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Abstract: Accurate wind power forecasting is an important factor in ensuring the stable operation
of a power system. In this paper, we propose a wind power forecasting method based on feature
analysis and error correction in order to further improve its accuracy. Firstly, the correlation analysis is
carried out on the features using the maximal information coefficient (MIC), and the main features are
selected as the model input items. Then, the two primary factors affecting wind power forecasting—
the wind speed and wind direction provided by numerical weather prediction (NWP)—are analyzed,
and the data are divided and clustered from the above two perspectives. Next, the bidirectional
long short-term memory network (BiLSTM) is used to predict the power of each group of sub data.
Finally, the error is forecasted by a light gradient boosting machine (LightGBM) in order to correct the
prediction results. The calculation example shows that the proposed method achieves the expected
purpose and improves the accuracy of forecasting effectively.

Keywords: wind power forecasting; bidirectional long short-term memory network; deep learning;
error correction

1. Introduction

As a result of the clean transformation of the global energy structure, the high-carbon
emission power system led by traditional fossil energy will gradually disappear and be
replaced by a clean power system led by renewable energy [1]. Wind power generation,
as a typical form of renewable energy generation, has developed rapidly in recent years.
However, due to the randomness and uncertainty of wind speed, large-scale wind power grid
integration endangers the smooth operation of power systems [2]. Wind power forecasting can
provide data support for the power grid, help the dispatching department to formulate power
generation strategies, and eliminate the fluctuations caused by wind power grid-connection
to the maximum extent. Therefore, accurate wind power forecasting is very important [3].

Many scholars at home and abroad have carried out related research on wind power
forecasting. Wind power forecasting methods are mainly divided into physical methods and
statistical methods [4]. The physical method establishes a flow field model through meteoro-
logical and topographical data and creates a forecast in combination with numerical weather
prediction (NWP), which is suitable for medium- and long-term wind power forecasting.
The calculation process is complicated, and the data real-time requirement is high, so it is
not applicable for short-term wind power forecasting [5]. The statistical method is based on
historical data and NWP data, and it forms a forecasting model by establishing the mapping
relationship between input features and power to carry out wind power forecasting, which is
more suitable for short-term wind power forecasting [6]. At present, short-term wind farm
wind power forecasting models mainly include single models and hybrid models. The tradi-
tional single short-term wind power forecasting method mainly includes the following: the
time series method [7], the gray model method [8], and the Kalman filter method [9], etc.
However, these methods are based on linear modeling and do not consider the uncertainty of
wind power, resulting in large errors [10]. With the continuous innovation and development
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of artificial intelligence, a variety of machine learning algorithms are used for wind power fore-
casting. Traditional machine learning algorithms such as a support vector machine (SVM) [11],
the least squares support vector machines (LSSVM) [12], and other methods avoid falling into
local optimal solutions, and the prediction accuracy is further improved. However, they are
sensitive to parameter and kernel function selection, so the accuracy depends too much on the
value of the parameter. Decision tree algorithms such as the Gradient Boosting Decision Tree
(GBDT) [13], eXtreme Gradient Boosting (XGBoost) [14], and Light Gradient Boosting Machine
(LightGBM) [15] have good performance for wind power forecasting, but the space complexity
is too high, and it is easy to overfit. Moreover, they do not perform well in processing data with
strong feature correlation, so they are more suitable for processing data with low correlation.
As an important part of machine learning, artificial neural networks are also used for wind
power forecasting, which are used to extract the strong relationship between input features and
future wind power. Shallow neural networks such as Back Propagation (BP) [16], Radial Basis
Function (RBF) [17], Elman [18], extreme learning machine (ELM) [19], etc., have achieved
good results. However, they do not consider the time-dependent information in the sample
information, cannot automatically extract deep features, and cannot handle large changes
in the wind power time series, which affects the learning efficiency of the algorithm [20].
Due to their strong ability of data feature extraction and fitting, deep learning methods have
developed rapidly in recent years. Convolutional neural network (CNN) [21], traditional gated
recurrent unit (GRU) [22], deep belief network (DBN) [23], short-term memory neural network
(LSTM) [24,25], etc., have all been used for wind power forecasting. Among them, LSTM is a
recurrent version of deep learning, which applies many temporal latent layers to effectively
learn the strong temporal feature of wind power data [26], realizing the full utilization of long-
distance time series information. However, LSTM only contains one-way information and the
time correlation between data is not considered comprehensively. Therefore, the bidirectional
long short-term memory neural network (BiLSTM), combining two groups of LSTMs with
opposite directions, has emerged, which contains both historical and future information, and
this network has been shown to improve the prediction accuracy [5]. Therefore, this paper
conducts power forecasting based on BiLSTM.

The single model has limitations [27], so the hybrid model emerges as the times require,
giving full play to the advantages of each model to achieve the goal of complementarity.
It mainly includes two combination methods. One is an overall combination based on model
performance. By assigning different weights, the prediction results of multiple single models
are linearly combined to further improve the prediction accuracy. For example, [28] com-
bines four neural networks: BP, Elman, ELM, and generalized regression neural network
(GRNN); [29] combines three deep neural networks: LSTM, DBN, and echo state network
(ESN). However, there are too many selection methods for the basic single models and their
corresponding weights, and it is difficult to determine whether the performance of multiple
single models is complementary, resulting in excessive randomness of the results. The other is
component forecasting based on data features, extracting similar data through feature engi-
neering, to enhance the representativeness and adaptability of the model to specific situations
through the refinement of data selection [30]. The following methods are currently popular:
the original data is denoised by wavelet decomposition [31], empirical mode decomposi-
tion (EMD) [32], ensemble empirical mode decomposition (EEMD) [33], variational modal
decomposition (VMD) [34], etc., to be decomposed into components of different frequency
bands, and appropriate models are used to predict each subsequence separately. Based on
different features (such as weather conditions, wind conditions, output mode, power change
trend, etc.), cluster analysis is carried out on the original data [35,36], and power forecasting
is made for different types of data, respectively; a similarity calculation method is defined in
units of days, and the similar day data are extracted for model training and forecasting [37].
However, the above methods mostly extract feature similarity from the perspective of power
output—ignoring the wind speed and wind direction, which are the two meteorological factors
that have the greatest impact on future power—and have not excavated the strong correlation
between the above two factors and power. Therefore, based on emphasizing the inseparable
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relationship between the above two factors and power, this paper focuses on extracting similar
data from these two perspectives for component forecasting.

Table 1 shows the comparison of the above models. In addition to the above models, data
pre-processing and post-processing are also effective ways to improve the accuracy of wind
power forecasting. The pre-processing of the data mainly uses a maximum information coeffi-
cient (MIC) [26], principal component analysis (PCA) [17], conditional mutual information [38],
etc., to perform correlation sorting, and to reduce the dimension of high-dimensional input
features. By introducing as many features as possible, the forecasting model can reflect the
impact of complex external conditions on wind power to some extent. However, the features
with lower correlation have limited improvement on prediction performance. Traditional
methods do not consider the different influence of the input features on the change of wind
power in different wind farms, that is, different wind farms are applicable to different model
input features. At the same time, when multiple original features are used as the input features
of the prediction model, the complexity of the model will be increased, and the running speed
of the model will be seriously reduced. In order to improve the above situations, it is necessary
to have the corresponding algorithm to select several appropriate features from multiple
original features as the input variables of the model. The relevant feature selection algorithm
can not only screen out the features that have a greater impact on wind power and eliminate
the coupling relationship between variables, but also help to improve the running speed of the
model, which makes the prediction model achieve higher prediction accuracy and efficiency
with less input. The post-processing of data is mainly to correct the error of the predicted wind
power [39] by describing the distribution of the prediction error, ref. [40] by predicting the error,
and to correct the preliminary prediction power value. Compared with the load forecast, due
to the uncertainty of wind speed, the wind power forecasting result is more volatile and there is
still a large error in the preliminary forecasting. The preliminary prediction result is substituted
into the error model, and the error value obtained is correspondingly superimposed with
the preliminary forecasting value as the prediction correction result, which plays the role of
checking the leakage and filling it. At the same time, different types of models are selected for
the preliminary forecasting and error correction, which can avoid the limitations of a single
model to a certain extent and give full play to the advantages of different models to further
improve the prediction accuracy. The error correction has strong generality and is not limited
to the specific forecasting process. Therefore, the multi-link forecasting method of “ input
screening + model combination + error correction” has become a research hotspot and strives
to maximize the prediction accuracy from the perspective of each link optimization.

Table 1. Comparison of wind power forecasting models.

Classification of Forecasting Models Typical Models and
Algorithms Shortcoming

Single model

I. Early methods
Time series method, gray
model method, Kalman filter
method, etc.

Based on linear modeling,
the uncertainty of wind power is
not considered, so the prediction
error is large.

II. Machine
learning algorithms

A. Traditional machine
learning algorithms (1). SVM, LSSVM, etc.

They are sensitive to the selection of
parameters and kernel functions, and
the accuracy depends excessively on
the value of parameters.

(2). GBDT, Xgboost,
lightGBM and other decision
tree algorithms.

The spatial complexity is too high,
and it is easy to over fit, which is
more suitable for processing data with
low correlation.

B. Artificial neural network
(1). Shallow neural network:
BP, RBF, Elman, ELM, etc.

Without considering the
time-dependent information in the
sample information, the deep features
cannot be automatically extracted.

(2). Deep learning: CNN, GRU,
LSTM, BiLSTM, etc.

They have strong data feature
extraction and fitting ability. However,
only BiLSTM can mine bi-directional
time series information.
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Table 1. Cont.

Classification of Forecasting Models Typical Models and
Algorithms Shortcoming

Hybrid model

I. Overall combination based
on model performance

Linearly combine the results
of multiple single forecasting
models according to
different weights.

Optimal weighted
combination method,
entropy weight method, etc.

There are too many selection
methods for the basic single models
and their corresponding weights,
and it is difficult to determine the
complementary effect of multiple
single models.

II. Component forecasting
based on data features

A. Denoise the original data
and decompose it into
components of different
frequency bands.

Wavelet decomposition,
EMD, VMD, etc.

The similarity extraction of the data
is only carried out from the perspective
of power, without considering the
wind speed and wind direction,
which are the two meteorological
factors that have the greatest impact
on the future power.

B. Cluster the original data
based on different features.

K-meas and other
clustering algorithms.

C. Define a similarity
calculation method to extract
similar daily data.

Cloud model, grey relation
analysis or others.

In summary, this paper proposes a short-term wind power forecasting method based
on feature analysis and error correction. First, the MIC is introduced to analyze the cor-
relation of multiple factors affecting wind power, and then feature selection is performed
based on this. Second, the data are divided based on wind speed, and cluster analysis is
conducted on the data from the aspect of wind direction. Then, each component builds a
prediction model based on the BiLSTM to complete the preliminary forecasting of wind
power. Finally, lightGBM is used to perform error forecasting and correct the preliminary
prediction results. The results of practical examples show that the method proposed in
this paper effectively improves the forecasting accuracy and establishes a hybrid fore-
casting framework including feature selection, similar data component extraction, model
forecasting, and error correction. Our contributions are summarized as follows:

• MIC is used for feature selection. Several factors with the strongest correlation with
wind power are selected from multiple features, which avoids the interference of
irrelevant features on the wind power prediction results, reduces the input features
dimension, reduces the workload of neural network, and thus greatly improves the
operation speed. In addition, the features most closely related to power can also be
observed, thus laying a foundation for the extraction of similarity components.

• A hybrid model based on component forecasting is used for wind power forecasting.
The strong correlations between wind speed and power, wind direction and power
are separately mined. The prediction components are extracted from the above two
features for the first time, which makes the similarity between components stronger.
The relationship between wind turbine output and wind speed is fully utilized, and
the influence of wind blowing from different wind directions on wind energy absorbed
by wind turbines is considered. This provides a new idea for improving the accuracy
of wind power forecasting, which has not been studied in the previous literature.

• Based on the forecasting model, an error correction method is proposed. Since the
correlation between prediction error and input features such as wind speed and wind
direction are smaller than the correlation between predicted power and the above
factors, the data post-processing method uses the lightGBM algorithm to predict the
error for the first time, which is more suitable for processing data with low correlation.
At the same time, it can make up for the shortcomings caused by only using the
BiLSTM model. The two algorithms with completely different principles complement
each other, making the prediction results more accurate.

The rest of this paper is organized as follows: The basic principles and methods of
MIC feature selection and the extraction of similar data components based on wind speed
and wind direction are introduced in Section 2. The forecasting model and error correction
model are established in Section 3. The example analysis is in Section 4. Finally, conclusions
are drawn in Section 5.
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2. Feature Analysis and Extraction
2.1. Correlation Analysis Based on MIC

The MIC was proposed in 2011 to measure the degree of correlation between vari-
ables [41]. Table 2 compares various correlation analysis methods. Traditional correlation
analysis methods, such as linear fitting and Pearson et al., can only analyze the correlation
between linear data, and Spearman can analyze the simple and monotonous nonlinear
correlation on this basis. Therefore, their scope of application is small. Moreover, these
methods have poor robustness. PCA and its improved algorithm kernel principal com-
ponent analysis (KPCA) are two popular correlation analysis methods at present which
enhance the ability of data processing. However, the former has difficulty dealing with data
sets that are not linearly separable, and the latter is too dependent on the selection of kernel
function parameters. MIC can not only describe linear and nonlinear (such as periodicity
and sinusoidal) relations between variables but also tap the potential non-functional re-
lations [42]. Moreover, it shows good robustness to data containing noise, such as wind
speed and wind power, and has low computational complexity.

Table 2. Comparison of multiple correlation analysis methods.

Method Applicable Data Computation Complexity Robustness

Pearson Linear data Low Low

Spearman Linear data and simple
monotonous nonlinear data Low Medium

Kendall Linear data and simple
monotonous nonlinear data Low Medium

K-Nearest Neighbor Linear data and nonlinear data High High
PCA Linearly separable data Medium Medium

KPCA Linear inseparable data Medium Medium
MIC Linear data and nonlinear data Low High

The basic principle of MIC is as follows: if there is correlation between two variables,
the scatter diagram formed by them is drawn, and the corresponding mutual information
(MI) value is calculated and regularized under different grid division methods, wherein
the maximum MI value is the MIC of the two variables.

MIC is used to analyze the correlation between different features and wind power
as follows:

(1) Calculate the MI. Assume that the feature is X = {xi}(i = 1, 2, . . . , N); the wind
power is Y = {yi}(i = 1, 2, . . . , N); N is the sample number. The MI value between X and
Y is:

IMI(X, Y) = ∑
x∈X

∑
y∈Y

(p(x, y) log2
p(x, y)

p(x)p(y)
(1)

where, p(x, y) is the joint probability density between X and Y; p(x) and p(y) are the
marginal probability density of X and Y, respectively.

(2) Divide the grid. D = {(xi, yi}(i = 1, 2, . . . , N) is a binary data set composed of two
variables. A scatter plot is formed, and the current two-dimensional space is divided into a
grid of m× n, denoted as G(m, n). There are various ways to divide the grid of m× n, so
the MI value calculated is different, and the largest MI value is selected:

Imax
MI (D, m, n) = max{IMI(D|G)} (2)

(3) Normalization. Normalized the maximum MI values under different grids:

M(D)m,n =
Imax
MI (D, m, n)

log2 min(m, n)
(3)
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(4) Calculate the MIC. The MIC is:

IMIC(D) = max
mn<B(N)

{
M(D)x,y

}
(4)

where, B(N) is the upper limit of grid division and will usually be selected as B(N) = N0.6.
MIC values range from 0 to 1. The larger the MIC value is, the stronger the correlation

is. Therefore, the features strongly correlated with wind power are selected as model
input features.

2.2. Feature Analysis of Wind Speed
2.2.1. Relationship between Wind Speed and Wind Power

In short-term wind power forecasting, wind speed is the leading factor determining
the output power of wind farms, which is an essential parameter for the energy system
operation [43]. The randomness and uncertainty of wind speed make wind power have
the same characteristics, so full analysis of wind speed can greatly reduce the wind power
forecasting error. Therefore, wind speed is selected as the primary feature representative of
power forecasting. As the biggest factor affecting wind power, there is a strong correlation
between them. Figure 1 shows the relationship between wind speed and wind turbine
output. The theoretical relationship between them is as follows:

P(v) =


0 0 < v < vin, v > vout
1
2 CPρAv3 vin ≤ v < vr
Pr vr ≤ v < vout

(5)

where, P(v) is the theoretical output of wind turbine, kW; Pr is the rated power, kW; v is the
real-time wind speed, m/s; vin, vr, and vout are the cut-in wind speed, rated wind speed,
and cut-out wind speed, respectively, m/s; CP is the wind energy utilization coefficient;
ρ is the air density, kg/m3; A is the swept area by the wind wheel, m2.
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NWP is the main source of wind speed forecasting data. Based on the above analysis,
the data are divided according to NWP wind speed to improve the correlation. The partition
nodes are cut-in wind speed, rated wind speed, and cut-out wind speed. Therefore, the
raw data are divided into three categories: 0 ≤ v < vin or v ≥ vout is the zero-power group;
vin ≤ v < vr is the standard-power group; vr ≤ v < vout is the rated-power group.

Due to the existence of certain errors in NWP wind speed data, in order to improve
accuracy, this paper further divides the wind speed according to the distribution law and
considering the wind speed fluctuation. The change trend of wind speed in a certain period
is analyzed in order to reserve a certain margin at each partition node and reduce the error.
The wind speed fluctuation is depicted as follows:

Ct = sign(vt−2T − vt−3T) + sign(vt−T − vt−2T) + sign(vt − vt−T) (6)
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sign(x) =


1 x > 0
0 x = 0
−1 x < 0

(7)

where, vt is the NWP wind speed at time t; T is the time resolution; vt−3T , vt−2T , and vt−T
represent the NWP wind speed at 3T minutes, 2T minutes, and T minutes before time t,
respectively; Ct describes the changing trend of wind speed at time t, when Ct > 0, indicates
that wind speed shows an upward trend, and the partition nodes can be appropriately
reduced; when Ct < 0, indicates that the wind speed decreases, and the partition nodes
can be appropriately improved.

2.2.2. Wind Speed Probability Distribution Model

Wind speed generally conforms to the two-parameter Weibull distribution, and the
cumulative distribution function is as follows:

F(v ≤ V) = 1− exp

[
−
(

V
c

)k
]

(8)

The probability density function is:

f (v) =
k
c

(v
c

)k−1
exp

[
−
(v

c

)k
]

(9)

where, v is the wind speed, m/s; V is the given wind speed, m/s; k is the shape parameter;
c is the scale parameter.

When a local wind condition has multi-peak characteristics, it can be fitted with a
mixed Weibull. The mixed Weibull belongs to a weighted model, which is composed of
multiple Weibull based on weights. The cumulative distribution function is as follows:

Fn(v ≤ V) =
n

∑
i=1

ωi

(
1− exp

[
−
(

V
ci

)ki
])

(10)

n

∑
i=1

ωi = 1 (11)

where, n is the number of Weibull; ωi is the weight of the ith Weibull; ki is the shape
parameter of the ith Weibull; ci is the scale parameter of the ith Weibull.

The probability density function is:

fn(v) =
n

∑
i=1

ωi

(
ki
ci

(
v
ci

)ki−1
exp

[
−
(

v
ci

)ki
])

(12)

Maximum likelihood estimation is a commonly used method with high accuracy in
Weibull fitting [44]. This paper performs Weibull fitting on the wind speed of the wind farm.
According to the contents of the previous section, when wind speed shows an upward
trend, on the cumulative distribution curve of wind speed, each partition node becomes
the corresponding wind speed when the probability of the current cumulative distribution
decreases by 2%, denoted as vup

in , vup
r , and vup

out, respectively; when the wind speed shows a
downward trend, each partition node becomes the corresponding wind speed when the
current cumulative distribution probability increases by 2%, denoted as vdown

in , vdown
r , and

vdown
out , respectively. The specific situation is shown in Figure 2:
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2.3. Feature Analysis of Wind Direction

In order to obtain more abundant wind resources, maximize the capture of wind
energy, and reduce the influence of tower shadow effect, wind farms generally adopt
the strategy of deploying upwind wind turbines in the prevailing wind direction [45].
As a result, wind turbines have different abilities to capture wind blowing from differ-
ent directions. This is because, although wind turbines are generally equipped with a
yaw system, there is a delay effect in the control process and, due to the different wind
paths, the ground roughness and obstacles are different, resulting in different wind speeds
reaching the wind turbine. Therefore, wind direction is also one of the important features
affecting wind power and must be considered in power forecasting.

Clustering can group data points into different clusters based on their similarity or
density, automatically extracting intra-class similarities as well as inter-class differences [46].
In general, the analysis of wind direction is performed mostly by drawing a wind direction
rose chart. This meteorological tool can intuitively describe the wind direction characteris-
tics of a certain area. The polar coordinates of the wind rose chart are generally divided
into 4, 8, or 16 wind directions. At the same time, considering that with the increase in the
number of clusters the calculation is more complex, but the improvement of the clustering
performance is limited, the Elbow’s method is generally used to determine the optimal
number of clusters [47]. The Elbow’s method selects the optimal number of clusters by
calculating the Sum of Squared Error (SSE) under different cluster number K. As K con-
tinues to increase, SSE will gradually decrease. During the change of SSE, there will be
an inflection point, called “elbow” point, at which the decline rate suddenly slows down,
and the corresponding K value is considered as the optimal number of clusters. We drew
inspiration from the wind direction division rules of the wind rose chart and combined it
with the Elbow’s method to determine the cluster number to be 4. Therefore, only four
directions subsets are involved in this paper. Cluster analysis method is used to divide the
standard-power group data into four categories from the aspect of wind direction: north,
east, south, and west. Since the data of the zero-power group and the rated-power group
are less, and their power is mostly fixed at 0 or the rated power, the correlation between
power and wind speed is much greater than that between power and wind direction, so
only the wind direction clustering is performed on the data of the standard-power group.
In addition, due to the large amount of data, the k-means clustering algorithm, which is
most typical, is selected for cluster analysis.

The initial clustering center of k-means algorithm needs to be selected randomly
or manually, and the quality of the initial clustering center greatly affects the clustering
result. In order to ensure the accuracy of clustering, in this paper, the data of due north
(348.75◦–11.25◦), due east (78.75◦–101.25◦), due south (168.75◦–191.25◦), and due west
(258.75◦–281.25◦) are firstly selected. The fuzzy c-means algorithm (FCM), which is more
suitable for processing less data, is used to select the clustering centers of the above data
in four directions as the initial clustering centers of k-means to ensure that the clustering
results contain wind direction information.
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3. Forecasting Model Considering Error Correction
3.1. BiLSTM Model

The LSTM neural network constructs a larger deep neural network through complex
nonlinear units, which can reflect the long-term memory effect and thus carry out deep
learning. It is a special network in the recurrent neural network (RNN) [48]. At each time
compensation, combined with the output of the last point, content selection is realized
through the gate structure [49]. LSTM has three layers, and its basic network unit is shown
in Figure 3. The basic unit contains input gate, forget gate, and output gate. xt is the input
of the current layer; ht−1 is the output of the previous layer. After they pass through the
forget gate together, they output any value between 0 and 1 to the old cell state St−1 to
decide the forgotten part. “0” means “forget all”; “1” means “pass all”. The xt in the input
gate goes through the sigmoid and tanh functions, respectively, and the obtained results
are multiplied to generate new information. Then, the new information plus the forgotten
St−1, and their sum, is the new cell state St. After St passes through the tanh function,
it determines the output together with ot. The calculation formulas are as follows:

ft = σ(ω
f
x xt + ω

f
h ht−1 + b f ) (13)

it = σ(ωi
xxt + ωi

hht−1 + bi) (14)

ct = σ(ωc
xxt + ωc

hht−1 + bc) (15)

ot = σ(ωo
xxt + ωo

hht−1 + bo) (16)

St = ct × it + St−1 × ft (17)

ht = ot × tanh(St) (18)

where, σ is the sigmoid function; ω
f
x , ωi

x, ωc
x, and ωo

x are the weight matrix of xt with
forgetting gate, input gate, primitive input, and output gate, respectively; ω

f
h , ωi

h, ωc
h, and

ωo
h are the weight matrix of ht−1 with forgetting gate, input gate, primitive input, and

output gate, respectively; b f , bi, bc, and bo are the bias vectors of the corresponding parts.
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Wind power is a time series with strong temporal correlation. The wind power at a
certain time is not only related to multiple NWP meteorological features, but also related
to the historical or future wind power at an adjacent time or at the same time of different
days. The temporal correlation characteristic of wind power mainly comes from several
NWP meteorological features with strong correlation with it, such as wind speed and wind
direction, whose influence on power is enough to cover the influence of most other NWP
features. Taking NWP wind speed as an example, under normal circumstances, there is
time series autocorrelation between the current wind speed and the historical or future
wind speed at an adjacent time or at the same time of different days, so it shows a certain
degree of temporal correlation characteristic.
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LSTM has a certain memory function for historical data, that is, when forecasting the
wind power P̂(t) at time t, LSTM not only considers the influence of the input features at time
t on the wind power prediction value P̂(t) but also considers the influence of the prediction
power P̂(t− 1) at time t − 1. The same is true of predictions at other times. Therefore, in the
wind power forecasting at time t, not only the current time information is used but also the
long-distance historical information is used. However, it can only use the past information
and transmit from front to back, which has limitations. BiLSTM solves these problems by
using two positive and negative LSTMs. Based on these LSTMs, it also considers the influence
of the prediction power P̂(t + 1) at the time t + 1 on P̂(t), which enables it to capture both
historical and future information. In addition, the possible phase lag problem in one-way
prediction is solved by it. Therefore, BiLSTM is more suitable for time series prediction, and
shows better performance in the field of forecasting. Its output expression is:

ht = concat(ht f , htb) (19)

where, ht f and htb are the forward and backward LSTM output vectors, respectively; concat
is representing the splicing operation.

The BiLSTM network structure is shown in Figure 4.
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3.2. LightGBM Model

LightGBM is a framework for the implementation of the GBDT algorithm, which is
an improvement on the XGBoost algorithm. It has obvious improvement in performance,
efficiency and running speed [50]. LightGBM is one of the algorithms with excellent
performance at present.

Compared with the traditional XGBoost algorithm, LightGBM mainly obtains more
accurate information gain through the gradient-based one-sided sampling strategy (GOSS)
and realizes feature dimensionality reduction by combining high-dimensional features
through the mutually exclusive feature compression strategy (EFB), thereby reducing
computational complexity and improving efficiency. In addition, the optimization also
involves the following aspects: the decision tree algorithm based on Histogram reduces
memory usage; the Leaf-wise growth strategy with depth limit deepens the decision tree;
direct support for category features; cache hit rate optimization; histogram-based sparse
feature optimization; multi-threading optimization; etc.

3.3. Establishment of Forecasting Model

BiLSTM has good processing performance for data with strong correlations, while the
LightGBM algorithm is more suitable for processing data with weak correlations. There-
fore, in this paper, BiLSTM is used to establish the nonlinear relationship between multi-
dimensional features and wind power and to predict the wind power needed to obtain the
preliminary predicted power. The LightGBM algorithm is used to forecast the error in order
to correct the preliminary predicted power. The calculation method is as follows:

Historical data prediction error:

e(t− nT) = P̂(t− nT)− P(t− nT), n = 1, 2, . . . , N (20)
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where, e(t− nT), P̂(t− nT), and P(t− nT) are, respectively, power prediction error, power
forecasting value, and actual power at time (t− nT), MW; T is the time resolution; N is the
historical data capacity.

ê(t) = f [X(t)] (21)

where, X(t) is the input feature at time t, including weather features, preliminary predicted
power, historical error data, etc. f (•) is the nonlinear relationship between the input
features and the error prediction value.

Therefore, the revised power prediction value is:

P̂′(t) = P̂(t)− ê(t) (22)

The overall process of this paper is shown in Figure 5. The specific steps are as follows:

(1) Feature selection. The MIC value between multi-dimensional features and wind power
is calculated, and the features with strong correlation are selected as input features.

(2) Wind speed division. Calculate the fluctuation type of the wind speed of the original
data, find the partition nodes based on the cut-in wind speed, rated wind speed, and
cut-out wind speed, and divide the original data.

(3) Wind direction clustering. FCM is used to select the clustering centers of the data with
the wind directions of due north, due east, due south, and due west, respectively, as the
initial clustering centers of the k-means algorithm. Then, k-means is used to cluster the
data of the standard-power group into four categories of north, east, south, and west.

(4) Power forecasting. For each type of data, a BiLSTM forecasting model is constructed
to predict wind power, and the preliminary prediction results are sorted according to
the time sequence.

(5) Error correction. The LightGBM model is applied for error forecasting to correct the
preliminary power forecasting results.
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4. Case Study

This paper takes a wind farm (wind farm A) in Northwestern China and a wind farm
(wind farm B) in North China as the research objects. The installed capacity of both wind
farms is 45 MW. The data of the two wind farms from 1 May to 15 August 2018 are selected
as relevant experimental samples, including the actual wind power data and a variety
of historical mesoscale NWP meteorological data. The meteorological features include
wind speed, wind direction, temperature, pressure, and humidity. The time resolution
T = 10 min, and the data deviating from the actual situation are excluded. Among
them, the average wind speed of wind farm A was relatively large, with relatively strong
fluctuations; the average wind speed of wind farm B was relatively small, with relatively
weak fluctuations. The data from a total of 92 days from May to July were selected as a
training set, and data from the remaining 15 days were used as a testing set.

4.1. Feature Processing
4.1.1. MIC Feature Selection

The items listed in Table 3 are the alternatives for the input features. In order to select the
optimal feature, the MIC value between features and the actual wind power were calculated,
respectively, and several items with strong correlations were selected as the input features.
The higher the MIC value, the stronger the correlation between its corresponding features
and wind power. From Table 3, we observe that for wind farm A, among various NWP
meteorological features, the MIC value between wind speed and actual wind power was the
highest, followed by wind direction, temperature, pressure, and humidity, in turn. Three
meteorological features with the strongest correlation were selected as input features for
wind farm A, namely wind speed, wind direction, and temperature. For wind farm B, among
various NWP meteorological features, the MIC value between wind speed and wind power
was also the highest, followed by temperature, wind direction, pressure, and humidity, in
turn. Three meteorological features with the strongest correlation were selected as input
features for wind farm B, which were also wind speed, wind direction, and temperature. In
addition, we also analyzed the correlation between the historical wind power data and the
wind power at the current time. From the MIC value, we observed that there was a strong
correlation between them, and the MIC value of the historical wind power was higher when
it was closer to the forecast time. Therefore, we also considered historical wind power data
as an input feature. Due to the limitation of time scale, when the time scale was 24 h, we
additionally selected the wind power from the previous 24 h as the input feature; when
the time scale was 12 h, we additionally select the wind power from the previous 12 h as
the input feature; when the time scale was 8 h, we additionally select the wind power from
the previous 8 h as the input feature. Figure 6 shows the wind power forecasting when the
time scale is T′. When the prediction time scale T′ = 24 h, after the training set was used to
complete the model training, the 144 test samples of every 24 h (1 day) scale were selected
to forecast the power through the trained network. The input time series were the NWP
wind speed, wind direction and temperature every 10 min in the next 24 h, as well as the
actual wind power series in the first 24 h of the corresponding test sample points. The output
time series was the wind power prediction value every 10 min in the next 24 h, and the
experimental content was repeated until the 15-day prediction task was completed.

Table 3. MIC value between features and wind power.

Feature
MIC

Wind Farm A Wind Farm B

Wind speed 0.9580 0.9330
Wind direction 0.2550 0.1760

Power from the previous 24 h 0.2144 0.1718
Power from the previous 12 h 0.2460 0.2064
Power from the previous 8 h 0.2994 0.2874

Temperature 0.1828 0.1886
Pressure 0.1019 0.1284

Humidity 0.0627 0.0816
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4.1.2. Wind Speed Division Results

Figure 7 shows wind speed frequency histograms of two wind farms. The wind
speed in wind farm A is bimodal distribution, so the mixed Weibull fitting composed
of two Weibull distributions was used; the wind speed in wind farm B is unimodal
distribution, so the single Weibull fitting was used. It can be intuitively seen that the
wind speed distribution of wind farm A is relatively scattered, and the wind speed fre-
quency of 3–8 m/s is similar; the wind speed distribution of wind farm B is relatively
concentrated, and the wind speed frequency of 6–8 m/s is relatively high. Figure 8
shows the Weibull fitting results, where c1 = 2.946, c2 = 5.721, k1 = 2.295, k2 = 2.632,
ω1 = 0.208, and ω2 = 0.792 in wind farm A; scale parameter c = 2.165, shape pa-
rameter k = 9.156 in wind farm B. According to the actual situation of the wind farm,
vin = 3 m/s, vr = 13 m/s and vout = 25 m/s. Since none of the selected historical data
exceeds the cut-out wind speed, only the cut-in wind speed and the rated wind speed
were considered when dividing the wind speed. Figure 9 shows the fitted wind speed
cumulative distribution function. According to the rules in Figure 2, vup

in,A = 2.808 m/s,
vup

r,A = 12.149 m/s, vdown
in,A = 3.192 m/s, and vdown

r,A = 14.740 m/s in, wind farm A can be ob-
tained; vup

in,B = 2.639 m/s, vup
r,B = 12.551 m/s, vdown

in,B = 3.323 m/s, and vdown
r,B = 13.510 m/s

in wind farm B. In wind farm A, when wind speed fluctuation shows an upward trend,
0 ≤ v < 2.808 m/s is the zero-power group, 2.808 m/s ≤ v < 12.149 m/s is the
standard-power group, and v ≥ 12.149 m/s is the rated-power group; when wind speed
fluctuation shows a downward trend, 0 ≤ v < 3.192 m/s is the zero-power group,
3.192 m/s ≤ v < 14.740 m/s is the standard-power group, and v ≥ 14.740 m/s is the
rated-power group. In wind farm B, when wind speed fluctuation shows an upward
trend, 0 ≤ v < 2.639 m/s is the zero-power group, 2.639 m/s ≤ v < 12.551 m/s is
the standard-power group, and v ≥ 12.551 m/s is the rated-power group; when wind
speed fluctuation shows a downward trend, 0 ≤ v < 3.323 m/s is the zero-power group,
3.323 m/s ≤ v < 13.510 m/s is the standard-power group, and v ≥ 13.510 m/s is the
rated-power group.
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Figure 7. Wind speed frequency histogram. (a) Wind farm A. (b) Wind farm B.
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Figure 8. Wind speed Weibull distribution fitting. (a) Wind farm A. (b) Wind farm B.
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4.1.3. Wind Direction Clustering Results

Figure 10 shows the changes of SSE with the value of K after the clustering of wind
direction data of the two wind farms. When K = 4 for wind farm A and K = 3 for wind farm
B, the SSE is greatly reduced, which represents that the distortion degree is greatly reduced
and then slowly decreases. Combined with the drawing rules of the wind direction rose
chart, the number of clusters is selected as 4.
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Figure 10. Elbow’s method determines the optimal K-value.

The data with the NWP wind directions of due north, due east, due south, and due
west were selected, and the cluster centers of the data in each direction above were clustered
by FCM. The results are shown in Table 4. The above four points were used as the initial
clustering center of k-means. Through the k-means algorithm, all the data of standard-
power group were clustered into four subsets of east, west, north, and south according to the
wind direction. Figures 11 and 12 show the three-dimensional relationship between wind
direction sine, wind direction cosine, and power before and after clustering, respectively.
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Table 4. The initial clustering centers selected after FCM clustering.

Wind Direction

FCM Clustering Results
(Wind Direction Sine, Wind Direction Cosine)

Wind Farm A Wind Farm B

Due north (0.9930, 0.0300) (0.9931, 0.0407)
Due east (0.0783, 0.9908) (0.0555, 0.9919)

Due south (−0.9932, −0.0552) (−0.9931, −0.0645)
Due west (−0.0101, −0.9936) (−0.0139, −0.9938)
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4.2. Data Normalization

The original data are normalized as follows:

xn =
x− xmin

xmax − xmin
(23)

The predicted power is reversely normalized as follows:

x = xn(xmax − xmin) + xmin (24)

where, xn is the normalized data; x is the actual value; xmin and xmax are the minimum
value and maximum value of each type of data, respectively.
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4.3. Evaluation Index of Forecasting Effect

The fitting degree between the predicted power and the actual power is the criterion
for evaluating the goodness of the forecasting model. In this paper, the mean absolute error
(MAE), root mean square error (RMSE), and mean relative error (MAPE) of the results are
calculated as follows:

MAE =
1
n
|ci − yi| (25)

RMSE =

√
1
n

n

∑
i=1

(ci − yi)
2 (26)

MAPE =

(
1
n

)
×

n

∑
i=1

(
|ci − yi|

yi

)
× 100% (27)

where, ci and yi are predicted value and true value, respectively; n is the sample size.

4.4. Analysis of Wind Power Forecasting Results

In order to verify the effectiveness of the proposed method, this paper conducts the
following three rounds of forecasting. The time scale of the first and second rounds of
forecasting is 24 h, and the time scale of the third round of forecasting includes 24 h, 12 h,
and 8 h.

4.4.1. Basic Single Model Forecasting

In order to verify the accuracy of the basic model adopted in this paper, first, the single
BP, RBF, Elman, LightGBM, LSTM, and BiLSTM neural networks models were used to
predict the unclassified original data. For the BP neural network, the maximum iteration
number is 200, the number of hidden layer nodes is 5, the learning rate is 0.1, and the
learning objective is 0.00004. For the RBF neural network, the spread is 20, and the number
of neurons is 10. For the Elman neural network, the hidden layer has 11 neurons, and
the maximum iteration number is 2000. The parameters of LSTM are shown in Table 5.
The parameters of unidirectional LSTM in BiLSTM are the same as those of LSTM. Table 6
shows the forecasting results of the above models, and Figure 13 shows the comparison of
the results of the above models. Table 7 shows the prediction results of a single BiLSTM for
wind farm A when the parameters of LSTM are changed, from which we can know that the
accuracy is higher under the parameters selected in the Table 5.

Table 5. Model parameter setting of LSTM.

Epoch
Number of

Hidden Layers
The Number of Neurons

Layer 1 Layer 2 Layer 3

200 3 60 180 50

Table 6. Basic single model forecasting results.

Model
Wind Farm A Wind Farm B

MAE/MW RMSE/MW MAPE/% MAE/MW RMSE/MW MAPE/%

BP 1.7313 3.7401 37.083 1.6370 2.7360 37.527
RBF 2.1448 3.8789 37.275 2.0490 3.3277 39.643

Elman 1.4831 3.5100 34.857 1.9229 2.9731 39.468
LightGBM 1.2491 3.4863 31.662 1.6434 3.0059 27.649

LSTM 1.3333 3.1316 29.062 1.5811 2.2329 22.002
BiLSTM 1.2307 2.7078 25.077 1.4073 2.2254 17.213
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Table 7. Prediction results of a single BiLSTM when changing parameters of LSTM.

The Number of Neurons
MAE/MW RMSE/MW MAPE/%

Layer 1 Layer 2 Layer 3

30 180 50 1.3888 2.9240 27.648
100 180 50 1.6209 2.7826 25.201
60 100 50 1.5228 2.9620 27.520
60 240 50 1.3694 2.8081 26.200
60 180 20 1.3890 2.8887 26.386
60 180 100 1.3889 2.7887 25.968
60 180 50 1.2307 2.7078 25.077
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Figure 13. Basic single models forecasting results. (a) Wind farm A. (b) Wind farm B.

Combined with Figures 7 and 13, we observe that the wind speed of wind farm A
changed frequently due to the relatively scattered distribution of wind speed, and then
showed the characteristics of relatively large fluctuation in power generation; wind farm
B had a relatively concentrated wind speed distribution, which resulted in less frequent
changes in wind speed, and then showed a low fluctuation in power generation. From
Figure 13, we observe that BiLSTM had the best prediction performance among the six
basic models, followed by LSTM. For wind farm A, compared with RBF model with a large
error, the MAE, RMSE, and MAPE of BiLSTM were reduced by 0.9141 MW, 1.1711 MW,
and 12.180%, respectively; when compared with LightGBM, the MAE, RMSE, and MAPE
of BiLSTM were reduced by 0.0891 MW, 0.7785 MW, and 6.585%, respectively; and when
compared with LSTM with better forecasting results, the MAE, RMSE, and MAPE of
BiLSTM were reduced by 0.1026 MW, 0.4238 MW, and 3.985%, respectively. For wind farm
B, compared with RBF model with a large error, the MAE, RMSE, and MAPE of BiLSTM
were reduced by 0.6417 MW, 1.1023 MW, and 22.430%, respectively; when compared with
LightGBM, the MAE, RMSE, and MAPE of BiLSTM were reduced by 0.2361 MW, 0.7805 MW,
and 10.436%, respectively; and when compared with LSTM with better forecasting results,
the MAE, RMSE, and MAPE of BiLSTM were reduced by 0.1738 MW, 0.0075 MW, and
4.789%, respectively. From the above analysis, we know that the MAE, RMSE, and MAPE of
BiLSTM are all the lowest, which shows that the prediction accuracy of the BiLSTM was
better than that of the five other basic models. From Figure 13, we can also observe that
the prediction curve obtained by BiLSTM was most like the actual wind power curve with
a high degree of overlap, which verifies the superiority of the BiLSTM model. Although
BiLSTM performed best in these six basic models, the overall prediction accuracy still cannot
meet the high requirements of practical application. Therefore, it is necessary to improve
the prediction performance through the following two rounds of method improvement.
This is because, although the basic model has universality and is widely used in load
forecasting, wind power forecasting, photovoltaic forecasting, and other forecasting fields,
compared with load and photovoltaic power, which have strong daily variation regularity,
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wind power has extremely strong uncertainty. The basic model has a poor ability to capture
this uncertainty and has a certain delay effect. Especially at points with high wind power
fluctuations, such as the peak and valley of the curve, the basic model is likely to overlook the
changes of these mutation points, which makes the prediction performance poor. Extracting
the characteristics of wind through feature engineering and constructing a more suitable
prediction model for wind power can improve this situation. Therefore, we combined
feature engineering with the basic model in the second round of forecasting. In addition, the
single basic prediction model has poor generalization ability for different data and cannot
fully include various factors, resulting in its inability to achieve high-precision prediction
in certain specific application scenarios. Wind power is influenced by multiple factors, so
the single basic model is difficult to fully learn, which will lead to unsatisfactory prediction
results. Especially in the case of extreme weather or large changes in meteorological factors,
the prediction will show significant deviation. The peak or valley of the wind power curve
mostly corresponds to the occurrence of large changes of wind speed, so the single basic
model has poor performance on the peak or valley of the power curve. The hybrid prediction
method considers the respective advantages of different models simultaneously, which can
effectively overcome the inherent limitations of the single prediction model and significantly
improve the accuracy of prediction. Therefore, we added the LightGBM correction model to
form a hybrid prediction model in the third round of forecasting.

4.4.2. Forecasting after Similar Data Component Extraction

In order to verify the effectiveness of the feature analysis method used in this paper,
the method in this paper is compared with many other methods to verify the prediction
effect of using different similarity data extraction methods for forecasting based on the same
basic model. This round included six forecasting models. After wavelet decomposition
of the original data, BiLSTM model power forecasting was performed for each group,
which is denoted as Wavelet-BiLSTM; after EMD decomposition of the original data,
BiLSTM model power forecasting was performed for each group, which is denoted as
EMD-BiLSTM. Only considering wind speed division, data were divided into three groups:
zero-power group, standard-power group, and rated-power group, and each group was
forecasted by BiLSTM, denoted as BiLSTM (speed). Only considering wind direction
clustering, data were divided into four groups: north group, east group, south group, and
west group, and each group was forecasted by BiLSTM, denoted as BiLSTM (direction).
Considering both wind speed division and wind direction clustering, the 6 groups of
data after classification were, respectively, forecasted by LSTM and BiLSTM, denoted as
LSTM (wind), and BiLSTM (wind). The wavelet decomposition and EMD decomposition
results are in Figures 14 and 15. In Figure 15, the original data of wind farm A were
decomposed into 10 IMFs (the blue lines) and a residual component (the red line) through
EMD; the original data of wind farm B were decomposed into 9 IMFs (the blue lines) and a
residual component (the red line) through EMD.
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Table 8 shows the forecasting results of the above models. Figure 16 shows the forecast-
ing results of the two wind farms. Due to the use of spline interpolation for classification
and screening in EMD, the shortcomings of separation and intermittency restricted the
effectiveness of similar frequency components separation. Moreover, it was susceptible to
noise interference, resulting in mode mixing and endpoint effects [51]. A large amount of
wind power data inevitably contains noise, so EMD-BiLSTM performed the worst. At the
same time, due to the excessive EMD components, the prediction time and calculation cost
of the prediction model were greatly increased. We observed that BiLSTM (wind) had the
best prediction performance among the six hybrid models. For wind farm A, compared
with the BiLSTM model, the MAE, RMSE, and MAPE of BiLSTM (wind) were reduced by
0.5544 MW, 1.6256 MW, and 22.543%, respectively; when compared with BiLSTM (speed),
the MAE, RMSE, and MAPE of BiLSTM (wind) were reduced by 0.4008 MW, 1.1404 MW,
and 11.2261%, respectively; and when compared with BiLSTM (direction), the MAE, RMSE,
and MAPE of BiLSTM (wind) were reduced by 0.0882 MW, 0.2903 MW, and 4.7308%, respec-
tively. For wind farm B, compared with the BiLSTM model, the MAE, RMSE, and MAPE
of BiLSTM (wind) were reduced by 0.7749 MW, 1.0830 MW, and 13.642%, respectively;
when compared with BiLSTM (speed), the MAE, RMSE, and MAPE of BiLSTM (wind)
were reduced by 0.4562 MW, 0.6644 MW, and 12.4738%, respectively; and when compared
with BiLSTM (direction), the MAE, RMSE, and MAPE of BiLSTM (wind) were reduced
by 0.0294 MW, 0.4316 MW, and 4.5341%, respectively. From the above analysis, we know
that the MAE, RMSE, and MAPE of BiLSTM (wind) are lower than that of all forecasting
methods in the previous round, and the accuracy of the methods proposed in this round has
been greatly improved. The prediction curve had a high fitting degree with the actual power
curve. The prediction effect of BiLSTM (wind) was better than that of Wavelet-BiLSTM
and EMD-BiLSTM, which verifies the effectiveness of the similarity data extraction method
proposed in this paper. At the same time, it was also better than that of BiLSTM (speed)
and BiLSTM (direction), which were better than BiLSTM, indicating that both wind speed
division and wind direction clustering play a positive role in improving the prediction
accuracy, and the hybrid forecasting model of both of them strengthens this positive effect.

Table 8. Model forecasting results after similar data component extraction.

Model
Wind Farm A Wind Farm B

MAE/MW RMSE/MW MAPE/% MAE/MW RMSE/MW MAPE/%

Wavelet-BiLSTM 1.2288 2.3567 16.059 1.2654 1.9876 13.219
EMD-BiLSTM 2.2597 3.1298 14.362 1.3224 2.1475 12.292

BiLSTM (speed) 1.0771 2.2226 13.760 1.0886 1.8068 16.045
BiLSTM (direction) 0.7645 1.3725 7.2647 0.6618 1.5740 8.1053

LSTM (wind) 0.6971 1.2133 3.6364 0.6803 1.2075 4.3175
BiLSTM (wind) 0.6763 1.0822 2.5339 0.6324 1.1424 3.5712
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Figure 16. Model forecasting results after similar data component extraction. (a) Wind farm A.
(b) Wind farm B.

4.4.3. Error Correction of Forecasting Results

In order to eliminate the time dependence, this round verified the model effect by
changing the time scale and carried out experiments with time scales of 24 h, 12 h, and 8 h,
respectively. At the same time, in this round, LightGBM was used to correct the prediction
results of BiLSTM (wind), denoted as BiLSTM-LightGBM. The MIC correlation analysis
between various features and preliminary prediction error is shown in Table 9. We observed
that for wind farm A, under the three different time scales, the MIC value between the
BiLSTM (wind) forecasting power and the prediction error was the highest, followed by
wind speed, power prediction error from the previous 10 mins and the previous 20 mins,
in turn. Other features were relatively weakly correlated with prediction error. The four
features with the strongest correlation were selected as the input features for wind farm A,
namely BiLSTM (wind) forecasting power, wind speed, power prediction error from the
previous 10 mins and 20 mins. For wind farm B, under the three different time scales, the
MIC value between the BiLSTM (wind) forecasting power and the prediction error was
also the highest, followed by the power prediction error from the previous 10 mins, wind
speed, and the power prediction error from the previous 20 mins, in turn. Other features
are relatively weakly correlated with prediction error. The four features with the strongest
correlation were selected as the input features for wind farm B, which were the same as
wind farm A.

Table 9. MIC value between features with the prediction error.

Feature
Wind Farm A Wind Farm B

8 h 12 h 24 h 8 h 12 h 24 h

Wind speed 0.5020 0.5167 0.5117 0.3125 0.2666 0.2710
Wind direction 0.1110 0.1273 0.1690 0.1663 0.1347 0.1378
Temperature 0.1224 0.1388 0.1393 0.1463 0.1302 0.1334

Power in the first T hours 0.2023 0.1847 0.2154 0.1705 0.1198 0.0872
BiLSTM (wind) forecasting power 0.5217 0.5272 0.5181 0.3420 0.2962 0.3042

Power prediction error from the previous 30 min 0.2346 0.2565 0.2335 0.2227 0.1818 0.1888
Power prediction error from the previous 20 min 0.2594 0.2878 0.2630 0.2424 0.2040 0.2178
Power prediction error from the previous 10 min 0.3184 0.3595 0.3279 0.3255 0.2822 0.2974

The error value was forecasted by LightGBM, so all preliminary power prediction
results could be corrected 10 min in advance. Table 10 shows the results at different time
scales and the modified results of the BiLSTM-LightGBM model, and Figure 17 more
intuitively shows the correction effect when the time scale was 24 h. As the time scale
decreased, the BiLSTM (wind) model accuracy gradually increased, and the accuracy after
correction was improved at each time scale. When the time scale was 24 h, for wind farm A,
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compared with before modification, the MAE, RMSE, and MAPE after modification were
reduced by 0.0411 MW, 0.0561 MW, and 0.2448%, respectively; for wind farm B, compared
with before modification, the MAE, RMSE, and MAPE after modification were reduced by
0.1767 MW, 0.1241 MW, and 0.3239%, respectively. The corrected power curves had a better
ability to track the power change, which verified the effectiveness of the error correction,
and thus further validated the effectiveness of the proposed method in this paper.

Table 10. Forecast results at different time scales and the modified results of BiLSTM-LightGBM model.

Model Time Scale
Wind Farm A Wind Farm B

MAE/MW RMSE/MW MAPE/% MAE/MW RMSE/MW MAPE/%

BiLSTM (wind)
8 h 0.6029 0.9518 2.3593 0.5568 0.8537 3.1740

12 h 0.6366 1.0089 2.4070 0.5622 0.9250 3.3703
24 h 0.6763 1.0822 2.5339 0.6324 1.1424 3.5712

BiLSTM-LightGBM
8 h 0.5997 0.8234 1.8151 0.4146 0.6876 2.7793

12 h 0.6131 0.9568 2.0690 0.4185 0.7299 2.9581
24 h 0.6352 1.0261 2.2891 0.4557 1.0183 3.2473
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Figure 17. Comparison of results before and after modification when the time scale is 24 h. (a) Wind
farm A. (b) Wind farm B.

5. Conclusions

In this paper, a wind power forecasting model based on feature analysis and error
correction has been verified by experiments, and the following conclusions can be drawn:

1. According to the correlation of MIC analysis, the wind speed and wind direction
provided by NWP play a leading role in the accuracy of the forecasting results.
In addition to the above two factors, the correlation of temperature is also relatively
large, and the other meteorological factors have little correlation with wind power
so they are not considered in the forecasting. Therefore, MIC is used to achieve
data dimension reduction by eliminating the features with weak correlation with
wind power.

2. As can be seen from the first round of forecasting, for wind farm A, compared with
the RBF model with a large error, the MAE, RMSE, and MAPE of BiLSTM are reduced
by 0.9141 MW, 1.1711 MW, and 12.180%, respectively; for wind farm B, compared
with the RBF model with a large error, the MAE, RMSE, and MAPE of BiLSTM are
reduced by 0.6417 MW, 1.1023 MW, and 22.430%, respectively. By comparing with
five other basic single forecasting models, the experiments verify that BiLSTM has
a higher prediction accuracy due to its full consideration of time series information,
which greatly avoids the prediction errors generated by the basic models.

3. As can be seen from the second round of forecasting, compared with the BiLSTM
method, which does not process data but directly predicts, for wind farm A, the
MAE, RMSE, and MAPE of BiLSTM (wind) are reduced by 0.5544 MW, 1.6256 MW,
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and 22.543%, respectively; for wind farm B, the MAE, RMSE, and MAPE of BiLSTM
(wind) are reduced by 0.7749 MW, 1.0830 MW, and 13.642%, respectively. Feature
engineering analysis is performed on the data from the perspectives of wind speed
and wind direction. Division and clustering methods are used to mine the internal
relationship of the data and effectively screen out the data with similar features to
achieve component forecasting. Compared with the method of direct prediction
without processing data, and the forecasting method based on wavelet decomposition
and EMD, the prediction accuracy of this method has been greatly improved.

4. As can be seen from the third round of forecasting, when the time scale is 24 h,
compared with before correction, for wind farm A, the MAE, RMSE, and MAPE of
BiLSTM-LightGBM are reduced by 0.0411 MW, 0.0561 MW, and 0.2448%, respectively;
for wind farm B, the MAE, RMSE, and MAPE of BiLSTM-LightGBM are reduced
by 0.1767 MW, 0.1241 MW, and 0.3239%, respectively. As the forecasting time scale
decreases, the forecasting accuracy gradually increases. LightGBM, as an excellent
forecasting model parallel with deep learning, is used for error correction in this paper,
which can effectively capture the information omitted by BiLSTM. The two algorithms
complement each other, thus making the forecasting accuracy higher.

The feasibility of the proposed method is verified by practical examples. In subsequent
research, dynamic wind speed division and wind direction clustering will be carried out
on the data, while further accuracy improvement from the perspective of model parameter
optimization will be considered. In addition, spatial and temporal downscaling of NWP
data from multiple stations also can be considered in order to eliminate the NWP prediction
errors caused by topographic location differences and to provide more timely prediction
results. Moreover, the probability forecasting can be developed based on single point
forecasting in order to realize the quantitative description of wind energy uncertainty,
better serving the multi-aspect optimization decisions of power system.
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