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Abstract: In hybrid energy systems, the intermittent and fluctuating nature of new energy sources
poses major challenges for the regulation and control of power systems. To mitigate these chal-
lenges, energy storage devices have gained attention for their ability to rapidly charge and discharge.
Collaborating with wind power (WP), energy storage (ES) can participate in the frequency control
of regional power grids. This approach has garnered extensive interest from scholars worldwide.
This paper proposes a two-region load frequency control model that accounts for thermal power,
hydropower, ES, and WP. To address complex, nonlinear optimization problems, the dingo optimiza-
tion algorithm (DOA) is employed to quickly obtain optimal power dispatching commands under
different power disturbances. The DOA algorithm’s effectiveness is verified through the simulation
of the two-region model. Furthermore, to further validate the proposed method’s optimization effect,
the DOA algorithm’s optimization results are compared with those of the genetic algorithm (GA)
and proportion method (PROP). Simulation results show that the optimization effect of DOA is more
significant than the other methods.

Keywords: hybrid energy system; energy storage; wind power; support frequency; dingo optimization
algorithm

1. Introduction

The deterioration of the ecological environment and the consumption of traditional
fossil energy have become increasingly serious, prompting scholars worldwide to advocate
for the accelerated development of clean and pollution-free renewable energy to achieve
sustainable energy development [1–3]. However, the continuous grid connection of renew-
able energy presents significant challenges and pressures to the operation and maintenance
of power systems [4–8]. Consequently, energy storage (ES) technology has become a critical
foundation in building a new power system that promotes green and low-carbon energy
transformation [9,10]. The cumulative installed capacity of new ES in China exceeded
4 million kilowatts by the end of 2021 [11,12]. To improve the consumption capacity of
renewable energy, it is essential to accelerate the large-scale application of ES technology.
Pumped storage, the most mature large-scale ES mode, operates by using surplus electric
energy to pump water during low-demand periods and subsequently release the water to
generate hydroelectric power during peak-demand periods.

Nowadays, the increasing installed capacity of wind power (WP) has become a major
driving force for optimizing energy structure and achieving low carbonization. However,
due to the intermittency, unpredictability, and fluctuation of WP, the stability of the power
system is greatly affected and even threatened [13]. Therefore, to improve the stability of
power systems with a high proportion of renewable energy, ES technology is introduced to
cooperate with WP, making full use of the fast charge–discharge characteristics of energy
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storage. In addition, ES can be charged during high power generation periods of wind
and PV plants, reducing the amount of abandoned power, and discharged during low
power generation periods, reducing the start-up of thermal power units and promoting the
absorption of new energy [14]. Thus, ES systems have a broad prospect in participating
in frequency and peak regulation of power grids. However, due to the imperfections
of the current domestic frequency regulation market and the high cost of ES products,
the coordinated control means of ES systems and wind turbines for participating in grid
frequency support have become a key topic of current research.

Among them, the vast majority of the literature takes WP prediction as the tracking target
to make up for the error between the actual active power of WP and the prediction curve, to
meet the assessment standards. In reference [15], the method of optimization before evaluation
is adopted to carry out the research, and the feasibility of ES to improve the accuracy rate and
qualified rate of active power in wind farms is verified by numerical examples. In the early
stage of the development of WP, the power system has the priority to fully accept WP, and
it is reasonable to take the predicted power of WP as the tracking target. Common control
strategies can be roughly divided into the current control strategy that only considers the
current charge and discharge demand and the advance control strategy which considers the
ES demand in the future period. The former can meet the tracking requirements when the ES
capacity is sufficient; otherwise, the latter strategy should be considered.

The high charge–low discharge strategy is the earliest ES control strategy. Refer-
ence [16] applied the high charge–low discharge strategy to a certain capacity of ES and
found that the tracking effect of the combined system under different active power series of
WP was different, but the paper did not make a quantitative analysis of this phenomenon.
According to the simulation calculation in reference [17], a better tracking effect can be
achieved when the ES capacity reaches 15~25% of the wind farm capacity. The advance
control strategy can be divided into a one-step forward control strategy, an advanced
control strategy based on control coefficient optimization, and an advanced control strategy
oriented by objective function. In reference [18], battery limit states are partitioned accord-
ing to state of charge (SOC). If the SOC is in the forbidden zone, the ES does not participate
in the tracking of the power generation target; otherwise, the state of the SOC after fully
tracking the power generation target is calculated. In reference [19], five control coefficients
were designed to establish the relationship between the charging and discharging power of
energy storage, using the planned active power of WP and ES SOC. Using the short-term
prediction information in the time window, a set of control coefficient values corresponding
to the time window is obtained by the particle swarm optimization algorithm. For the fan
rotor kinetic energy control, reference [20] points out that the variable speed fan’s participa-
tion in frequency modulation is generally realized by adding a frequency control loop to the
active power controller, and proper adjustment of the gain of the control loop can enhance
the frequency modulation effect of inertia control and droop control. In reference [21],
inertial control and droop control are combined, and on this basis, the influence of different
power levels of WP on frequency control performance is studied. Electricians began to
realize the importance of the inertial response of WP [22,23]. Reference [24] provides a
frequency modulation control strategy for wind turbines considering power reference
values, which effectively uses the inertia of wind turbines to assist in solving frequency
problems in power systems. In addition, the combination of the intelligent optimization
algorithm and control method is also an effective means to solve the collaborative control
of the power grid with the participation of raw energy sources. Reference [25] proposes
a model prediction controller based on transient search optimization to realize the dual
optimization process of load frequency control (LFC) of the power grid, so as to improve
the dynamic and transient performance of the power grid.

The frequency support of hybrid energy systems with ES is a complex non-linear opti-
mization problem. In general, the actual engineering application usually adopts the power
distribution according to the adjustable capacity ratio, climbing speed ranking, and other
ways, which cannot meet the optimal control requirements of the system. On the other
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hand, although the traditional mathematical optimization methods (such as the interior point
method [26]) are fast, they have poor global search ability and tend to fall into the local optimal
solution. Therefore, it cannot be easily solved using traditional mathematical methods. In
contrast, intelligent optimization algorithms such as the genetic algorithm (GA) [27,28] and
particle swarm optimization (PSO) [29] are more flexible in application and have stronger
global search ability, but their solving speed is slow, which cannot meet the requirements of
the automatic generation control (AGC) online control of large-scale regional power grids.
Therefore, in this paper, we propose the use of the dingo optimization algorithm (DOA) to
solve the problem [30]. To verify the effectiveness of our proposed method, we introduce an
extended model based on the two-region model for simulation verification.

The rest of this paper is arranged as follows: Section 2 introduces the two-area load
control model considering thermal power, hydropower, ES, and WP. At the same time, the
objective function of this paper is introduced. Section 3 describes the DOA used in this
paper in detail. In Section 4, based on the two-area load control model, the optimization
effect of DOA under different power disturbances is simulated and analyzed. Meanwhile, to
further test the optimization effect of DOA, the optimization results of DOA are compared
with those of the proportion method (PORP) and GA [31,32]. Section 5 summarizes the
contributions made in this paper in detail and gives the outlooks of future research.

2. Cooperative Control of ES and WP
2.1. Control Framework

The LFC of a power system aims to maintain the frequency of the power system within
a certain error range, which provides the matching load with the lowest cost [33]. To study
the regional frequency control problem under the cooperative participation of WP and ES,
this paper introduces an extended model based on the IEEE standard two-region model to
carry out simulation experiments and analysis.

The model is based on the extended two-region LFC model (Figure 1). The model
mainly includes two regions and each region includes two steps: controller and power op-
timization. The controller is a traditional proportional–integral–derivative (PID) controller,
which takes the real-time collected frequency deviation and network line contact deviation
as input and the regulated total power of the whole regional power grid as output. Power
optimization refers to the optimization of power allocation instructions for each AGC unit.
Through power optimization, the frequency modulation potential of ES and WP can be
fully exploited, to adapt to power disturbance more actively.

Figure 1. Two−region LFC model.
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2.2. Dynamic Response Model

The frequency of the power grid is essentially an important index reflecting the quality
and safety of power. The dynamic characteristics of frequency directly affect the start and
stop of various control and protection devices in a power system. The appropriate dynamic
response model of the unit is helpful to simulate the response process of the unit after
receiving the adjustment command more accurately [34]. In addition to adjusting capacity,
climbing rate, and frequency delay, the dynamic response model also has different energy
transfer characteristics according to the unit type.

At present, the dynamic response process of AGC units is usually simulated by the
frequency-domain model (Figure 2). Td is expressed as the secondary frequency modulation
delay, GRC is expressed as the generation ramp constraint, and G(s) is expressed as the
response transfer function, as shown in Table 1. The regulated output power can be written as

∆Pout
i (t) = L−1[

Gi(s)
s
(
1 + Ti

ds
) · N

∑
k=1

[e−∆T·(k−1)s · Din
i (k)]] (1)

Din
i (k) = ∆Pin

i (k)− ∆Pin
i (k− 1) (2)

∆Pout
i (k) = ∆Pout

i (t = k · ∆T) (3)

where i is denoted as the ith unit. k is denoted as the kth control period. ∆Pin
i and ∆Pout

i
are represented as the command output and the actual output of the ith unit, respectively.
∆T is represented as the control period of the entire system, which is typically 1 to 15 s.

Figure 2. Dynamic response model.

Table 1. Dynamic response transfer function.

Type Transfer Function

Thermal power 1+T1s
(1+T2s)(1+T3s)(1+T4s)

Hydropower (1−T5s)(1+T6s)
(1+T7s)(1+T8s)

Wind power 1
1+T9s

Energy storage 1
1+T10s

2.3. The Objective Function

In terms of the multi-type energy cooperative operation model constructed in this
paper, the research direction of this paper is mainly to enhance the dynamic response
regulation effect of power grids. Therefore, this paper takes minimizing the total deviation
of the power response as the optimization objective, as shown below.

min f =
N

∑
j=k

n

∑
i=1

∣∣∣∆Pin
i (j)− ∆Pout

i (j)
∣∣∣ (4)
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where N is represented as the number of periods, and n is expressed as the number of units.
Meanwhile, power balance constraints, capacity constraints, and energy transfer

constraints are also considered.
Power balance constraint: in any control period, the total power of real-time regu-

lation output should be equal to the sum of input instructions received by all frequency
modulation units.

n

∑
i=1

∆Pin
i (k)− ∆Pc(k) = 0 (5)

where ∆Pin
i (k) is represented as the power output command received by the ith unit in the

kth control cycle, and ∆Pc(k) is expressed as the real-time total regulation power in the kth
control period.

Capacity constraints: the frequency range of each frequency modulation unit is differ-
ent because of its different types.

∆Pin(k) · ∆Pin
i (k) ≥ 0, i = 1, 2, . . . , n (6)

∆Pmin
i ≤ ∆Pin

i (k) ≤ ∆Pmax
i i = 1, 2, . . . , n (7)

where ∆Pin(k) is represented as the total power regulation command, and ∆Pmin
i and ∆Pmax

i
are expressed as the minimum and maximum frequency modulation capacity, respectively.

3. DOA Algorithm

The DOA algorithm is a swarm intelligence optimization algorithm proposed by Peraza-
Vazquez et al. in 2021 [35]. The DOA algorithm was inspired by the hunting behavior of
the dog population. DOA designs three different search patterns associated with four rules.
During the operation of the DOA algorithm, these search rules and patterns balance the
exploitation and exploration of the solution space well. The DOA algorithm considers four
aspects of the dingo population: group attack, persecution, scavenger, and survival rates. The
mathematical model of the DOA algorithm is shown below.

The random initialization of the dingo population is shown in Equation (8). lbi and

ubi denote the lower and upper bounds of individual
→
X i, respectively. randi is represented

as a random number between 0 and 1.
→
X i = lbi + randi(ubi − lbi) (8)

Group attack: Dingoes tend to move in groups when hunting large animals. The
group behavior can be expressed by Equation (9).

→
X i(t + 1) = β1

na

∑
k=1

[
→

ϕk(t)−
→
X i(t)]

na
−
→
X∗(t) (9)

where
→
X i(t + 1) is represented as the next position of the dingo. na is represented as

a random integer generated in the inverse order of [2, SizePop/2], where SizePop is

represented as the size of the dingo population.
→

ϕk(t) is the set of dingoes that engages in
aggressive behavior, where ϕ ⊂ X, X is represented as a randomly generated population

of dingoes.
→
X i(t) is represented as the current position of the dingo.

→
X∗(t) is represented

as the best dingo location found in the previous iteration. β1 is a scaling factor used to
change the trajectory of the dingo, usually taken as a uniformly generated random number
between −2 and 2.

Persecution: Compared with hunting large animals, the behavior of a dingo hunting

small animals can be expressed by Equation (10).
→
X i(t + 1) is represented as the dingo’s
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movement.
→
X i(t) is represented as the current position of the dingo.

→
X∗(t) is represented

as the best dingo location found in the previous iteration. β2 is represented as a uniformly

generated random number between 0 and 1.
→
Xr1(t) is denoted as the position of r1 dingo

chosen at random.
→
X i(t + 1) =

→
X∗(t) + β1 ∗ eβ2 ∗ (

→
Xr1(t)−

→
X i(t)) (10)

Scavenger: In addition, dingoes also have the behavior of looking for carrion in the
process of random action, which can be expressed by (11).

→
X i(t + 1) =

1
2
[eβ2 ∗

→
Xr1(t)− (−1)σ ∗

→
X i(t)] (11)

where σ is represented as a binary number randomly generated by Figure 3a, σ ∈ {0, 1}.

Figure 3. σ value and survival process. (a) σ value; (b) survival process.

Survival rates: During the operation of the DOA algorithm, the survival rate is
expressed by Equation (12).

survival(i) =
fitnessmax − fitness(i)
fitnessmax − fitnessmin

(12)

where fitnessmax and fitnessmin are represented as the worst and best fitness values, respec-
tively. fitness(i) is represented as the current fitness value. In addition, Equation (13) is
applied to the case of low survival rate through Figure 3b.

→
X i(t) =

→
X∗(t) +

1
2
[
→
Xr1(t)− (−1)σ ∗

→
Xr2(t)] (13)

where
→
X i(t) is denoted as a dingo with a low survival rate that will be updated. r1 and r2

are represented as random numbers from 1 to population size. The overall operation flow
of the DOA algorithm is shown in Figure 4.



Energies 2023, 16, 4252 7 of 16

Figure 4. Flowchart of DOA.

4. Case Study

To test the online optimization effect of the proposed method, the effectiveness of
the DOA algorithm is simulated and analyzed through the extended model of the IEEE
standard two-area load control model, as shown in Figure 5a,b. Meanwhile, considering
the current trend of energy structure transformation, this paper adjusts a single AGC unit
to five different types of units, including one thermal power unit, one hydropower unit,
two WP units, and one ES unit, as shown in Figure 5c. Considering the characteristics
of thermal power, hydropower, WP, and ES in the actual project, we have limited the
frequency regulation range and time delay, and the specific parameters are shown in
Tables 2 and 3 [36,37]. All experiments in this paper were carried out on the MATLAB2020b
platform. In addition, the PROP method and GA algorithm are adopted in this section to
conduct comparative experiments, in which the populations of the GA algorithm and DOA
algorithm are 50 and the iteration times of the algorithms are 30.

Table 2. Parameters of transfer functions [36,37].

Type Parameter

Thermal power T1 = 5, T2 = 0.08, T3 = 10, T4 = 0.3

Hydropower T5 = 1, T6 = 5, T7 = 0.5, T8 = 0.513

Wind power T9 = 0.01

Energy storage T10 = 2
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Figure 5. The extended model of IEEE standard two-area load control model. (a) Standard two-area
load control model; (b) Area A; (c) AGC order distribution.
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Table 3. Main parameters [36,37].

Type Td ∆Prate ∆Pmax (MW) ∆Pmin (MW)

Thermal power 60 s 30 MW/min 50 −50

Hydropower 5 s 150 MW/min 20 −10

Wind power 1 s - 15 −5

Energy storage 1 s - 8 −12

4.1. Power Disturbance ∆PD = 50 MW

The PROP method is used to allocate frequency regulation instructions proportionally
according to the frequency regulation capacity of each frequency regulation unit. At present,
the PROP method is widely used. However, it is difficult for the PROP method to take
full advantage of the fast response speed of renewable energy units. Therefore, this paper
adopts an intelligent optimization algorithm to improve the response speed of regional
power grid frequency regulation and reduce power deviation. To verify the effectiveness of
the DOA algorithm in the optimization of power network frequency modulation instruction,
this section conducts a simulation experiment with power disturbance ∆PD = 50 MW. At the
same time, the PROP method was added for comparison. The optimization effects of the two
methods are shown in Figure 6. According to Figure 6, conclusions can be obtained as follows.

Figure 6. Adjusted results of DOA algorithm and PROP method (∆PD = 50 MW). (a) Regulation
curve; (b) mean frequency deviation; (c) power regulation output under DOA algorithm; (d) area
control error curve.

The overall power regulation curves of the PROP and DOA methods are shown in
Figure 6a. The red area in the figure represents the power deviation of the PROP method,
and the blue area represents the power deviation of the DOA method. The optimized
DOA greatly reduces the total power deviation. Meanwhile, in the early stage of power
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regulation, the DOA algorithm can make full use of the characteristics of the fast regulation
speed of renewable energy, and the power deviation in the early stage is greatly reduced.
In addition, the power output curve and power instruction curve optimized by the DOA
algorithm have a higher degree of fitting.

The mean frequency deviation curves of the PROP and DOA methods are shown
in Figure 6b. The maximum deviation of the mean deviation curve after optimization of
DOA algorithm is smaller than that of the PROP method. Meanwhile, the mean frequency
deviation curve after optimization of the DOA algorithm rises more smoothly.

After DOA online optimization, the real-time power output curve of each frequency
regulation unit is as shown in Figure 6c. Thermal power units did not participate in
this frequency regulation, and the response speed of hydropower, WP, and ES is faster.
Therefore, the characteristics of maximizing the utilization of WP and ES through algorithm
optimization will contribute to the frequency stability of the regional power grid.

Area control error (ACE) is the deviation value formed by the load, generation power,
frequency, and other factors in the control area. ACE reflects the balance between power
generation and the load in the area. Compared with the PROP method, after the optimiza-
tion of the DOA algorithm, the value of the lowest point of ACE increases. Meanwhile, the
ACE curve optimized by the DOA algorithm rises more gently, as shown in Figure 6d.

In this case, to further test the online optimization performance of the DOA algo-
rithm, the GA algorithm is added in this paper for comparison, as shown in Table 4. The
three methods were evaluated in terms of |∆ f |, accuracy, and power error. From Table 4,
compared with the traditional PROP method, the intelligent optimization algorithm can
dramatically improve the dynamic response performance of the AGC system of the regional
power grid and significantly reduce the total power deviation. Meanwhile, compared with
the GA algorithm, the DOA algorithm has better performance in the two evaluation in-
dexes of the accuracy and power error, and the overall performance is better. Therefore, the
simulation results show that the DOA algorithm is more suitable to deal with the frequency
regulation optimization of the area power grid.

Table 4. The result of algorithm optimization.

∆PD (MW) Algorithm |∆f| Accuracy Power Error

50

PROP 0.0224 Hz 83.40% 369.2434 MW

GA 0.0192 Hz 88.25% 10.8195 MW

DOA 0.0192 Hz 88.36% 2.2626 MW

4.2. Power Disturbance ∆PD = 70 MW

When the power disturbance value is small, the thermal power frequency regulation
units under the intelligent optimization algorithm almost do not participate in the frequency
modulation process. Therefore, to verify the universality of the DOA algorithm in the
optimization of power network frequency modulation instruction, this section conducts
a simulation experiment with power disturbance ∆PD = 70 MW. Meanwhile, the PROP
method was added for comparison. The optimization effects of the two methods are shown
in Figure 7. From this, conclusions can be obtained as follows.

The overall power regulation curves of the PROP and DOA methods are shown
in Figure 7a. The optimized DOA algorithm greatly reduces the total power deviation.
Meanwhile, in the early stage of power regulation, DOA algorithms can take full advantage
of the fast regulation of renewable energy sources, and the power deviation in the early
stage is greatly reduced. In addition, in about 250 s, when the thermal power unit starts to
undertake the task of frequency regulation, due to the slow response speed of the thermal
power unit, Figure 7a shows that there is a significant deviation between the actual power
output curve and the command power output curve.
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Figure 7. Adjusted results of DOA algorithm and PROP method (∆PD = 70 MW). (a) Regulation
curve; (b) mean frequency deviation; (c) power regulation output under DOA algorithm; (d) area
control error curve.

The mean frequency deviation curves of the PROP and DOA methods are shown in
Figure 7b. The maximum deviation of the mean deviation curve after optimization of the
DOA algorithm is smaller than that of the PROP method. Meanwhile, the mean frequency
deviation curve after optimization of the DOA algorithm rises more smoothly.

After DOA online optimization, the real-time power output curve of each frequency
regulation unit is as shown in Figure 7c. The response speed of thermal power units is
relatively slow, while the response speed of hydropower, WP, and ES is faster. Therefore,
the characteristics of maximizing the utilization of ES through algorithm optimization will
contribute to the frequency stability.

Compared with the PROP method, after the optimization of the DOA algorithm, the
value of the lowest point of ACE increases. Meanwhile, the ACE curve optimized by the
DOA algorithm rises more gently.

In this case, to further test the online optimization performance of the DOA algorithm,
the GA algorithm is added in this paper for comparison, as shown in Table 5. The three
methods were evaluated in terms of |∆ f |, accuracy, and power error. Compared with the
GA algorithm, the DOA algorithm has better performance in the three evaluation indexes
of the |∆ f |, accuracy, and power error, and the overall performance is better. Therefore, the
DOA algorithm is more suitable to deal with the frequency regulation optimization.

Table 5. The result of algorithm optimization.

∆PD (MW) Algorithm |∆f| Accuracy Power Error

70

PROP 0.0313 Hz 83.40% 516.94 MW

GA 0.0302 Hz 86.87% 214.92 MW

DOA 0.0296 Hz 87.02% 212.40 MW
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4.3. Power Disturbance ∆PD = −30 MW

To further prove the effectiveness of the DOA algorithm, the simulation experiment
when the step power disturbance is negative is added to this case. In this case, the step
power disturbance is ∆PD = −30 MW. Meanwhile, this paper compares the optimization
results of the DOA algorithm with the PROP method, as shown in Figure 8. According to
Figure 8, it can be analyzed as follows.

Figure 8. Adjusted results of DOA algorithm and PROP method (∆PD = −30 MW). (a) Regulation
curve; (b) mean frequency deviation; (c) power regulation output under DOA algorithm; (d) area
control error curve.

From Figure 8a, when the power disturbance is negative, the optimized DOA algo-
rithm also greatly reduces the total power deviation. Meanwhile, in the early stage of power
regulation, DOA algorithms can take full advantage of the fast regulation of renewable
energy sources, and the power deviation in the early stage is greatly reduced. In addition,
the power output curve and power instruction curve optimized by the DOA algorithm
have a higher degree of fitting.

The mean frequency deviation curves of the PROP and DOA methods are shown in
Figure 8b. According to the simulation results, it is obvious that the maximum deviation of
the mean deviation curve after optimization of the DOA algorithm is smaller than that of
the PROP method.

After online optimization of DOA, the real-time power output curve of each frequency
regulation unit is as shown in Figure 8c. Thermal power units have not participated in the
frequency regulation process, and the frequency regulation task can be completed through
hydropower, WP, and energy storage.

Compared with PROP method, after optimization of the DOA algorithm, the highest
point of the ACE curve drops. Meanwhile, the ACE curve optimized by the DOA algorithm
declines more gently.
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From Table 6, compared with the traditional PROP method and the GA, the DOA al-
gorithm can significantly improve the performance of the AGC of the regional power grid,
significantly reduce the total power deviation, and has better overall optimization performance.

Table 6. The result of algorithm optimization.

∆PD (MW) Algorithm |∆f| Accuracy Power Error

−30
PROP 0.0144 Hz 81.94% 293.9385 MW

GA 0.0115 Hz 87.90% 23.7335 MW

DOA 0.0115 Hz 88.35% 3.5059 MW

4.4. Power Disturbance ∆PD = −50 MW

When the power disturbance ratio is small, thermal power units hardly participate
in the frequency modulation work. This section adds that the step power disturbance
is ∆PD = −50 MW in the simulation experiment. Meanwhile, the results of the DOA
algorithm and PROP method are compared in Figure 9.

Figure 9. Adjusted results of DOA algorithm and PROP method (∆PD = −50 MW). (a) Regulation
curve; (b) mean frequency deviation; (c) power regulation output under DOA algorithm; (d) area
control error curve.

The overall power regulation curves of the PROP and DOA methods are shown
in Figure 9a. When the power disturbance is negative, the optimized DOA algorithm
also greatly reduces the total power deviation. Meanwhile, in the early stage of power
regulation, the DOA algorithm can make full use of the characteristics of the fast regulation
speed of renewable energy, and the power deviation in the early stage is greatly reduced.

The mean frequency deviation curves of the PROP and DOA methods are shown in
Figure 9b. The maximum deviation of the mean deviation curve after optimization of the
DOA algorithm is smaller than that of PROP.
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After DOA online optimization, the real-time power output curve of each frequency
regulation unit is as shown in Figure 9c. The response speed of thermal power units is
relatively slow, while the response speed of hydropower, WP, and ES is faster. Therefore,
the characteristics of maximizing the utilization of ES through algorithm optimization will
contribute to the frequency stability.

Compared with the PROP method, after optimization of the DOA algorithm, the
highest point of the ACE curve drops. Meanwhile, the ACE curve optimized by the DOA
algorithm declines more gently, as shown in Figure 9d.

In this case, to further test the online optimization performance of the DOA algorithm,
the GA algorithm is added in this paper for comparison. From Table 7, compared with the
traditional PROP method, the intelligent optimization algorithm can significantly improve
the performance of the AGC of the regional power grid and significantly reduce the total
power deviation. Meanwhile, compared with the GA algorithm, the DOA algorithm has
better performance in the two evaluation indexes of accuracy and power error, and the
overall performance is better. Therefore, the DOA algorithm is more suitable to deal with
frequency regulation optimization.

Table 7. The result of algorithm optimization.

∆PD (MW) Algorithm |∆f| Accuracy Power Error

−50
PROP 0.0240 Hz 81.94% 489.90 MW

GA 0.0233 Hz 85.24% 331.25 MW

DOA 0.0234 Hz 85.38% 312.13 MW

5. Conclusions

This paper investigates the cooperative control of wind power (WP) and energy
storage (ES) involved in the secondary frequency regulation of the grid for hybrid energy
systems. A new multi-energy secondary frequency regulation cooperative control method
is proposed. The contributions of this paper are as follows.

Considering the accelerated process of energy structure transformation, the construc-
tion of a new power system continues to advance under the background. This paper
constructed a regional power grid automatic generation control (AGC) model with the
participation of WP and ES to improve the system’s rapid response performance.

A multi-type energy cooperative control method based on the dingo optimization
algorithm (DOA) algorithm is proposed, which realizes real-time online optimization of
frequency modulation instructions through the DOA algorithm and quickly obtains the
regulation scheme with a fast response speed and good convergence effect, to significantly
improve the cooperative regulation performance of the regional power grid.

According to the recent energy development trend, future research plans are as follows.
According to the actual situation, the type and quantity of frequency modulation units

are increased, and the appropriate intelligent optimization algorithm is studied to realize
the cooperative control of the regional power grid.

For the frequency analysis and control of large hybrid energy systems, we can take ad-
vantage of deep learning classification, dimension reduction clustering, and other obvious
advantages to improve the existing frequency problem modeling methods and prediction
and evaluation effects.
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Nomenclature

Variable Abbreviations
∆PT tie line power deviation ACE area control error
∆ f real-time frequency deviation AGC automatic generation control
∆PD power disturbance DOA dingo optimization algorithm
∆Pout actual power regulation output ES energy storage
∆T control period GA genetic algorithm
Td secondary frequency modulation delay GRC generation ramp constraint
G(s) transfer function LFC load frequency control
∆Pin

i command output of ith unit PID Proportional–integral–derivative
∆Pout

i actual output of ith unit PROP proportion method
∆Pc the real-time total regulation power PSO particle swarm optimization
∆Pmin

i the minimum frequency modulation capacity PV photovoltaic
∆Pmax

i the maximum frequency modulation capacity SOC state of charge
∆Prate frequency regulation rate WP wind power
∆Pmax forward maximum frequency modulation capacity
∆Pmin negative maximum frequency modulation capacity Parameter
→
X i position of the dingo N number of periods
→

ϕk(t) the set of dingoes that engages in aggressive behavior n number of units
→
X∗ the best dingo location found in the previous iteration r1 random numbers from 1 to population size
β1 a scaling factor used to change the trajectory of the dingo r2 random numbers from 1 to population size
β2 a uniformly generated random number between 0 and 1
σ a binary number randomly generated
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