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Abstract: Safe and efficient deep drilling is a fundamental requirement for the development of oil and
gas resources. In this regard, the application of membrane separation technology for drilling fluid
gas separation and monitoring is highly significant. In this study, several commonly used permeable
membrane materials were analyzed, and a PDMS separation membrane was preliminarily selected as
a suitable material for downhole gas separation. We designed an experimental setup to investigate
the separation performance of PDMS membranes. The effects of the separation pressure difference,
operating temperature, and membrane thickness on the performance of PDMS membranes were
analyzed, and the microstructure changes in the PDMS membrane under high temperature and
pressure were observed using a scanning electron microscopy. The experimental results showed
that PDMS membranes with a thickness of 150–200 µm can work stably and maintain good strength
and permeability at a separation pressure difference of 1.1 MPa and a temperature of 150 ◦C. The
SEM observations revealed that the PDMS separation membrane had a smooth surface and uniform
microstructure after continuous operations for 15 h under the temperature and pressure conditions,
without any cracks, demonstrating high temperature and pressure resistance. These research results
provide an important reference for the application of PDMS separation membranes in downhole gas
separation technology.

Keywords: downhole gas separation; PDMS separation membrane; penetrating quality

1. Introduction

With the development of oil and gas resources, there is a growing trend toward
deep-water exploration and production. Compared with conventional drilling, double-
deep wells face a more complex downhole environment and operate with greater risk [1].
Some examples are given below. During heavy oil production, a large number of waxy
deposits will reduce the flow capacity of crude oil and may eventually lead to production
shutdown [2]. The problem of gas intrusion often exists in the drilling process, especially in
high hydrostatic environments, the overall scale of bubbles is small, and once gas intrusion
occurs, conventional means will not be able to detect the gas intrusion in time [3]. The
geological structure of deep oil and gas reservoirs is complex, including faults, fractures,
and other features, which make the flow and accumulation of oil and gas difficult to predict
and control, increasing the difficulty and risk of extraction [4]. Among these problems, the
early detection of gas intrusion in high-pressure drilling is a challenge. Therefore, the only
way to ensure the maximum safety of drilling is to detect gas intrusion and take action
early [5–7].

In recent years, gas separation technology has gained widespread applications in the
oil and gas extraction field. As an emerging gas separation technology, polymer gas sepa-
ration membranes have garnered increasing attention and research due to their excellent
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separation performance and chemical stability. Compared with traditional gas separation
methods, membrane separation technology offers advantages such as high separation
efficiency, good selectivity, low energy consumption, and simple equipment, and has been
applied and developed in numerous fields [8,9]. Therefore, conducting research on down-
hole gas membrane separation during drilling gas intrusion holds significant implications
for the early monitoring of gas intrusion in high-pressure drilling. Furthermore, it has broad
application prospects in terms of oil and gas reservoir discovery and reservoir information
evaluation [10,11].

Membrane separation technology has made some progress in drilling fluid oil and gas
detection worldwide. Westlake was the first to propose the use of membrane separation
technology for the formation of fluid component separation and detection, and designed
a hollow fiber membrane probe [12]. Subsequently, Hager designed a drilling separation
scheme using membrane separation to integrate drilling tools at the bottom of the well, and
proposed the idea of integrating membrane separation probes and photoelectric detection
modules into the short section of drilling tools. Wang et al. reported the current situation
of membrane separation technology in the petrochemical industry and proposed a possible
way to improve the economic efficiency of the petrochemical industry and oil and gas re-
source development using membrane separation technology [13]. Brumboiu et al. proposed
a novel structure for the separation and detection of oil and gas components in drilling
fluids using a flat membrane probe [14]. Jiao used PDMS separation membranes to test the
concentration relationships of gases in the gas state, in the liquid dissolved state, and in
the drilling fluid on both sides of the membrane, respectively, to verify the feasibility of
using membrane separation technology to separate and detect gases directly from drilling
fluids [15]. Yang introduced the concept of semi-permeable membrane degasification in
drilling fluids, designed a new oil and gas separation device, and extended the oil and gas
detection range from C1–C5 to C1–C8 by fast chromatography technique [12]. According
to the recent progress of downhole gas separation and detection technology at home and
abroad, it can be seen that membrane separation technology has received a lot of research
based on its advantages in oil and gas detection, and the drilling gas separation and mon-
itoring technology is becoming more and more mature. Through membrane separation
technology, it can selectively permeate the desired gas, and the gas separation efficiency
is determined by the size of the concentration difference between the two sides of the
membrane, and by analyzing the concentration difference in the gas on both sides of the
membrane, the results that are consistent with the ratio of the oil and gas content in the
drilling fluid can be obtained, so that the oil and gas components in the wellbore can be
accurately evaluated [16,17].

Our study aims to investigate a new separation technology and method that can aid
in gas invasion detection and formation evaluation, while also providing a foundation
for feasible separation processes in actual drilling conditions. To achieve this objective,
we compared the performance of different separation membrane materials and found
that polydimethylsiloxane (PDMS) exhibits superior separation efficiency and stability.
However, high-temperature and high-pressure conditions demand higher strength and
temperature resistance from the separation membrane, and different driving conditions
can affect the separation efficiency. To address these challenges, we designed and built a
membrane separation experimental apparatus to study the separation of methane gas under
high-temperature and high-pressure conditions. During the experiment, we examined the
influence of driving conditions on the separation efficiency and evaluated the strength
and temperature resistance of the membrane material to verify the feasibility and potential
of PDMS separation membranes in high-temperature and high-pressure environments.
Our research findings provide essential references for the application and development of
separation membrane technology in the oil and gas industry.
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2. Gas Separation Membrane Mechanism Analysis
2.1. Basic Principle of Gas Membrane Separation

Gas membrane separation mainly relies on the principle of diffusion. This principle
is based on the partial pressure difference between the gases of different components on
both sides of the gas separation membrane as the driving force for mass transfer across the
membrane, and the gas separation is achieved by the different permeation rates of the gases
of different components according to the three steps of dissolution–diffusion–evaporation.
According to the dissolution–diffusion model, the gas components can be passed through
the gas separation membrane in three steps, as shown in Figure 1 [18,19]. Gas first flows
to the permeate side of the separation membrane and dissolves on its surface, and then
enters the outer surface of the membrane. The gas diffuses forward in the membrane due
to the volume fraction gradient generated by its dissolution in the membrane, reaching the
other side in an unsteady state. Once the volume fraction of gas in the membrane becomes
straight along the direction of membrane thickness and reaches a steady state, the diffusion
rate in both directions reaches a dynamic equilibrium. At a certain temperature, after a
period of time, the gas concentration on the permeate side remains unchanged when the
diffusion velocity in both directions reaches a dynamic equilibrium [20].
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Figure 1. Schematic diagram of dissolution–diffusion for gas membrane separation.

The concentration of gas in the drilling fluid was calculated using the dissolution–
diffusion model. The partial pressure of the gas was replaced with the gas concentration
according to Henry’s law in Equation (1), while assuming the total pressure of the gas in
the gas chamber to be one standard atmosphere [21].

cg = (9.87kc0 − cg0)− [1 − e(−
105 HA

Vd t)] + cg0 (1)

where c0 is the concentration of gas in the liquid phase; cg0 is the initial volume fraction of
gas in the chamber; cg is the volume fraction of gas in the chamber after time t; H is the
permeation coefficient of the membrane; A is the effective contact area of the membrane;
V is the volume of the gas chamber; d is the effective thickness of the membrane; t is the
permeation time; and k is the equilibrium constant of the gas.

In practical engineering applications, the gas chamber is usually filled with a back-
ground gas, thus making the initial concentration of the gas to be measured zero, so that
Equation (2) can be obtained.

cg = 9.87kc0[1 − e(−
105 HA

Vd t)] (2)

The equilibrium constant k in the above equation is only related to the gas type, and not
to the separation membrane type. When the gas concentration cg reaches 90% of the limit
value, the oil–gas separation is considered to reach equilibrium. Therefore, the theoretical
value of the permeate equilibrium time of the permeate membrane can be calculated using
Equation (3).

t =
2.3Vd

105HA
(3)
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Through the explanation of the gas separation membrane above, it can be inferred
that in the selection of the permeation membrane for drilling fluid, gas separation mainly
considers the permeability coefficient of the drilling fluid gas in the membrane. This is
because selecting a membrane material with a short equilibrium time and good permeation
rate for hydrocarbon gas can be achieved by considering the permeability coefficient of the
drilling fluid gas.

2.2. Polymer Gas Separation Membrane Performance Requirements

Various membrane separation processes have distinct requirements for separation
membranes. In the case of polymer separation membranes utilized in downhole gas online
monitoring devices, they are required to come into contact with drilling fluid while simul-
taneously allowing the measured gas to pass through quickly. As a result, gas separation
membranes are required to have certain mechanical strength and high-temperature resis-
tance in addition to meeting the requirements of permeability and separation performance.
The primary characteristics of these membranes are as follows:

(1) High permeability. High permeability is a fundamental requirement for a sepa-
ration membrane as it needs to selectively allow the mixture being separated to
pass through. The higher the permeability of the separation membrane the better,
as it can increase the processing capacity and reduce the operational cost of the
separation process [22–24].

(2) Good mechanical strength. Due to the phenomena of vibration, shock, and corrosion
in the drilling process, it requires the separation membrane to be invariable and
non-ruptured in the long-term operation process, and the replacement cycle should
be as long as possible. At the same time, it has a good film-forming ability and is easy
to process [25,26].

(3) Good chemical stability. The separation membrane used in downhole gas online mon-
itoring devices operates in a drilling fluid environment, and as such, requires excellent
chemical stability to withstand the effects of water, oil, and high temperatures [27,28].

In conclusion, good permeability, moderate separability, and good physicochemical
stability are the most basic requirements for industrially valuable polymer separation
membranes.

2.3. Comparison and Selection of Membrane Materials for Downhole Gas Separation

In recent years, researchers have extensively studied various high-polymer mem-
branes. Representative membranes include polyimide (PI), polytetrafluoroethylene (PTFE),
fluorinated ethylene propylene (PET), and polydimethylsiloxane (PDMS) membranes. The
main properties of these membranes are summarized in Table 1 [29–31].

Through a comparative analysis of the performance advantages and disadvantages
of various membrane materials, including PI, PTFE, FEP, and PDMS, it is evident that
PDMS membranes exhibit superior properties such as excellent gas permeability, chemical
stability, and processability, as well as remarkable anti-adhesive capabilities, all at a lower
cost than other membrane materials. Although the PDMS membrane has lower mechanical
strength and wear resistance, these limitations can be effectively addressed by incorporating
support materials within the separation membrane component. Overall, PDMS separation
membranes hold great promise in the field of underground gas separation due to their
exceptional permeability and high-temperature stability [32].

Table 2 presents the permeability coefficients of hydrocarbon gases for the aforemen-
tioned separation membrane materials [21,33–35].
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Table 1. Comparison of properties of different separation membrane materials.

Membrane Advantages Disadvantages

PI Good chemical resistance.
Good thermal stability.

Low gas permeation.
Not suitable for

multicomponent gas
detection.

PTFE

Good chemical resistance.
Good thermal stability.
Excellent anti-adhesion

performance.

Excellent anti-adhesion
performance.

Susceptible to damage.

FEP
Easy to process.

Good chemical resistance.
Good thermal stability.

High viscosity.
Poor wear resistance.

PDMS
Good gas permeability.

Good chemical resistance.
Easy to process.

Low mechanical strength.
Sensitive to organic solvents.

Table 2. The osmotic coefficient for different polymeric membrane materials (Barrer).

Separation
Membrane CH4 C2H4 C2H6

PI 0.015 – –
PTFE 1.255 0.015 0.2
FEP 5.622 2.083 1.154

PDMS 15.06 – –

Taking the permeation coefficient of methane in the separation membrane as an
example, the volume fraction of the gas in the gas chamber can be calculated according to
Equation (4).

Pr =
cg

9.87kc0
(4)

In the calculation process, it is assumed that the thickness of the separation membrane
is 200 µm, the volume of the gas chamber is 60 cm3, and the separation membrane area is
9 cm2. The initial pressure is 0.5 MPa. The variation of the gas volume fraction within the
gas chamber is shown in Figure 2.
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According to the above results, the permeation coefficient of PDMS separation mem-
branes is the largest among the above gas separation membrane materials, indicating that
the PDMS separation membrane has better permeation performance. It can be seen from
Figure 2 that the gas separation time using the PDMS separation membrane is less than the
other three separation membranes when the volume fraction of gas in the gas chamber is
the same, and the gas separation time to reach equilibrium is the fastest using the PDMS
separation membrane. Therefore, the gas separation performance and evaluation of PDMS
separation membranes are also the focus of this paper.

3. PDMS Separation Membrane Gas Separation Experiments

The separation membrane cannot be directly used in the drilling fluid, but it requires
mechanical assembly for the separation process. The assembly combined with the separa-
tion membrane is the membrane separation assembly. To conduct performance testing of
the separation membrane, a flat-plate membrane assembly probe was developed. Figure 3
shows the schematic design of the assembly.
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Figure 3. Schematic diagram of the separation membrane assembly.

The membrane separation module is characterized by its small size, simple structure,
and ease of use. It features separation membranes on both sides, providing a large effective
area. Additionally, the structure enables quick connection to high-pressure test kettles and
testing equipment for rapid online testing.

In the drilling environment, downhole drilling fluids are subjected to high-temperature
and high-pressure conditions. In order to assess the temperature and pressure resistance of
the separation membrane components, a high-temperature and high-pressure test kettle
was utilized. The experimental setup is mainly divided into three parts: gas flow piping
system, high-temperature and high-pressure test system, and data acquisition system, as
shown in Figure 4.

The high-temperature and high-pressure kettle is a sealed oil bath heating device that
can withstand pressure up to 15 MPa and temperatures up to 200 ◦C. Methane can be
introduced into the kettle and membrane assembly through a methane cylinder, and the
methane flow rate can be measured using a gas flow meter. The data acquisition system
can measure the temperature and pressure inside the reactor and membrane assembly with
an accuracy of 0.1 ◦C and 0.01 MPa, respectively.

The experimental test conditions are shown in Table 3.
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Figure 4. Flow chart of separation membrane permeation performance testing. 1: high temperature
and pressure test kettle; 2: gas separation membrane assembly; 3: oil bath heating device; 4: methane
gas cylinder; 5: data acquisition system; and 6: gas flow meter.

Table 3. Experimental test conditions.

Group Volume of Air
Chamber/cm3

Separation Film
Area/cm2

Starting
Pressure/MPa

Separation Film
Thickness/µm

Test
Temperature/◦C

1 8.5 9 0.3

50

25
100
150
200

2 8.5 9 0.5

100 25
150 25

200

25
50
100
150

3 8.5 9

0.7

200 25
0.9
1.0
1.1

This study investigated the permeation performance of PDMS membranes for methane
under different temperature, pressure, and thickness conditions. Prior to the experiment,
methane gas was introduced into the separation membrane module at 0.5 MPa, and air inside
the chamber was removed. Methane gas was supplied into the feeding measurement (i.e., the
high-temperature and high-pressure kettle) at a certain pressure to ensure that the separation
membrane was subjected to a specific separation pressure difference, and the gas flow rate
was measured using a gas flow meter. To simulate the high-temperature environment in oil
fields and examine the effect of the temperature on the membrane permeation performance,
an oil bath heating device was used to raise the temperature of the separation membrane
module to 150 ◦C. The pressure changes inside the chamber were monitored using a pressure
sensor to characterize the permeation efficiency of methane gas.

4. Gas Separation Membrane Mechanism Analysis
4.1. Separation Membrane Strength Performance Analysis

During the drilling operation, the bottom-hole pressure can reach up to 70 MPa,
which requires the separation membrane assembly to remain undamaged and free from
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deformation during the operation. A pressure-reducing chamber is required to ensure
that the gas separation membrane assembly operates steadily over the long term. The
experiments tested the permeation rate and the differential pressure resistance of the
separation membrane with different thicknesses of PDMS, and the test results are shown in
Figure 5.
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The analysis results show that the strength of the separation membrane exhibits
a significant linear growth trend with the increase in membrane thickness, while the
permeation rate shows a declining trend with the increase in membrane thickness. The
separation membrane with a thickness of 300 µm can withstand a pressure difference of
about 3 MPa, but the methane permeation rate is too small to meet the requirements of
the experimental test; the separation membrane with a thickness of 50 µm has a relatively
high methane permeation rate, but it can only withstand a pressure difference lower than
0.5 MPa. Figure 6 shows the microscopic image of a cross-section of the PDMS membrane
sample, and PDMS membranes with a thickness of 150–200 µm were selected for the
performance tests.
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4.2. Effect of Pressure

In the process of gas separation, the separation pressure difference is one of the major
factors affecting the permeation performance of separation membranes, which has an
important influence on the permeation flux of gas, the selectivity of the membrane, and the
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determination of the optimal test conditions. In this study, the permeation rates of PDMS
separation membranes were tested under different pressure differential conditions, and
the gas flux through the separation membrane was calculated by measuring the pressure
change in the gas chamber during the experiment, and the experimental results are shown
in Figure 7.
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Figure 7. Gas fluxes of methane from PDMS separation membranes at different pressure differentials.

From Figures 7 and 8, it can be seen that the permeation rate of the gas separation
membrane to methane increases with the increase in pressure, and the rising trend is more
obvious. When the pressure difference between the inside and outside of the membrane is
0.3 MPa, the gas flow rate is only 1.35 × 10−7 cm3/m2·s, while when the pressure difference
between the inside and outside of the membrane reaches 1.1 MPa, the gas flow rate can
reach 31.20 × 10−7 cm3/m2·s. Therefore, under the condition of ensuring the strength
of the separation membrane, increasing the pressure difference between the inside and
outside of the membrane can effectively improve the gas separation efficiency.
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4.3. Effect of Temperature

Temperature is a crucial factor affecting gas permeability in membrane separation,
which significantly enhances the gas flux for the same permeable membrane. This is because
temperature influences the thermal motion and interaction forces of gas molecules, which
can affect their transport rate and selectivity on the membrane. Furthermore, in downhole
environments, temperatures can reach up to 150 ◦C, which can cause thermal decomposition
and aging of separation membranes, reducing their classification performance and service
life. Therefore, this study tested the separation performance of PDMS membranes at
different temperatures.

During the experiment, the initial separation pressure difference was 0.5 MPa, and
the gas concentration in the chamber at the separation equilibrium was determined by
measuring the pressure changes inside the chamber at different times. The volume fraction
of gas in the chamber was then calculated based on the concentration ratio of chamber gas
to equilibrium concentration. The experimental results are shown in Figure 9.
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Figure 9. The permeation equilibrium time of methane through PDMS separation membrane under
different temperature conditions.

The experimental results demonstrate that the separation membrane can operate con-
tinuously for 15 h at a high temperature of 150 ◦C, while maintaining excellent separation
performance. As shown in Figure 8, the gas permeation rate of the PDMS separation
membrane significantly increases at a temperature of 150 ◦C compared to that at 25 ◦C.
This suggests that the temperature has a significant impact on the gas permeation rate of
the membrane, and that the PDMS separation membrane can withstand high temperatures
while maintaining its excellent separation performance.

4.4. Effect of Thickness

Since the PDMS separation membrane is a polymer membrane with a very small
pore scale, the thickness of the membrane is also one of the important factors affecting
the separation efficiency. In order to test the effect of different thicknesses of separation
membranes on the gas separation efficiency, the permeation effect of different thicknesses
of separation membranes was tested experimentally. The experimental results are shown
in Figure 10.
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Figure 10. (a) Methane gas flux of PDMS with different thickness at 0.3 MPa. (b) Methane gas flux of
PDMS with different thickness at 0.5 MPa.

From Figure 10, it can be seen that the separation membrane with a thickness of 50 µm
has the highest permeation efficiency, but during the experiment, it was found that its max-
imum pressure differential resistance was only 0.4 MPa, which cannot meet the conditions
of downhole gas separation. The separation membrane with a thickness of 200 µm not only
has good permeation performance, but also has a differential pressure resistance of more
than 1 MPa. The average values of gas flow rates of different thicknesses of separation
membranes under two differential pressure conditions are given in Figure 11, and it can be
seen that the permeation efficiency can be improved by increasing the differential pressure
on both sides of the separation membrane when the separation membrane is thicker.
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4.5. Physical Properties of PDMS Separation Membranes at High Temperature and Pressure

The separation performance of PDMS separation membranes is closely related to their
physical properties, especially in high-temperature and high-pressure environments, where
the membrane structure, thermal performance, and mechanical properties are significantly
affected, subsequently impacting and affecting their separation performance and service
life. In this study, the microstructure changes in PDMS separation membranes at different
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temperatures and pressures were observed using a scanning electron microscopy (SEM), as
shown in Figure 12.
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The SEM observations revealed that the microstructure of PDMS separation mem-
branes changed significantly with increasing temperature and pressure. At a temperature
of 150 ◦C and an ambient pressure of 2 MPa, the surface of the PDMS separation mem-
brane was relatively smooth, and the microstructure was uniform, as shown in Figure 12a.
However, when the temperature exceeded 250 ◦C, the surface of the PDMS separation
membrane showed significant wrinkles and indentations, and the structure became uneven,
with numerous small cracks and even holes, as shown in Figure 12b. These microstructural
changes resulted in a decrease in the physical and mechanical properties of the PDMS
separation membrane, and hence, a reduction in its separation performance. Therefore,
when using PDMS membranes for downhole gas separation, appropriate temperature and
pressure conditions should be applied to ensure optimal separation performance.

5. Conclusions

Membrane separation technology provides a novel and effective method for downhole
gas detection. In the past decades, there have been significant advancements in permeable
membrane-based oil and gas separation technology. This study compares different separa-
tion membrane materials based on the principles of permeable membrane degasification
and the specific working conditions of drilling sites. Compared with conventional high
separation membranes, PDMS gas separation membranes exhibit superior permeability
and higher strength performance. The permeability of a membrane through a PDMS
separation membrane was tested under different pressure differentials, temperatures, and
membrane thicknesses using a newly developed gas separation assembly and experimental
apparatus. The experimental results showed that increasing the pressure differential from
0.3 MPa to 1.1 MPa could increase the gas flow rate through the separation membrane by
23 times. The equilibrium time for gas permeation through the separation membrane of
150 ◦C is two-thirds shorter than that at the temperature of 50 ◦C. Furthermore, while the
permeation rate of the separation membrane gradually decreases with increasing thickness,
its mechanical strength is significantly improved. A scanning electron microscopy (SEM)
was used to observe the microstructure of PDMS separation membranes at different tem-
peratures and pressures. The physical and mechanical properties of the membrane were
significantly reduced when the temperature exceeded 250 ◦C. Therefore, when using PDMS
membranes for downhole gas separation, it is necessary to control the working temperature
and environmental pressure within an appropriate range to ensure the optimal separation
performance of the membrane.
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