected; however, it should be considered that VI does not work for this type
of fault.

Considering the output variable of continuous type (1 = detected and 0 = not detected),
an analysis of the variance was made. The variances were 0.219, 0.0417, and 0.0797 for the
soiling, partial shading, and electrical faults, respectively. This indicates that the detection
of soiling faults had greater variability. The high variability detecting soiling indicates
that more research should be done focused on improving the effectiveness of IRT and EA
detecting soiling.
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Figure 14 shows the results of soiling detection by EA, in which it can be seen that all
types of soiling were detected at least in a low percentage of occasions. This indicates that
the EA technique does detect the types of soiling evaluated but with less effectiveness. The
reasons why, in some cases, this type of failure was detected and in others not, requires a
more detailed study specifically on this subject. This compartment had also been identified
for IRT detecting soiling [29].

Figure 14. Percentage of soiling failures that were detected by the EA. S1 and S2 were applied twice,
the other four times.

The only technique based on qualitative criteria for the detection of failures was the
VI, which implies that its effectiveness could be affected due to the subjectivity that could
exist before other types of failures. Therefore, the definition of quantitative criteria for the
VI is an area that could vary the technique’s performance for certain types of failures.

From Table 6 it can be seen that each of the suboptimal conditions that were evaluated
were detected by at least one of the failure detection techniques. Therefore, for the subopti-
mal conditions evaluated and the techniques used, combining them is the way to achieve
maximum detection.

3.6. Statistical Hypothesis Testing

Using contingency tables and Fisher’s exact test, the effectiveness of the techniques
can be evaluated by comparing them in pairs [32,33]. To determine if there is a significant
difference between the total number of failures detected by each technique, the following
hypothesis tests were defined: as follows:

H0,1 : Ni = Nj

Ha,1 : Ni 6= Nj

H0,2 : Ni = Nk

Ha,2 : Ni 6= Nk

H0,3 : Nj = Nk

Ha,3 : Nj 6= Nk

∀i 6= j 6= k

where N is the number of identified failures, i, j, and k are IRT, VI, and EA techniques,
respectively. Table 8 shows the p-values obtained for each hypothesis test.
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Table 8. p-value obtained for each of the hypotheses evaluated.

Hypothesis p-Value
H0,1 0.001
H0,2 0.797
H0,3 0.002

Considering a significance level α = 0.05 because no major requirement has been
identified [34], the hypotheses H0,1 and H0,3 are rejected; that is, significant differences
were found between the number of faults detected. Each of the techniques was also
compared for the different types of failure applied, for which p-value < α and odd ratio
(OR) was obtained for the cases shown in Table 9.

Table 9. p-value less than α and OR obtained by analyzing significant differences for each type of failure.

Technique 1–Technique 2 Type of Fault p-Value OR
EA-VI S 0.003 27.88
IRT-VI S 0.001 33.9 *

* The order of the column in the contingency table was changed to achieve OR > 1.

From the analysis of Tables 8 and 9, it was interpreted which method was better than
another for each type of failure; this is summarized in Table 10. The OR coefficients shown
indicate that, in addition to accepting the alternative hypotheses for these types of failure,
there is a high probability that the technique will succeed in detecting a failure of this type
compared to the other technique [35].

Table 10. Significant differences in the detection of each type of failure between the methods studied.
Note: The types of failures not indicated had no significant differences.

Techniques Result
EA-VI VI detects soiling better
IRT-VI VI detects soiling better
IRT-EA No significant differences were found

4. Conclusions

The effectiveness of IRT and EA detecting soiling, partial shading and electrical faults
was 78% and 73% respectively. Comparing the three techniques, it was determined that
to detect soiling and partial shadows, VI is the most effective technique; reaching 100%
effectiveness for the suboptimal conditions under study. However, we cannot say that
this technique in general terms is better than the other two, as VI could not be used to
detect electrical faults. It should also be considered that there are multiple techniques for
fault detection by means of electrical analysis, one of them was used in this study. The
effectiveness of other techniques by electrical analysis remains to be studied.

Analyzing each type of failure, significant differences were found for the VI. This was the
best technique detecting soiling (100%) in comparison to IRT (55%) and EA (60%). In addition,
partial shadows were the type of fault that was mostly detected by all the techniques, finding
that none of the techniques is more effective than the others for this failure.

When comparing these results with those found in [29], it is identified that the calculated
effectiveness depends on the design of the experiment, therefore, the procedures of each
technique, the criteria for detection of failures and the suboptimal conditions to be evaluated,
must be carefully selected and documented in detail to support the results found.

The determination of the effectiveness of EA detecting soiling showed that the same
suboptimal condition can be detected in some cases and not in others, therefore, this type
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of failure can be analyzed in more detail using this methodology increasing the replication
of the suboptimal conditions to increase the statistical power.

For maximum detection of suboptimal conditions such as those studied in this research,
VI should be combined with IRT or EA, using only one of the techniques will leave failures
undetected and it was not found necessary to combine EA with IRT, since both have
equivalent effectiveness. It is still pending to make a comparison around other capabilities
of the techniques, for example, the location and identification of faults.

The results obtained in this work allow a quantitative comparison of the effectiveness
of IRT, EA, and VI techniques, which contributes to mitigating a knowledge gap detected
in this area. Furthermore, it contributes to improving fault detection techniques since
information regarding the strengths and limitations of each of them has been obtained
experimentally. Moreover, future work that combines the methods mentioned above can
improve existing fault detection techniques under challenging conditions, for instance,
when a high level of diffuse irradiance is present.
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Nomenclature and Abbreviates

Symbol Quantity Unit/Value
ηT Electrical efficiency %
ηl Electrical efficiency with wiring and aging losses %
P Electical efficiency with losses W
PE Calibrated electrical efficiency of the array W
T Cell temperature °C
G Irradiance W/m2

AP Array area m2

k Experimental efficiency correction factor 1.0111
a Experimental efficiency correction constant −35.73%
lw Wire losses 0.01
ly Aging losses 0.0365
HFOV Horizontal Field of View °
VFOV Vertical Field of View °
α Significance level 0.05
Abbreviaton Description
PV Photovoltaic
IRT Infrared thermography
VI Visual inspection
EA Electrical analysis
PS Partial shading
S Soiling
E Electrical Faults
UAV Unmanned Aerial Vehicle
RGB Red, green and blue
S1 Soiling condition 1
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S2 Soiling condition 2
S3 Soiling condition 3
S4 Soiling condition 4
S5 Soiling condition 5
S6 Soiling condition 6
PS1 Partial shading condition 1
PS2 Partial shading condition 2
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