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Abstract: Blade icing is one of the main problems of wind turbines installed in cold climate regions,
resulting in increasing power generation loss and maintenance costs. Traditional blade icing detection
methods greatly rely on dedicated sensors, such as vibration and acoustic emission sensors, which
require additional installation costs and even reduce reliability due to the degradation and failures of
these sensors. To deal with this challenge, this paper aims to develop a cost-effective detection system
based on the existing operation data collected from the supervisory control and data acquisition
(SCADA) systems which are already equipped in large-scale wind turbines. Considering that SCADA
data is essentially a multivariate time series with inherent non-stationary and multiscale temporal
characteristics, a new wavelet-based multiscale long short-term memory network (WaveletLSTM)
approach is proposed for wind turbine blade icing detection. The proposed method incorporates
wavelet-based multiscale learning into the traditional LSTM architecture and can simultaneously
learn global and local temporal features of multivariate SCADA signals, which improves fault
detection ability. A real case study has shown that our proposed WaveletLSTM method achieved
better detection performance than the existing methods.

Keywords: blade icing detection; wind turbine; wavelet multiscale decomposition; long short-term
memory (LSTM) network; temporal feature learning

1. Introduction

Wind energy, as a type of clean and renewable energy, has developed rapidly in
recent years, and accordingly, the installed capacity of wind turbines has constantly been
increasing. Practically, to obtain maximum wind speed, onshore wind farms are usually
located in elevated areas such as north China, where blades are often exposed to freezing
environments (e.g., low temperatures, high humidity, and air density) and prone to blade
icing. As a result, the icing on wind turbine blades will increase high stress on the overall
structure and may cause aerodynamic and mass imbalance [1], which results in lowering
wind power production and reducing the lifetime [2,3]. If the ice on the blades is not
removed in time, it may induce damages to other components coupled with the blades
(such as the main bearing) and even secondary major safety accidents. Therefore, it is
of great significance for timely detection and elimination of blade icing. Once the blade
icing is accurately detected, the de-icing systems can be triggered, thus helping avoid more
severe accidents. This paper aims to develop a reliable and accurate blade icing detection
system to achieve this goal.

Currently, blade icing detection methods mainly include contact detection methods,
hand-held or fixed telescope detection, unmanned aerial vehicle inspection, vibration mode
analysis, and infrared scanning. To effectively detect common blade faults, including holes,
cracks, and delamination, various methods based on vibration, acoustic emission, and
wave propagation are often employed to monitor and assess the health status of wind
turbine blades [4,5]. However, these methods are not applicable during the operation of
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wind turbines and even require additional costs to install cameras or ultrasonic sensors.
Moreover, the degradation and failure of sensors may affect the signal accuracy, and reduce
the reliability of the ice detection system. Therefore, to address the above drawbacks, it is
of great value to develop effective wind turbine blade icing detection systems with timely
ice detection, high reliability, and low cost.

Over the last decade, supervisory control and data acquisition (SCADA) based meth-
ods have been considered a cost-effective way and have been widely studied [6]. For
large-scale wind turbines, the SCADA system has become a standard configuration. It is
dedicated to collecting operational data and status data, which contain abundant environ-
mental, electrical, and mechanical parameters related to the health status of wind turbines.
Currently, SCADA data have been widely to monitor conditions of major components in
wind turbines, including blades [7,8], generators [9,10] and gearboxes [11,12]. For example,
Skrimpas et al. [7] utilized the nacelle vibration and power curve data as input to decide for
blade icing detection. Dong et al. [13] established a blade icing identification model based
on the progressive analysis of different performance parameters change characteristics,
including output power, mechanical, aerodynamic performance parameters from SCADA
data. Rezamand et al. [14] developed a hybrid wind turbine blade fault detection system
based on recursive principal component analysis (PCA) and wavelet-based probability den-
sity function (PDF) and successfully detected incipient blade failures. However, monitoring
blade with SCADA data is a great challenging task due to the following reasons:

1. SCADA data usually do not contain measurements related to a wind turbine blade
health status, such as blade vibrations and mechanical loads;

2. Available SCADA variables cannot directly reflect the health condition of wind tur-
bine blades;

3. Most existing methods greatly rely on manual feature extraction and shallow machine
learning methods and cannot achieve satisfactory performance due to their limited
modeling ability with the shallow network architecture.

To address the above challenges, this paper aims to develop a cost-effective wind
turbine blade icing detection system with SCADA data and investigate deep learning
models to perform effective SCADA data modeling and analysis. Deep learning has
been considered a powerful feature learning and modeling tool. It has achieved excellent
performance in various challenging tasks, especially in computer vision and natural lan-
guage processing. Its core idea is to learn important and representative representations
from input data adaptively through a deep neural network with multilayer nonlinear
transformations. Inspired by the superior performance of deep learning, deep neural
networks (DNNs) have been considerably applied for wind turbine health monitoring and
fault diagnosis [15–18]. Wang et al. [19] designed a deep autoencoder model and derived
the reconstruction error-based health index to identify the possibility of wind turbine
blade breakage. Later, in [20], a conditional convolutional autoencoder-based method was
proposed to detect wind turbine blade breakages and achieved better performance than
classical autoencoder-based methods.

However, SCADA data naturally are multivariate time series, which are characterized
by strong temporal dependence for each sensory variable, which is often changing over
time and will be impacted by the change of the external environments [21]. On the other
hand, since wind turbines are driven stochastically by the external wind, SCADA data
usually present non-stationary characteristics and are subject to various disturbances and
noises. Considering the multivariable, multiscale, dynamic time-varying, known-stationary
characteristics of SCADA data, those existing methods cannot deal with these issues well.
Most methods only consider the global characteristics of each sensor variable in SCADA,
while local characteristics of different variables are often ignored. In a pioneer study,
Yuan et al. [22] proposed a wavelet-based fully convolutional neural network (Wavelet-
FCNN) model to detect blade icing faults. However, the WaveletFCNN does not consider
the inherent but important temporal dependence of SCADA data. Inspired by the above
pioneer work and aiming to overcome the limitation of the existing WaveletFCNN model,
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this paper proposes a new wavelet-based multiscale long short-term memory network
named WaveletLSTM to learn the global and local features of multivariate SCADA data
simultaneously and then accurately detect blade icing conditions of wind turbines.

The specific contributions of this paper are two-fold. Firstly, a new WaveletLSTM
model is proposed based on the traditional LSTM but incorporates the ability of multi-
scale learning by introducing wavelet transform. It can learn complementary diagnostic
information from global and local scales in parallel and obtain enhanced multiscale fea-
ture representations with more discriminability. The proposed WaveletLSTM can enhance
feature extraction ability against the traditional LSTM that handles only a single timescale.
Secondly, we develop a novel WaveletLSTM-based blade icing detection system for wind
turbines, which can automatically learn informative features from raw multivariate SCADA
data and its wavelet-based decomposed local signals and then identify blade icing condi-
tions. Our proposed model is evaluated using real SCADA data from a wind farm, and
the results show that our WaveletLSTM model achieved better fault detection performance
compared with several deep learning-based methods and three shallow machine learning
methods in terms of five classification metrics. Additionally, this design requires no expert
knowledge and has the potential to provide a general-purpose fault detection solution for
industrial applications.

The rest of this paper is organized as follows. Section 2 briefly reviews LSTM and its
applications for fault detection and diagnosis. Section 3 details the proposed WaveletLSTM
model for wind turbine blade icing fault detection. Section 4 presents a case study to evaluate
the performance of our proposed method. Lastly, conclusions are drawn in Section 5.

2. A Brief Overview of LSTM and Its Application in Fault Detection and Diagnosis

Our proposed WaveletLSTM model is developed based on a standard LSTM network.
In this section, we first give a brief overview of the basic principle of LSTM and then review
the related works about LSTM for fault detection and diagnosis.

2.1. Overview of Long-Short Term Memory Network

The LSTM network is a variant of the traditional recurrent neural network (RNN),
which was first proposed in 1997 by Hochreiter and Schmidhuber [23]. LSTM was de-
veloped to deal with the exploding and vanishing gradient problems encountered when
training traditional RNNs. LSTM is explicitly designed to learn the long-term dependencies
for modeling sequential data (e.g., time series). A typical feature of LSTMs is the introduc-
tion of the gate mechanism. Specifically, an LSTM cell introduces three gates: input gate it,
forget gate ft and output gate ot. The input gate can select key information stored in the
internal state. The forget gate will discard some redundant information. Finally, the output
information can be identified by the output gate. These gates are used to control the pass of
new knowledge, which are updated as follows:

it = σ(Wi · [ht−1, xt] + bi) (1)

ft = σ(W f · [ht−1, xt] + b f ) (2)

ot = σ(Wo · [ht−1, xt] + bo) (3)

ĉt = tanh(Wc · [ht−1, xt] + bc) (4)

ct = ft � ct−1 + jt ⊗ ĉt (5)

ht = ot � tanh(ct) (6)

where σ(·) is the sigmoid activation function, all W and b are model parameters to learn,
and the operator � presents the element-wise multiplication. Figure 1 shows a brief
schematic diagram at time step t of an LSTM unit structure.
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Figure 1. Schematic diagram of an LSTM cell at time step t [23]. Note that the output yt equals to the
hidden state output ht.

2.2. LSTM for Fault Detection and Diagnosis

Recent studies have shown that LSTM has an excellent performance in sequence
learning and modeling with various applications, such as image caption, speech recogni-
tion, natural language processing and time series forecasting [24–26]. Motivated by the
successful achievements of LSTMs in time-dependent prediction and classification tasks,
LSTM has been recently applied to the field of fault detection and diagnosis to deal with
different temporal sensor signals from various monitored machines, such as aero-engines,
gas turbines and wind turbines. For example, Yang et al. [27] proposed an LSTM-based
fault detection and isolation approach for electro-mechanical actuators in the aircraft sys-
tem, in which an improved LSTM was developed to learn correlations between sensors
and obtain better detection performance. In [28], Bruin et al. used LSTM recurrent neural
network to process the signals from multiple track circuits in a geographic area and learn
the spatial and temporal dependencies directly from data. The results demonstrated that
the LSTM network achieved a fault diagnosis accuracy of 99.7% with no false-positive
fault detections.

In terms of wind turbine fault detection applications, several related works have been
recently reported. Xue et al. [29] developed an LSTM-based fault detection method to
detect different fault types of an open-circuit switch of the back-to-back converter in wind
turbine systems. Lei et al. [30] developed an end-to-end LSTM model to learn features
from multivariate time-series data and realized the multi-class fault diagnosis of wind
turbine bearings. In [31], Li et al. proposed an LSTM-based data-driven fault diagnosis and
isolation method, where an LSTM-based residual generator was first constructed. Then the
random forest algorithm was applied for decision making. The above works have shown
the feasibility and effectiveness of LSTM for wind turbine fault detection and diagnosis.
Inspired by these achievements, we focus on investigating multiscale characteristics of
SCADA data, which the traditional LSTM ignores.

3. WaveletLSTM for Wind Turbine Blade Icing Detection
3.1. Overall Framework

We formulate blade icing detection as a binary classification issue in this study. Figure 2
shows the overall architecture of the proposed WaveletLSTM model. The model input is
raw multivariate time-series data from multiple sensors installed in wind turbines. The
model output is a binary classification result, normal or blade icing. The WaveletLSTM
is an end-to-end learning architecture that consists of three sequential parts: multiscale
decomposition, temporal feature learning, and classification.
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Figure 2. Illustration of the proposed WaveletLSTM for wind turbine blade icing detection. The blade
icing picture used in this figure is from [22].

1. The multiscale decomposition stage applies discrete wavelet decomposition on each
input SCADA variable to obtain different local signals;

2. In the temporal feature learning stage, we use several staked LSTM layers to extract
features for each decomposed level at a local scale and raw data on a global scale.
In this stage, the temporal feature learning at different scales is independently from
each other;

3. In the classification stage, the extracted features from all scales are concatenated and
go through a fully connected layer and a softmax layer for final binary classification.

The proposed WaveletLSTM architecture effectively combines the temporal feature
learning from the global scale and multiple local scales. It, therefore, enhances the classifi-
cation performance, as will be shown in the experimental results in Section 4.

3.2. WaveletLSTM Architecture

The input of the WaveletLSTM is the multivariate SCADA time series with size N × D,
where N is the length of each sensory time series and D is the number of sensor variables.

3.2.1. Wavelet-Based Multiscale Decomposition

To capture the multiscale characteristics of the SCADA time series, discrete wavelet
decomposition is adopted. Each sensor variable time series can be decomposed into a set
of wavelet coefficients. The decomposed wavelet coefficients represent the variance of the
sequence across different frequency resolutions [32]. As shown in Figure 2, the original time
series signal is first decomposed into a detailed coefficient and an approximate coefficient
at Level 1. Then the obtained approximate coefficient will be further decomposed at Level
2. Such a decomposition process will be repeated until the target decomposition level of
the wavelet is reached. As a result, the original multivariate SCADA time series will be
finally decomposed into several wavelet coefficients at different levels, and the size of the
wavelet coefficient at ith decomposed level is [N/2i ]× D, where i = 1, 2, · · · , L.

Note that the original signal and all decomposed detailed coefficients at different
levels are input to the individual deep LSTM model for temporal feature learning in the
next stage. Our proposed WaveletLSTM does not consider the obtained approximation
coefficient as input since it represents some smooth average of the input signal, which can
be easily learned when processing the original signal. Additionally, this will reduce the
redundancy of the input and the difficulty of model training.
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3.2.2. LSTM-Based Temporal Feature Learning

Herein, a deep LSTM model with multiple LSTM layers is designed to learn tem-
poral features hidden in multivariate times series. Figure 3 shows an illustration of a
three-layer deep LSTM architecture for temporal feature learning. The model input is a
multivariate time series with a size of m × n × p, where m, n, and p represent the number
of time series samples, the temporal length of each sample and the number of sensor
variables, respectively.
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Figure 3. A three-layer deep LSTM architecture for temporal feature learning with multivariate time
series. Here, p1, p2, p3 denote the number of units for three LSTM layers.

For the original signal and all decomposed wavelet coefficients, temporal feature
learning is performed separately, as shown in Figure 2. It should be noted that global
and local temporal features can be learned from the original signal and all decomposed
wavelet coefficients, respectively, and thus can provide much more information for the
subsequent classification task. Specifically, with a given sequential input xt at time t, its
feature representations can be obtained with a deep LSTM model as follows:

ht = DeepLSTM(xt, ht−1, θ) (7)

where θ represents the learned model parameters of the DeepLSTM model.
We consider the final hidden state hn the learned feature representations, which encode

the most information from input signals.

3.2.3. Feature Fusion and Classification

In this stage, the learned temporal features from the global view and local view are
fused by a simple concatenation way, as shown in Figure 2, which is formulated as a long
feature vector. Then, the concatenated feature vector is directly input to a softmax layer to
identify whether it is normal or blade icing.
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Similar to the traditional LSTM, we train the WaveletLSTM using stochastic gradient
descent (SGD) through the back propagation (BP) algorithm. A dropout layer follows each
LSTM layer in the temporal feature learning stage to reduce the overfitting risk.

3.3. Online Fault Detection

Once the WaveletLSTM model is well trained, it can be used for online fault detection.
For unseen test data, it should be noted that if they are directly input to the trained
WaveletLSTM model to output classification results, there will be a large probability of
misclassification risks. Therefore, to generate a more accurate and robust detection result,
we adopt a recently proposed anomaly detection algorithm based on a sliding window
and majority voting [22]. Since the final decision result is based on the majority vote
principle, this model will effectively reduce misclassifications and produce more reliable
detection results.

Figure 4 shows the online detection illustration based on the sliding window and
the majority vote. For the multivariate time series collected from the SCADA system, it
will be first divided into several segments by using a sliding window with the size of Lw
and sliding step size Ls. Assuming that the time series is segmented into blocks of length
Ls, the sliding window of length Lw will move along the input time series by a step size
of Ls. The trained classifier will then predict the time series within the sliding window.
Each time the sliding window moves, a prediction will be produced. For example, the
WaveletLSTM classifier produces a predicted value p1 when the sliding window slides once
and a second predicted value p2 when it slides a second time. Similarly, when sliding the
i-th time, the time series module will generate the predicted value pi. Thus, as the sliding
window moves along the signal, each block will accumulate Lw/Ls predicted values. To
make the final prediction result, the majority voting is adopted to determine whether the
current block is abnormal or not, depending on a proper threshold τ. If the proportion of
positive prediction is greater than or equal to the threshold τ, it will generate an overall
positive prediction, which means an anomaly is detected and then will trigger a warning;
otherwise, a negative prediction will be generated, which means the system is normal.

Figure 4. Online detection based on the sliding window and the majority vote.
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4. Case Study
4.1. SCADA Data Description

The available SCADA data used in this study are provided by GoldWind Inc, collected
from three wind turbines in a wind farm located in north China. The data sampling interval
is 7 s, and the time range is from 1 November 2015 to 1 January 2016. During this time
period, the weather is fairly cold (e.g., the environmental temperature will be below 0).
Accordingly, wind turbine blades are easy to freeze in a large area. Originally, the wind
turbine SCADA data contained hundreds of dimensions, with a large amount of redundant
and unrelated information with blade icing. Therefore, 26 continuous variables related
to blade icing are screened by wind turbine manufacturers according to domain-specific
knowledge, and a detailed description is given in Table 1. These 26 variables could be
grouped into the following four classes:

1. Wind parameters, such as wind speed and wind direction measured, which are direct
drivers of wind turbines closely affecting the operating conditions, and related to
other parameters (e.g., power and pitch angle) [33];

2. Energy-related parameters closely related to the energy conversion process of wind
turbines, such as active power, generator speed, pitch angle, pitch speed, etc. It has been
proven that blade ice accretion will result in power performance deterioration [7,13];

3. Temperature parameters including the temperatures measured at turbine components
(e.g., pitch motor, pitch battery cabinets), nacelle temperature and external environ-
mental temperature. Blade icing will cause aerodynamic and mass imbalance and
induce the temperature changes of pitch motors and pitch battery cabinets [8,13];

4. Vibration parameters involving nacelle acceleration in both X and Y directions.
Related works have shown that blade ice accretion will result in excessive nacelle
oscillation [7].

Table 1. Sensor variable information of the SCADA data.

No. Variable Name Description

1 wind speed Wind speed
2 power Active Power
3 wind direction Wind direction
4 wind direction mean Average wind direction angle
5 generator speed Generator speed
6 yaw speed Yaw speed
7 yaw position Yaw position
8 pitch1 angle Pitch angle of blade 2
9 pitch2 angle Pitch angle of blade 1
10 pitch3 angle Pitch angle of blade 3
11 pitch1 speed Pitch speed of blade 1
12 pitch2 angle Pitch speed of blade 2
13 pitch3 angle Pitch speed of blade 3
14 pitch1 ng5 DC Direct current of pitch motor 1
15 pitch2 ng5 DC Direct current of pitch motor 2
16 pitch3 ng5 DC Direct current of pitch motor 3
17 environment temp Environment temperature
18 int temp Nacelle temperature
19 pitch1 moto temp Temperature of pitch motor 1
20 pitch1 moto temp Temperature of pitch motor 2
21 pitch1 moto temp Temperature of pitch motor 3
22 pitch1 ng5 temp Temperature of battery cabinet 1
23 pitch1 ng5 temp Temperature of battery cabinet 2
24 pitch1 ng5 temp Temperature of battery cabinet 3
25 acc x Nacelle acceleration in X direction
26 acc y Nacelle acceleration in Y direction



Energies 2022, 15, 2864 9 of 19

Previous studies have shown that different variables in SCADA data are highly corre-
lated [34]. The occurrence of a fault or malfunction in a certain component or subsystem
may cause changes in multiple variables. Here, correlations between the above variables
are investigated. Figure 5 shows the pair plot of several representative variables listed in
Table 1, including wind speed, power, pitch angle, acceleration, etc. Note that all data are
not original data and have been normalized with the arbitrary unit, which is performed
by the data provider (GoldWind Inc., Beijing, China) due to the data confidentiality. It
can be seen from the power curve shown in the first subplot that the blade icing causes
the reduction of the output power and the change in the aerodynamic performance of
wind turbines. Pitch angle vs. wind speed curve shows that most blade icing happened
in the rated wind speeds. Acceleration and temperature curves also demonstrate certain
differences between icing and normal conditions. In fact, blade icing may lead to the
changes of such complex correlations hidden in multivariate data, which has also been
studied in [8,22]. Therefore, we aim to extract informative features beneficial for detection
from multivariate temporal correlated data.

Figure 5. Pair plot for several representative variables under normal and icing conditions, where all
sensor variables are normalized.

For data labeling, the engineers from wind turbine manufacturing have provided
initial normal and icing labels for data samples based on the fault or maintenance log.
For simplicity, we denote the icing samples as Label 1, and normal samples as Label 0,
respectively. Regarding the data processing, we used the same procedures in [22] to
generate the dataset for model training and evaluation. Figure 6 shows the variations of
data labels of one turbine in the time domain from 1 November 2015 to 1 January 2016.
We can observe that the blade icing accretion happens intermittently. The data portions
of normal and blade icing states are quite different. In other words, there exist obvious
data imbalance problems between normal and icing conditions, which will produce biased
performance if directly using such an imbalanced dataset for detection model training
and evaluation. To address this issue and to effectively train our proposed WaveletLSTM
model, we introduce a data augmentation strategy with a sliding window technique, which
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has been used in [22], to generate a balanced dataset for model training and evaluation.
Specifically, for normal sample generation, we cut the original normal ranges into several
normal segments without overlap, while for icing conditions, the number of icing samples
is augmented by generating overlapping icing segments with a fixed-length sliding window
with overlap. To be concrete, we give an illustrative diagram of the data sample generation
procedure for normal samples and icing samples, as shown in Figure 7. In Figure 7a,
we assume that a wind turbine is working at 0:00–8:00, then the normal range without
overlap is cut into 8 normal segments, each corresponding to the state within one hour. In
Figure 7b, when the blade icing fault occurs in the wind turbine at 8:00–10:00, we can use
a 10-min step and a 1-h sliding window to move along the blade icing range, and 7 icing
segments (e.g., 8:00–9:00, 8:10–9:10, etc.) are generated. The step size used in our study
is 16 (representing a step size of 112 s) to create a balanced dataset. The original signal
is divided into a group of fixed-length segments (the length of the fixed-length segment
used in this paper is 512), and each segment has a binary label (that is, 0 or 1,1 represents
icing, and 0 represents normal) to indicate whether the blade freezes during this period.
According to the above principle, an augmented dataset will be finally generated. We
further split the augmented dataset into the training set, the validation set and the test
set, as summarized in Table 2. The performance of our proposed WaveletLSTM model
is further evaluated on such three generated datasets. The training set is used for model
training, the validation set is used for model hyperparameter optimization, and the test set
is used for model performance evaluation.
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Figure 7. An illustration diagram of data sample generation procedure for (a) normal samples and
(b) icing samples.

Table 2. Detailed datasets information.

Dataset Normal Samples Icing Samples Total Samples

Training set 671 550 1221
Validation set 169 139 308

Test set 1975 107 2082

4.2. Parameter Setup

For all model training, we used Adam for network optimization for its efficient
computation and little memory. Model hyperparameters are experimentally determined
based on the validation dataset. To improve the training speed, the training set is split
into small batches to update the network weights, and the mini-batch size is set as 12. The
learning rates and the number of epochs in the training process are set to 0.01 and 100,
respectively. To uniformly convert data of different magnitudes into the same magnitude,
the Z-score standardization is used to standardize the data. The settings for LSTM layers
are as follows: three hidden layers, each with hidden neuron sizes of 128, 64, and 32,
respectively. To prevent the over-fitting of the model in the training process, the dropout
layer is added after each LSTM layer to achieve the regularization effect to a certain extent.
In this study, the dropout rate is set to 0.3. We use cross-entropy as the loss function which
has been widely used in literature [22,26]. The wavelet decomposition level is set to 4, and
the mother wavelet function uses haar. Two important parameters, wavelet decomposition
scale and model depth, will be discussed in detail in Section 4.5.

In the online detection phase, the sliding window Lw is set to be the same length as the
segment in the training set. In this study, Lw = 512 The sliding step size Ls is set to 2L = 16,
where L is the wavelet decomposition level used in the first step of WaveletLSTM model.

4.3. Evaluation Metric

The blade detection problem studied in this paper can be regarded as a binary clas-
sification. To comprehensively evaluate the model performance, the Receiver Operating
Characteristic (ROC) curve and the resulting Area Under Curve (AUC) [9,35], the detection
accuracy, precision, recall, and F1-score are used as evaluation metrics, which are generally
calculated based on the classification results of positive (icing) and negative (normal) sam-
ples, which can be represented as a confusion matrix including four parts, i.e., true positive
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(TP), false positive (FP), true negative (TN) and false-negative (FN). The corresponding
calculation formulas are denoted as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1-score =
2 × Precision × Recall

Precision + Recall
(11)

4.4. Performance Evaluation and Comparison

To demonstrate the detection performance of our proposed WaveletLSTM model,
the traditional LSTM is first compared, which actually can only learn global features
from the original multivariate SCADA time series. We also considered another model
named WaveletLSTM_ng that only considers the learning ability of local temporal features
from the decomposed wavelet coefficients. Differently from LSTM and WaveletLSTM_ng,
WaveletLSTM can simultaneously learn global and local features from multiple scales. The
compared results of three models are shown in Figure 8, where the numbers represent
the AUC values of each model. For WaletLSTM_ng and WaveletLSTM, the number of
wavelet decomposition levels is set to 4, and other parameters are consistent. As can be
seen from Figure 8, our proposed WaveletLSTM model is expected to achieve the best
performance with the AUC value of 0.96. This proves the importance of concurrent learning
of global and local features in the fault detection task. Additionally, we notice that the
WaveletLSTM_ng model performs worse than LSTM, which means that the global feature
learning is more effective than local feature learning. A possible reason for this is that the
original data may contain more useful information beneficial for fault detection. At the
same time, decomposed detailed wavelet coefficients lose some important information,
resulting in poor performance.

Figure 8. Performance comparison of different models.

Furthermore, we compared our proposed WaveletLSTM model with the existing two
models, namely fully convoluted neural networks (FCNN) and wavelet fully convolutional
neural networks (WaveletFCNN, both of which are used for wind turbine blade icing
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detection in [22]. To make a fair comparison, for WaveletFCNN and WaveletLSTM, the
wavelet decomposition level was set to the same value of 4. For FCNN and WaveltFCNN,
the convolution layer was set to 3, the number of convolution kernels in each layer was
128, 256, 128, and the size of convolution kernels was 8, 5, and 3, respectively. The step
size was set to 1, and the activation function of each convolution layer was Relu. The
remaining parameters are the same as the settings in [22], and a more detailed description
of WaveletFCNN can be found in [22].

As can be seen from Figure 8 our proposed WaveletLSTM classifier performs better
than the WaveletFCNN and FCNN in terms of AUC metric. Additionally, WaveletLSTM
achieves an FDR of over 0.9 at a lower FAR of 0.1, and the performance is the best among
all considered methods. This further shows that it is very important to deeply mine
the temporal information of SCADA data to improve fault detection capability. In short,
the results prove that our proposed WaveletLSTM model can effectively detect blade
icing conditions.

To check more details of classification results, we calculated the confusion matrices
of different methods, and the results are shown in Figure 9. Additionally, the derived
classification performance metrics are calculated as listed in Table 3 where the best values
are highlighted in bold. From Figure 9, it can be seen that our WaveletLSTM successfully
predicted 106 of a total of 107 icing cases meaning a higher fault detection rate (FDR) and
correctly predicted 1799 of a total of 1795 normal cases. A total of 176 normal cases were
wrongly classified as icing ones, which led to false alarms. In terms of FDR, WaveletLSTM
and FCNN perform significantly better than WaveletFCNN and LSTM. In terms of FAR,
WaveletLSTM achieved the lowest FAR among the four considered models, which produced
more reliable fault detection results in practical applications. Classification metrics listed in
Table 3 also prove that our proposed WaveletLSTM model exhibited the best performance.

WaveletLSTM

Confusion

matrix

y_pred

1 0

y_true
1 106 1

0 176 1799

WaveletFCNN

Confusion

matrix

y_pred

1 0

y_true
1 94 13

0 237 1738

LSTM

Confusion

matrix

y_pred

1 0

y_true
1 94 13

0 380 1595

FCNN

Confusion

matrix

y_pred

1 0

y_true
1 107 0

0 948 1027

Figure 9. Confusion matrix of different models.

Table 3. Comparison results of different models in terms of classification metrics.

Metric FCNN WaveletFCNN LSTM WaveletLSTM

Accuracy 0.545 0.880 0.881 0.915
Precision 0.101 0.284 0.198 0.376

Recall 1 0.879 0.878 0.991
F1 score 0.184 0.429 0.324 0.545

AUC 0.85 0.91 0.83 0.96
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4.5. Parameter Analysis

The proposed WaveletLSTM model involves two important parameters: scales
(i.e., wavelet decomposition level) and depths (i.e., the number of hidden layers). Their
effects on the model classification performance are investigated as follows.

4.5.1. Effects of Scale

Since SCADA data usually show large variations at different observation scales, it
is necessary to consider multi-scale information. In this study, to explore the effects
of the scale of WaveletLSTM model on the detection performance, different scales are
considered. Traditional LSTM, corresponding to WaveletLSTM with one scale, is also
compared. Figure 10 shows the detection performance of WaveletLSTM with different
scales in terms of the ROC curves and the corresponding AUC values. The WaveletLSTM
models with 2 to 4 scales are always superior to the traditional LSTM. We notice a significant
increase in above 10 % from LSTM to WaveletLSTM with two scales, which attributes to
the local and global temporal feature learning ability of WaveletLSTM. In more detail, the
WaveletLSM model with different scales achieved similar detection performance in terms
of AUC value. It should be noted that more scales will increase the complexity of the
WaveletLSTM and also require much more computation time for model training. Therefore,
in practical implementation, a smaller scale is suggested when the detection performance
meets the system requirement.

Figure 10. Effect of scale on detection performance of the proposed WaveletLSTM with different
scales from 2 to 4.

4.5.2. Effects of Depth

The depth of the WaveletLSTM model can determine the abstraction level of the ex-
tracted features. To test the depth of the effect on classification performance, we considered
the depth of one to three LSTM layers and the wavelet decomposition level was set as 2. The
result is shown in Figure 11, where WaveletLSTM is compared with LSTM with different
depths. It can be seen that WaveletLSTM achieved better classification performance with
the increase in depth. The LSTM models with two and three layers also perform better than
the model with only one layer. This is because abstract and useful features can be learned
through a deeper network, which is helpful for classification. WaveletLSTM models with
two and three layers achieved AUC value of above 90%), which is significantly better than
WaveletLSTM model with one layer (a gain of by 3% and 10%, respectively).
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Figure 11. Effects of depth on detection performance with our WaveletLSTM and the compared
LSTM model.

We considered different wavelet decomposition levels from 1 to 7 and model depths
from one LSTM layer to seven layers in our proposed waveletLSTM model, and the results
are shown in Figures 12 and 13. From Figure 12, it can be observed that our proposed
WaveletLSTM achieved the highest AUC value of 0.94 with two scales corresponding to
two wavelet decomposition levels. Figure 13, we can see that our proposed WaveletLSTM
with three layers obtained the best performance of 0.97 in terms of AUC. However, with
the increase in depth and scale from both figures, the model’s performance decreased.
A possible reason is that the over-fitting may occur for a deeper network since more
parameters need to be trained. Additionally, more scales mean that more parallel network
branches need to be built and trained, thus will increase the complexity of the model.
Moreover, the larger the model depth or scale is, the higher the computational costs are
required. Therefore, the model depth and scale should be carefully chosen to make a
trade-off between the detection accuracy and model complexity. In our case, the model
depth of three layers is enough. In real-world applications, to handle more challenging and
complex diagnostic tasks, deeper models may be designed, especially when a large number
of data are available.

0.83

0.97

0.93

0.96

0.93
0.92

0.9

0.75

0.8

0.85

0.9

0.95

1

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7

A
U

C

Wavelet decompoistion level

Figure 12. Detection performance of WaveletLSTM at different depths.
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Figure 13. Detection performance of WaveletLSTM with different scales.

4.6. Compared with Shallow Machine Learning Methods

To further demonstrate the superiority of our proposed WaveletLSTM model, we
compared it with three commonly used shallow machine learning methods, including
support vector machine (SVM), decision tree (DT), and K-nearest neighbor (KNN). These
three models adopt the multivariate SCADA signals as input to train a binary classifier.
Model hyper-parameters are optimized with a grid-search method. Table 4 gives the
parameter range for several important parameters of three compared algorithms. The
compared results are summarized in Table 5, where the the best performance metrics are
highlighted in bold. It can be observed that our proposed WaveletLSTM model significantly
outperformed three compared models in terms of five classification metrics. Unfortunately,
the three shallow machine learning models achieved lower AUC values below 0.65. This
result demonstrated that shallow learning methods cannot deal with complex multivariate
SCADA data with high information redundancy and noise.

Table 4. Parameter settings for several machine learning methods.

Method Parameter Parameter Space

DT

max_features (‘auto’, ‘sqrt’,‘log2’)

max_depth (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

min_samples_split (2,3,4,5,6,7,8,9,10,11,12,13,14,15)

min_samples_leaf (1,2,3,4,5,6,7,8,9,10,11)

SVM
kernel function rbf

C (1,5,10,50)

σ (0.001,0.0005,0.001,0.005,0.1,0.5)

KNN n_neighbours (3,4,5,6,7,8,9,10)

Table 5. Comparison of results with shallow machine learning methods in terms of classification
metrics.

Metric DT KNN SVM WaveletLSTM

Accuracy 0.883 0.846 0.579 0.915
Precision 0.143 0.005 0.079 0.376

Recall 0.248 0.009 0.661 0.991
F1 score 0.181 0.006 0.141 0.545

AUC 0.58 0.62 0.62 0.96
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5. Conclusions and Future Work

1. This paper proposed a new WaveletLSTM model for wind turbine blade icing de-
tection. The main contribution of the proposed architecture is to incorporate the
multi-scale temporal feature learning of the original signal by introducing the wavelet
transform into the traditional LSTM. The proposed model can use the time-frequency
local characteristics of the wavelet transform to realize global and local feature learn-
ing; Thus, it can automatically learn complementary and informative fault features of
different scales from original SCADA multivariate time series signals in a parallel way,
which greatly improves the feature learning ability and fault diagnosis performance.

2. A WaveletLSTM-based end-to-end fault detection system was developed. Our pro-
posed WaveletLSTM model achieves better fault detection performance than several
existing methods through a case study;

3. For practical application in real wind farms, our proposed WaveletLSTM model could
be trained and adjusted in the cloud server. Then, the well-trained model can be
further deployed to the wind turbine unit to decide with the online real-time SCADA
data stream. Once the icing condition is accurately detected, it can immediately trigger
an alarm and start the de-icing system to remove the ice on the blades to prevent the
possible blade fracture and even more severe accidents.

Our study mainly focuses on classification-based fault detection, which requires
normal and faulty data samples to train an accurate and reliable classifier for binary fault
detection. Our proposed WaveletLSTM model can accurately detect the occurred blade
icing conditions. It should be noted that our model cannot predict the blade icing conditions
in advance. Prediction of icing or faults has more value in practical applications to provide
early fault detection and warning. Effective measures can be taken in a timely manner to
avoid more severe failures and even accidents, which will be the focus of our future work.
Additionally, for the data imbalance issue, we used the sliding window technique with
overlap to augment icing data samples to create a balanced dataset. In our future work,
advanced imbalanced learning methods will be investigated to develop more effective fault
detection models to address the data imbalance issue.
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