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Abstract: Faults on individual modules within a photovoltaic (PV) array can have a significant
detrimental effect on the power efficiency and reliability of the entire PV system. In addition, PV
module faults can create risks to personnel safety and fire hazards if they are not detected quickly. As
IoT hardware capabilities increase and machine learning frameworks mature, better fault detection
performance may be possible using low-cost sensors running machine learning (ML) models that
monitor electrical and thermal parameters at an individual module level. In this paper, to evaluate
the performance of ML models that are suitable for embedding in low-cost hardware at the module
level, eight different PV module faults and their impacts on PV module output are discussed based on
a literature review and simulation. The faults are emulated and applied to a real PV system, allowing
the collection and labelling of panel-level measurement data. Then, different ML methods are used
to classify these faults in comparison to the normal condition. Results confirm that NN obtain 93%
classification accuracy for seven selected classes.

Keywords: photovoltaic system; PV faults; edge computing; machine learning; IOT; fault detection
techniques; fault classification

1. Introduction

Photovoltaic systems have been developing quickly around the world over the last
decade, and the global market is growing exponentially. However, this development has
not been matched by advances in system monitoring or fault detection, especially in PV
systems with output power of less than 25 kW [1]. A health monitoring system is important
to increase the efficiency and reliability of PV systems. Moreover, PV faults may lead to
safety problems and fire hazards. Several fault types are possible in PV modules, and
they are caused by a range of different factors. These faults should be diagnosed quickly
and accurately. machine learning (ML) is a useful tool for PV system fault detection and
classification, and, in recent years, several ML methods have been developed for this
purpose. Most of the developed ML techniques are based on supervised learning, which
needs labelled data for model training. However, creating a labelled dataset based on actual
measured data for fault classification is time-consuming and costly. Accordingly, most of
the previous research has been done based on theorical assumptions [2], on data generated
by simulation [3,4], or on limited recorded data from laboratory tests [5]. Moreover, in
most of these studies, only electrical faults such as line to line (LL), line to ground (LG),
and open circuit (OC) were considered for detection [5–10]. Non-electrical faults such as
glass breakage were not considered and only a limited number of studies were undertaken
to detect some of the physical faults such as connector faults [3,11] or potential induced
degradation (PID) faults [4,7,12]. A review of different methods and technologies for
different PV fault detections and classifications is investigated and provided in Table 1.
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A classical fault detection technique based on the tracing of module I-V curves [4,12]
detects and accurately locates faulty modules at module level. Recently, [6] presented
another detection technique based on P-V curve tracing for electrical fault detection and
classification only at module level. This technique was tested in a laboratory with a
small stand-alone PV system (600 W). Another tool for fault detection is the comparison
between measured and simulated expected current, voltage and power values. Such
comparisons were used in fault detection algorithms described in [11,13]. This involves a
lot of equipment and time delay. Nonelectrical methods (e.g., infrared, thermal imagining,
and thermal IR video) have been presented in different works, including [2,14,15]. The
most common techniques based on image analysis can detect and localize faults, but
thermography requires a high initial investment in cameras. Moreover, the computational
cost of image post-processing is high because of the size of the dataset and the complexity of
the images [16]. Thus, robust and advanced methods are required to study the thermograms
for PV fault detection and classification. Another third category of technique for PV fault
detection is the application of ML using actual electrical measurement data, such as PV
array current and voltage, on the DC side of the PV system. However, this technique has
only been tested for limited electrical faults [4,5] or some environmental faults like partial
shading conditions [4,6,17–19], and soiling [17].

Table 1. Review of various types of PV fault detection using different methods and technology.

Ref. Method Technology Faults Classification
Accuracy

[15] SVM Thermal image Cell crack, soiling, and hot spot caused
by shading conditions 97

[14] Curve modeling & FUZZY Thermal image Different partial shading conditions 98.8

[3] ANN Electrical measurement (V, I, and
P) in DC side

Connector fault, SC, bypass diode, and
partial shading conditions 94

[2] CNN Thermal image Bypass diode, hot spot, soiling, cell
crack, and shading conditions 92.5

[13] ANN Impp and Vmpp from
measurement & simulation SC NA

[8] Fuzzy
logic control (FLC)

Electrical measurement (V, I, and
P) in DC side SC, OC, and snow cover NA

[18] ResNet Thermal IR video SC, OC, hot spot, PID 90

[6] V-P Measuring and analyzing V-P in
AC side LL, LG, OC 94.4

[19] Fuzzy logic and RBF ANN Electrical measurement in DC side Different partial shading conditions 92.1

[11] ANN Comparing simulation and
electrical measurement in DC side

Partial shading conditions,
connector fault 90.3

[20] ANN, SVM, KNN Thermal image Faulty and normal conditions 92.8

[5] Hierarchical
classification I-V characteristics of PV array LL & LG 96.66

[7] Outlier detection rules String current LL, OC, degradation, and partial
shading condition NA

[21] SVM Electrical measurement in DC side SC, OC, partial shading condition NA

[4] RBF-kernel ELM I-V curve tracing SC, OC, degradation, and partial
shading condition NA

[17] Feedback
enhanced MLR (MLRf) Electrical measurement in DC side SC, soiling, partial shading condition NA

[12] Loss factors model (LFM) I-V curve tracing Partial shading condition, degradation NA

[9,10] Diode-based fault
detection

Voltage measurement (array
voltage, voltage at the positive

node of the top and bottom
module of a string)

LG, LL within a string, LL between two
strings and partial shading condition NA

In this experimental research, the behavior of eight physical and environmental PV
faults was investigated at the individual module level based on literature and simulation
and compared with data collected from faults that were emulated on a real PV system.
Sensor devices were installed to measure voltage, current, and temperature of PV modules
under normal and faulty operating conditions at module level. This not only helps to detect
the type of fault but also identifies the location of the fault. At the same time, PV irradiance
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was collected by a pyranometer installed at the PV system location. The experimental data
from fault emulation were processed and used for PV fault diagnosis. Current, voltage,
temperature, and irradiation data were combined with PV system name-plate information
to detect PV faults using supervised ML techniques. Finally, using the results on the test set,
we determined the most suitable algorithm to deploy on the edge to classify faults in real
time. Some of the advantages of the edge computation is a reduction of the data processing
cost, reduction of latency, increase of the network speed, greater reliability, and security.

The contributions of this paper are:

• Investigation, discussion, emulation, simulation, classification, and implementation of
a combination of important physical and environmental faults that affect PV modules;

• Identification of the main features for module-level classification by analyzing the
variations of the I-V and P-V characteristics of PV modules under normal and fault
events using a Simulink-based model and literature review;

• Development of a PV fault detection process at the level of the PV module at the edge
using ML techniques, based on measured data;

• Training, evaluation, and comparison of several supervised learning algorithms to
define the best one to use for the edge computation of PV fault detection;

• Completion of a comparative study to further demonstrate the superiority of the
proposed method for the detection and classification of faults;

• Selection of the best-performing algorithm to test on the real PV system.

This paper is organized as follows: Section 2 introduces a definition of PV faults and
explains the results of PV module fault simulation. Section 3 explains the experimental
setup. Feature extraction and data analysis are discussed in Section 4. Section 5 shows the
results and discusses fault detection and classification. Finally, a conclusion and future
work will be discussed in Section 6.

2. PV Module Fault Definition and Simulation Approach

Generally, PV faults can be classified in three main groups, these being electrical,
environmental, and physical faults (Table 2). In this research, we have limited our work to
the detection of the important physical and environmental faults. The main electrical faults
in PV modules are arc, line-to-line, ground, and open circuit faults. Environmental faults
can be divided into temporary and permanent faults: dust accumulation, soiling, and bird
drops are temporary, whereas a hot spot is classified as a permanent environmental fault.
Partial shading is a commonly reported condition that affects PV modules. This condition
is considered a temporary environmental PV fault in many references. Partial shading can
be caused by snow covering, passing clouds, trees, or nearby buildings. The partial shading
condition is of particular interest for PV owners in areas where there are rapid changes to
the local built environment, or in remote areas with high vegetation growth, and where
regular visual inspections are not possible. Figure 1 shows the typical layer structure of a
PV module. Physical faults can happen in different layers. EVA and bypass diode faults are
the main internal physical faults of a PV module. Typical external physical faults include
connector faults, cell cracks, glass breakage, and degradation of the PV module.

A PV module was created in simulation using MATLAB-Simulink (Figure 2) in order
to analyze the impact of various faults on the output of the PV module under standard
test conditions (STC). The PV module characteristics were defined to reflect the physical
modules used in real-world fault emulation (Table 3). In general, the output of a PV module
depends on the inputs to the PV module (namely irradiance and temperature), and PV
module parameters. Important PV module parameters are described by PV manufacturers
in the PV datasheet. In addition, other features (as listed in Table 4) can be defined to give
more detail relating to the operating characteristics of the PV module.
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Table 2. PV module fault classification.

PV Module Faults

Physical

Internal EVA

External

connector
glass breakage

cell crack
degradation/PID

Environmental
Temporary dust accumulation

soiling

Permanent hot spot

Electrical

Internal bypass diode faults

open circuit (OC)
External line-line fault (LLF)

arc fault
ground fault

Energies 2022, 15, 2097 4 of 19 
 

 

2. PV Module Fault Definition and Simulation Approach 

Generally, PV faults can be classified in three main groups, these being electrical, 

environmental, and physical faults (Table 2). In this research, we have limited our work 

to the detection of the important physical and environmental faults. The main electrical 

faults in PV modules are arc, line-to-line, ground, and open circuit faults. Environmental 

faults can be divided into temporary and permanent faults: dust accumulation, soiling, 

and bird drops are temporary, whereas a hot spot is classified as a permanent environ-

mental fault. Partial shading is a commonly reported condition that affects PV modules. 

This condition is considered a temporary environmental PV fault in many references. Par-

tial shading can be caused by snow covering, passing clouds, trees, or nearby buildings. 

The partial shading condition is of particular interest for PV owners in areas where there 

are rapid changes to the local built environment, or in remote areas with high vegetation 

growth, and where regular visual inspections are not possible. Figure 1 shows the typical 

layer structure of a PV module. Physical faults can happen in different layers. EVA and 

bypass diode faults are the main internal physical faults of a PV module. Typical external 

physical faults include connector faults, cell cracks, glass breakage, and degradation of 

the PV module. 

 

Figure 1. PV module layers [22]. 

Table 2. PV module fault classification. 

A PV module was created in simulation using MATLAB-Simulink (Figure 2) in order 

to analyze the impact of various faults on the output of the PV module under standard 

test conditions (STC). The PV module characteristics were defined to reflect the physical 

modules used in real-world fault emulation (Table 3). In general, the output of a PV mod-

ule depends on the inputs to the PV module (namely irradiance and temperature), and 

PV module parameters. Important PV module parameters are described by PV 

PV Module Faults 

Physical 

Internal EVA 

External 

connector 

glass breakage 

cell crack 

degradation/PID 

Environmental 
Temporary 

dust accumulation 

soiling 

Permanent hot spot 

Electrical 

Internal bypass diode faults 

 open circuit (OC) 

External line-line fault (LLF) 

  arc fault 

  ground fault 

Figure 1. PV module layers [22].

Energies 2022, 15, 2097 6 of 19 
 

 

 

Figure 2. PV system simulation. 

 

                               (a) 

 

                                     (b) 

Figure 3. PV module outputs under faults and normal conditions: (a) I-V curve, and (b) P-V curve. 

 

Figure 2. PV system simulation.



Energies 2022, 15, 2097 5 of 18

Table 3. PV module parameters used in simulation and experiment.

Parameter Value

Pmax 245
Isc 8.58
Voc 37.80

Impp 7.94
Vmpp 30.85

cells per module 60
temperature coefficient of Voc −0.34
temperature coefficient of Isc 0.05

Table 4. Impacts of different faults on different PV features.

Type of Fault Label Effects

Isc Voc Imp Vmp Rs Rsh Np 3 FF Pmax

Connector fault
(corrosion of cell

connection)
F1 ↓ 1 ↓↓ ↑ 2 ↓↓ ↑ − 1 ↓↓ ↓↓

PID F2 ↓ ↓ ↓ ↓ − ↓ 1 ↓ ↓
Partial shading

condition F3 ↓ − ↓ ↓ − − >1 ↓↓↓ ↓↓↓

Building shading
condition F5 ↓↓↓ ↓↓ ↓↓↓ ↓↓ − − 1 ↓↓↓ ↓↓↓

Failing bypass
diode/ short
circuit (SC)

F6 − ↓↓↓ − ↓↓↓ − − 1 ↓↓ ↓↓

Partial soiling F7 ↓ − ↓ ↓↓↓ − − >1 ↓ ↓
Glass breakage F8 ↓↓ − ↓↓ − − − 1 ↓ ↓

1 and 2 indicate a reduction and increase in the parameter values respectively. 3 is the number of peaks in I-V or
P-V characteristic.

Normal conditions and different faults were simulated, as described in Table 5. For
example, for F1 (connector fault), a 1Ω resistor was added in series to the PV system
simulation in Figure 2, and for F8 (glass breakage), a 91% irradiance filter was added after
the irradiance block. Figure 3 represents the I-V and P-V curves for the PV module that
was used for the simulation and experiment under normal and fault conditions. As is clear
in Figure 3b, the main impact of the applied faults on the PV output is the reduction of
output power. Output power, or power at the maximum power point (MPP), depends on
the voltage and current at the MPP. Therefore, these two factors change when different
faults occur. The simulation results (Figure 3) show that the most reduction in current
at MPP is observed during building shadow. Short circuit current (Isc) and open circuit
voltage (Voc) are two module parameters that are also affected by PV faults. For example,
when glass breakage occurs, a decrease in Isc will be clearly observed, and in the case of
building shadow, Isc is drastically reduced. Furthermore, open circuit voltage and voltage
at MPP (Vmpp) are reduced significantly for SC faults compared to the normal operation.
All these parameters can be considered as a feature for PV fault detection using machine
learning models. Moreover, based on these parameters, other features can be calculated.
One such feature is fill factor (FF), which is calculated as follows:

FF =
(
Impp∗Vmpp

)
/(ISC∗VOC) (1)

where Impp and Vmpp are current and voltage at MPP, respectively.
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Table 5. PV module fault simulation and emulation.

Symbol Type of Fault Fault Simulation Fault Emulation

F1 Connector Connect 1 Ω resistor in series with
the module

Connect 1 Ω resistor in series with
the module

F2 PID Add 100 Ω resistor in parallel with
the PV module

Add 100 Ω resistor in parallel with
the PV module

F3 Partial shading condition/bypass
diode activation

Use 60% irradiance filter on 1/3 of
the PV module and 30% irradiance
filter on 1/3 of the PV module

Use foil to activate the bypass diode
on the west string

F4 Pole shading condition − Shading with pole on the east string

F5 Building shadow condition Add a 50% irradiance filter on two
PV modules in one string

Shadow on two sub-strings in two
PV modules

F6 Short circuit bypass diode Short circuit one bypass diode Short circuit one bypass diode

F7 Soiling
Use 90% irradiance filter on 1/3 of
the module and 80% irradiance
filter on 1/3 of the PV module

• place a strip over the lower
string

• apply black tape on the lower
border of all modules

• use black band on each 1/3
portion of each module

F8 Glass breakage Apply 91% irradiance filter Place a foil with 91% transparency
on the whole PV module

Based on the literature review and simulation results, FF will reduce when any fault
happens in a PV module. However, it is more obvious in the case of partial shading and
building shading conditions. In this paper, the impact of different faults on PV module
features are investigated and summarized in Table 4. To obtain these results, various
simulations were conducted, as well as results from other work, including [3,5,14,23].

3. Experimental Setup

A small-scale grid-connected PV system was set up to create and record current and
voltage outputs related to different PV faults under various conditions at the University
of Applied Sciences and Arts of Southern Switzerland (SUPSI) in Ticino, Switzerland.
This PV system included 12 “SoliTek G/G 245W” PV modules divided into two parallel
strings of six in-series modules (Figure 4). Each string was connected to an “SMA Sunny
Boy” inverter.

Eight faults plus the normal condition were applied: connector fault (F1), PID fault
(F2), partial shading condition/activated bypass diode (F3), pole shading condition (F4),
building shading condition (F5), short circuit (F6), soiling (F7), glass breakage (F8), and
normal condition (F0). All faults were emulated and implemented according to the de-
scriptions in Table 5. In general, when a PV fault is applied, the PV array may experience
some transients and it could operate off its nominal MPP. However, after a few seconds,
the maximum power point tracking (MPPT) algorithm will make the PV array operate at a
new MPP [24]. This is called the post-fault steady state. Therefore, it is observed that the
current and voltage of the PV array at MPP changes depending on the fault condition.

All experiments were undertaken under natural weather conditions; thus, their dura-
tion depended on the occurrence of a significant number of clear sky days. Each experiment
consisted of at least 8 hours under clear sky irradiance. For collecting data, four Health-
Helio (HH) sensors were installed on four modules (Figure 4) to measure voltage, current,
and temperature during the summertime from 16 June 2020 to 16 September 2020. The HH
sensor is a low-cost device developed by SmartHelio in Lausanne, Switzerland to measure
current, voltage, and temperature at a PV module and then transmit the data through a
short messaging protocol (e.g., SMS). The HH sensor is a PCB-based IoT device that in-
cludes sensors for voltage, current, and temperature, and a microcontroller. Measured data
are logged and, in the experimental setup, transmitted to a central cloud-based repository
for analysis. Under their commercial model, the information gathered by the sensor is used
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at the grid edge to assess PV system performance and detect abnormal behavior on the IoT
device itself. The data from sensors were combined with irradiance data collected from a
local pyranometer to complete the dataset.
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Figure 4. Setup of the experimental PV system: (a) PV installation, (b) HH device in the experimental
setup, and (c) connecting HH device to the PV module.

4. Feature Extraction and Data Analysis

In this research, data collected from the experiment was used to provide a labelled
dataset (F0 to F8) that could be utilized to develop a fault detection and classification
algorithm. Figure 5 presents a flowchart of the methodology applied for PV fault detection
and classification in this paper. The first step is data collection: for this reason, voltage,
current, and temperature measurements were collected by the HH sensors, as described
in Section 3. The second step of the methodology (Figure 5) is feature extraction and data
analysis. A literature study was conducted to identify features that would allow their
accurate detection. Based on this study, PV characteristic parameters, information of the
installed PV system, and collected data by installed sensors were used to calculate features.
Data collected by sensors include PV modules current, voltage, temperature, and average
global horizontal irradiance (AGHI). In this research, five features, I/Iexp (normalized
current), V/Vexp (normalized voltage), P/Pexp (normalized power), V/Voc_ref, and PV
module condition under the experimental test, were selected and calculated for inclusion
in a model evaluation. I and V are PV module current and voltage, respectively, that are
measured directly by sensors. P is the output power of the PV module that was calculated
by the multiplication of current and voltage. Iexp, Vexp, and Pexp are current, voltage, and
power under normal conditions, respectively. Voc_ref is the open circuit voltage of the PV
module, which is provided by the PV module datasheet.
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A comparison of the results of data collected from the PV array is provided in this
section. Normalized PV module current vs. normalized PV module voltage for each
faulty module is compared with healthy module data (also presented as normalized I-V
distribution) in one string are shown in Figure 6 and discussed in the following paragraphs.
The first fault is corrosion of cell connections or connector fault. It was emulated by adding
a 1 Ω resistor in series with the connector. This fault is labeled as F1 (Table 5). It is observed
that the connector fault will cause a voltage drop [23] and it can be clearly separated from
healthy data. Research in [23] identified that parallel resistance will reduce when a PID
fault (F2) is applied. Therefore, to emulate this fault, a 100 Ω resistor is added in parallel to
the module. Normalized I-V distribution related to the PID vs normal condition in Figure 6
shows some coincidence of healthy and faulty data. In other words, PID effects are very
subtle and not easily observable. This may be due to the emulation methods that were
applied in this experiment.

Usually, a difference of 20% between the light hitting the surfaces of different cells in a
substring is enough to activate the bypass diode of the substring [1]. This will happen in
the case of partial shading, pole shading, or cell crack. In this experiment, a foil was used
to activate the bypass diode on the west string. An SC fault can reduce PV array power
efficiency by an estimated 22.34 to 27.58% [17]. The results in Figure 6 show that the module
voltage drops to two-thirds of the normal module voltage in both partial shading condition
(F3) and short-circuited bypass diode (F6), and that they can be clearly differentiated from
healthy data. However, this is not the case for pole shading (F4) and building shadow (F5)
conditions, as shown in Figure 6. This can be a serious problem for their classification by
supervised learning methods, especially when the size of the labeling data is low in these
cases (Figure 7b).

In the experiment, soiling was emulated in three different ways: (a) adding a strip
over the lower string of cells to emulate partial soiling in a single module, (b) applying
a black tape on the lower border of all modules in the west PV string, and (c) using a
black band on each one-third portion of each PV module to emulate increasing levels of
soiling. The impact of the soiling on the border of all modules is similar to general soiling,
i.e., a reduction in current. Soiling in a single module also creates a small voltage drop
in the module [23]. The effects can be clearly observed in Figure 6. Finally, foil with a
transparency of 91% was used on top of the whole module to emulate a glass breakage
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fault. The main effect of this fault is current reduction at MPP and a short circuited current
(see Table 4). Figure 6 demonstrates that this fault also can be recognized when the output
of the PV module is compared with the normal PV module. The normalized (I-V) dataset
and the sizing of labeling data for various conditions are given in Figure 7.
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5. Fault Detection and Classification

In this section, several supervised learning algorithms were trained and evaluated
using the labelled data generated from emulating faults on the PV array at SUPSI. The
randomized training set comprised 70% of the collected data, whilst 30% were retained as
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an unseen test set. Training examples can be denoted as feature and label vectors X and Y,
respectively, containing a labeled sample, (xi, yi)

n
i=1 ∈ X × Y , given a set of hypothesesH

containing functions mapping X to Y, and a loss function L representing a non-negative
function indicating the deviation between the value predicted by the hypothesis being
tested and the true sample. Thus, the goal is to find a hypothesis h with the smallest
possible loss as is shown below:

min
h∈H
L(h(x), y)) (2)

For this reason, seven different supervised machine learning models using the python
scikit-learn [25] and TensorFlow frameworks [26] were compared. The baseline model is a
multinomial logistic regression model with L2 regularisation, with the objective function to
minimise the cross-entropy loss as calculated by:

Llog(Y, P) = −logPr(Y|P) = − 1
N

N−1

∑
i=0

K−1

∑
k=0

yi, k log pi, k (3)

where for a set of samples, Y represents a 1-of-K binary indicator matrix containing true
labels, whereas P is a matrix of probability estimates. The log-loss is computed for all
samples in the dataset and parameters updated to minimize L using the limited-memory
BFGS optimization algorithm (LM-BFGS) [27]. Next, two Support Vector Machines (SVM)
trained with a linear and polynomial kernel of third degree, respectively, both with L2
regularisation and regularisation parameter C equal to 1. In addition, a K-nearest neighbor
(KNN) classifier trained considering five neighbors at each query point, with equal weight-
ing of points in each neighborhood and using Euclidean distance. A single decision tree
(DT) classifier was trained, as well as a random forest (RF) classifier with 1000 estimators,
with both models using the Gini impurity criterion when evaluating the quality of a split.
Finally, a feed-forward neural network (NN) was also trained. The NN comprised two
hidden layers (256 and 128 neurons for each layer, respectively, with ReLU activation,
and a final softmax activation in the output layer). The model was trained for 500 epochs
using minibatch gradient descent with a batch size of 30, the Adam optimizer and sparse
categorical cross-entropy as the loss function given by:

− 1
N

N

∑
i

yi log(pi) (4)

where N is the number of samples in the minibatch, and yi, and pi represent a one-hot
encoded vector of true labels and a vector of softmax output probabilities, respectively.

To evaluate model performance on the test set, a variety of accuracy metrics were
calculated, and confusion matrices were plotted to demonstrate which models provide the
best performance in terms of fault classification. According to the comparison of accuracy
metrics, which are represented in Table 6, the RF, KNN, and NN models show the highest
performance in terms of accuracy with scores of 89.3%, 88.9%, and 88.6%, respectively.
Normalized confusion matrices for these classifiers are plotted in Figure 8b, which shows
the fraction of samples correctly classified by each model on a class-label basis. As is clear,
97.12% of all samples belonging to the normal state are correctly classified, whereas for
the KNN and NN this is 97.01% and 96.46%, respectively. A similar pattern was observed
by computing precision and recall metrics for each model, as can be seen in Table 6, as
well as the harmonic mean of those two metrics, the F1 score. Furthermore, the Matthews
correlation coefficient (MCC) was also computed for each model, providing an improved
metric over the F1 score to quantify model performance on a dataset where classes are
imbalanced, as is the case in our dataset. As with the F1 score, the MCC score is highest
in the RF model, followed by the KNN and NN models with scores of 0.819, 0.812, and
0.809, respectively.
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Table 6. Comparison of the accuracy metrics for supervised algorithms trained and evaluated on the
dataset with all faults.

Classifier Accuracy Precision Recall F1 Matthews Correlation Coefficient

Random Forest 0.893 0.885 0.893 0.886 0.819
Nearest Neighbors 0.889 0.877 0.889 0.879 0.812

Neural Net 0.886 0.875 0.886 0.878 0.809
Support Vector Machine 0.883 0.866 0.883 0.871 0.799

Decision Tree 0.864 0.863 0.864 0.863 0.772
Linear SVM 0.858 0.851 0.858 0.832 0.758

Logistic Regression 0.744 0.586 0.744 0.649 0.527
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dom Forest; (b) Nearest Neighbors; and (c) Neural Net.

Out of all fault classes, the worst classification performance across all models is
seen for pole and building shading conditions. As discussed previously in Section 4, the
normalized (I-V) distribution for these two faults is not separated clearly. Moreover, the
number of datapoints available for these two faults is very low (Figure 7b), 16 and 52 points,
respectively. Therefore, to improve model performance, F4 and F5 were removed from
the main dataset and the models retrained and re-evaluated. New accuracy metrics were
extracted and are presented in Table 7. As the results show in this table, the NN now
shows the highest classification accuracy, F1 score and MCC overall (93%, 0.929, and 0.880),
followed by the RF model (92.5%, 0.924, and 0.873). The confusion matrices of these two
classifiers are represented in Figure 9. According to the observations from these confusion
matrices, both models can identify six faults and the normal state with good predictive
performance. The highest fraction of samples correctly classified is achieved by the RF for
short-circuit fault (F6) detection at 100%, whilst the lowest fraction of correctly classified
samples being 66.2% for soiling fault (F7) detection.

Table 7. Comparison of the accuracy metrics for supervised algorithms trained and evaluated on a
dataset without F4 and F5.

Classifier Accuracy Precision Recall F1 Matthews Correlation Coefficient

Neural Net 0.930 0.930 0.930 0.929 0.880
Random Forest 0.925 0.924 0.925 0.924 0.873

Nearest Neighbors 0.923 0.921 0.923 0.921 0.869
Support Vector Machine 0.917 0.918 0.917 0.915 0.860

Decision Tree 0.898 0.899 0.898 0.896 0.826
Linear SVM 0.892 0.895 0.892 0.878 0.816

Logistic Regression 0.767 0.644 0.767 0.691 0.573
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Lower classification performance in some categories may be attributed to the dataset
that was used for training. Figure 7b indicates that this dataset is non-uniformly distributed.
As is discussed in [28], training ML algorithms on an imbalanced dataset (non-uniform
distribution of labels) may lead to a degradation in model performance. It is expected that
improved model performance could be achieved with a larger dataset containing more
samples of each class. Therefore, additional fault data will be collected for future research
to improve the fault classification performance.

According to Table 7, the highest classification accuracy belongs to the NN classifier
with an overall 93% accuracy for seven classes. To test the effectiveness of the final clas-
sification accuracy obtained by the NN, the proposed method has been compared with
the other output results in Table 8. As is shown in this table, different accuracy levels
were achieved, ranging from 77.7% to 94% for various fault classifications from different
references. Table 8 shows that the network in [3] has a higher accuracy result, but also
used a larger dataset. The performance of the proposed NN here would be expected to
improve with a larger dataset. Moreover, the network in [3] was trained on MATLAB-based
simulation data considering a single isolated module, rather than real-world data from an
in-service PV array. Nevertheless, the results in Table 8 prove the achievement accuracy of
the proposed method is in an acceptable range compared to the other existing NNs for PV
fault detection.

Table 8. Comparison of the different results of different references from NN classifier for PV
fault detection.

Ref. No. Samples No. Classification Classification Accuracy %

[20] 1568 8 92.8
[3] 52428 10 94
[19] 720 10 92.1
[11] − 10 90.3
[19] 720 5 77.7

Proposed method 4110 7 93

6. Conclusions

In this paper, eight different PV faults were investigated, simulated, and implemented
and tested in a real PV system. The purpose of the research was to identify the performance
of module-level fault detection and classification to allow the development of a low-cost IoT-
based sensor that could be deployed at large scale in low-power-output PV arrays. A panel-
level sensor was used to collect current, voltage, and temperature readings at the module
level, and then combined with local irradiance readings. This dataset was used to develop
ML models that can be used for automatic fault detection and classification at the grid edge.
Of all the compared models, the best performing model was found to be the NN. The NN
was able to detect six PV faults, plus the normal condition with a classification accuracy
on our unseen test set of 93%. However, the classification performance is unsatisfactory
for pole shading (F4) and building shading (F5) conditions. The variance in performance
is most likely related to the non-uniform distribution of the dataset that was obtained
during fault emulation, and the low ratio of these two specific shading conditions (pole
and building shading) in comparison to other faults, and the normal state that showed
significantly higher detection rates in our study (e.g., up to 100% in some instances). It is
expected that classification performance will be improved with the acquisition of additional
balanced training data over a larger time horizon and across a variety of different weather
conditions. For this purpose, additional data are now being collected for a future study.
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