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Abstract: Low-frequency oscillation (LFO) of the synchronous generators in power systems by wind
power is boring. To improve the robustness of the damping control scheme, this paper applies the
sliding mode control (SMC) at the doubly fed induction generator (DFIG), with the parameter of
the SMC optimized by the eigen-sensitivity. The originalities lie in, (1) the states strongly associated
with the critical modes are newly applied to design the sliding surface, (2) the closed-loop model
of the power system with the improved equivalent control is derived to analyze the damping
effect on the critical modes and the undesirable effect on the noncritical modes, (3) the gain in the
improved equivalent control is optimized to damp the critical and noncritical modes, and (4) the
eigenvector sensitivity is improved to derive the second-order eigen- sensitivity to solve the nonlinear
optimization. Numerical results show that the proposed model damps the critical modes effectively
for different wind speeds, while the undesirable effect on the noncritical modes is avoided.

Keywords: doubly fed induction generator (DFIG); eigen-sensitivity; low-frequency oscillation (LFO);
optimization; power system control; sliding mode control (SMC)

1. Introduction
1.1. Background of This Paper

With the increase in smart grids [1,2] and new energy sources (e.g., wind power),
the problems of power system reliability have attracted extensive attention from scholars.
Power system reliability is classified by the adequacy and security. The adequacy shows
the ability of power systems to supply the load for consumers during the steady-state
operation. The evaluation indices include LOLP, EPNS, EDNS, LOLD, etc., [3,4].

The security shows the ability of power systems to keep synchronism, without losing
angular stability, frequency stability, voltage stability, and poorly damped oscillation modes
during the dynamic process. The indices include the stability margin, the damping ratio,
the oscillation frequency, etc., [5]. The doubly fed induction generators (DFIGs) affect
the power output of the synchronous generator (SG) and the oscillation characteristics of
power systems [6]. The weakly damped low-frequency oscillation (LFO) of the mechanical
transient of the SGs may undesirably trip the SGs and the backup relays [7].

The LFOs are often damped by the power system stabilizer (PSS) installed at the
exciter of the SGs. The parameters of the PSS are tuned by the damping torque analy-
sis based on small signal analysis and validated by the dynamic simulation after a large
disturbance [8–11]. With more and more SGs being replaced by wind power, the power oscil-
lation damper (POD) installed at the DFIG has attracted the interest of
researchers [12,13]. Since the power balance of a system is maintained by the SGs and
DFIGs, the power control to the DFIGs affects the SGs’ transient [14,15]. The POD has
a similar structure as the PSS [16,17], which is expected to have a similar control effect.
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However, the configuration and control strategy of the DFIG are different from those of the
SG, whose mechanical input is uncertain due to the wind speeds. A robust design for the
POD is challenging.

Power system stability control may be implemented with the transfer function or
the state space model. The former can deal with the nonlinear element but is difficult
for systems with a large dimension. The latter can treat large systems but is based on
linearization to the equilibrium point. Its controllable range may be limited under the
changing operating conditions.

The motivation of this paper is to consider the effect of ensuring the performance
of POD operation under different operating conditions. The sliding mode control (SMC)
enforces the states to a desirable sliding surface with a robust performance. To tune its
parameters, the system scale in existing studies is often small and not suitable for power
systems. Hence, this paper tries to apply the SMC to the POD at the DFIG to damp the LFO
mode, with the control parameters optimized by the eigen-sensitivities.

1.2. Literature Review and Comparison

The LFO in a power system is suppressed by intelligent algorithms to optimize the
parameters of the device. The gravitational search algorithm [18], imperialist competitive
algorithm [19], bacterial foraging optimization algorithm [20], and bacterial swarm opti-
mization [21] are studied in a power system. The design methods for the PSS (POD) include
the damping torque analysis, the modal analysis, etc. Using damping torque analysis,
the control effect of the PSS is decided by the gain and lead-lag parameters. Based on
the phasor relation of damping and electromagnetic torques, the compensation angle is
found to tune the parameters [22]. A frequency controller is designed [23] to ascertain the
required damping torque [24]. The damping torque analysis often focuses on the local SG.
Coordination among multi-PSS with dynamic interaction is needed [25].

The oscillation frequency and the damping ratio are derived from the modal analysis.
The control parameters are gradually changed to draw the locus of the LFO modes to verify
the control effect. It is computationally expensive since each time only one parameter is
checked [26]. Sensitivities of eigenvalues are more effective to decide the control effect [27].
For the DFIG-integrated system, the accuracy of the eigen-sensitivity is related to the
interface equation and voltage dynamic [28]. Inaccurate modeling yields wrong judgments
regarding the system’s stability and control settings.

The above methods are based on linearization to a given operation point; hence, the
control setting may be not effective for other states or contingencies. To improve the
robustness, fuzzy logic and adaptive control may be used [29,30], whose feasibility for large
systems is to be further validated. As a nonlinear control, the SMC with the sliding surface
selected and the control law design [31] enforces the system states to the sliding surface in
a finite time, tolerates the disturbance, and has a fast response [32], which may be used to
damp the LFO in power systems. With the rotor speeds of the SGs selected as the sliding
surface, the SMC-based PSS at the SG [33] and the SMC for the DFIG are designed for the
LFO damping [34]. A drawback is selecting the sliding surface for systems with many SGs.
In [35], the optimal sliding surface is designed to exploit the advantages of the SMC, but
the derivation with the state matrix is complex.

The time derivative of the sliding surface is derived to find the relative degree of the
SMC and design the switch control. The latter with the signum function switches between
two structures to drive the states toward the sliding surface [36] and enhances robustness
against uncertainties. In [37], the SMC is applied to the load frequency control for a multi-
area system, insensitive to the disturbances. Chattering of the SMC may be avoided with
the second-order model, e.g., the twisting algorithm, the super-twisting algorithm, the drift
algorithm, etc., [38].

To enhance the damping, the equivalent control is applied to the SMC, which ac-
celerates the states reaching the sliding surface [39]. Ref. [40] derives the small signal
model to study the sliding mode dynamics with the eigenvalues. In [41,42], the equivalent
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control is designed based on the linear matrix inequality and the Lyapunov function, which
provide stable eigenvalues. The gain in the SMC is optimized with the pole placement
and linear quadratic regulator in [43,44], where the eigenvalue bound is set for parametric
uncertainties. However, these methods are difficult to solve for a large power system [45].
A reduction in the system’s configuration and control is needed.

The control parameter may be optimized with heuristic or direct optimization methods.
The particle swarm optimization and firefly algorithm [46,47] are computationally expen-
sive, and cannot prove global optimality. The interior point method [48] is straightforward
and has good convergence, but it needs the derivation of Jacobian/Hessen matrices. Due to
the nonlinearity of power systems, the first-order eigenvalue sensitivity has the truncation
error and may be reduced with the second-order one [49,50]. The above eigen-sensitivities
may be derived with a parameter perturbation or normalization condition [51–53]. The
former has a low calculation efficiency. The latter has a strong assumption for the practical
system. Hence, the analytical expression of the first- and the second-order eigen-sensitivities
is the basis of the parameter optimization for the SMC.

1.3. Contribution of This Paper

To improve the robustness of the damping control scheme, this paper applies the
sliding mode control (SMC) at the doubly fed induction generator (DFIG), with the param-
eter of the SMC optimized by the eigen-sensitivity. The originalities lie in, (1) the states
strongly associated with the critical modes are newly applied to design the sliding surface,
(2) the closed-loop model of the power system with the improved equivalent control is
derived to analyze the damping effect on the critical modes and the undesirable effect on
the noncritical modes, (3) the gain of the improved equivalent control is optimized to damp
the critical and the noncritical modes, and (4) the eigenvector sensitivity is improved to
derive the second-order eigen-sensitivity to solve the nonlinear optimization.

1.4. Layout of This Paper

In Section 2, the small-disturbance model of the wind power system with the DFIG
is given as the basis for the following control design. In Section 3, the sliding surface is
selected by the critical states. The improved equivalent control is applied to the SMC. In
Section 4, the optimization model based on the eigen-sensitivity is proposed to adjust the
gain to damp the critical and noncritical modes. In Section 5, the simulation result is given
to verify the control effect of the proposed SMC model. In Section 6, some brief conclusions
are given.

2. Model of DFIG-Integrated Power System

As shown in Figure 1, a DFIG includes the wind turbine (WT) with the pitch angle
control (PAC), the transfer shaft between the WT and the induction generator (IG), the
rotor-side converter (RSC) and the grid-side converters (GSC) connected by the dc capacitor,
and the transformer or filter between the GSC and the stator. The DFIGs connect the SGs
with the transmission grid (T). With the PI controller, the PAC controls the pitch angle
β, maintains the rotor speed ωt, and captures the power Pt with the WT. Then, Pt is
transmitted to the shaft described by a two-mass model. For decoupled control, the DFIG
is orientated by the stator voltage. A two-layer strategy is applied. By regulating the
direct/quadrature (d/q) voltages and currents, the RSC regulates the active and reactive
powers (Ps and Qs) at the stator, and the GSC maintains the dc voltage and reactive power
of the GSC.
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Figure 1. Configuration of DFIG-integrated system.

The SG is described by the motion equation and excitation system. The wind power
system with the DFIG is given by [48]

dxSG
dt = fSG(xSG, ySG, yT)

dxDFIG
dt = fDFIG(xDFIG, yDFIG, yT)

0 = gSG(xSG, ySG, yT)
0 = gDFIG(xDFIG, yDFIG, yT)
0 = gT(yT) = I − YV

(1)

where f and g denote the differential and algebraic equations, x and y are the state and
algebraic variables, I, V , and Y are the current, voltage, and admittance matrix, and t is the
time. The state variables of the DFIG under the maximum power point control include
β and its reference β*, the slip of the WT and the IG (st, sr), the torsional angle (γ), the
stator currents Isd and Isq, the RSC currents Ird and Irq and the references I∗rd and I∗rq, the
GSC currents Igd and Igq, the references I∗gd and I∗gq, the voltages of the RSC and GSC (Vrd,
Vrq, Vgd, Vgq), and the dc voltage (Vdc). The state variables of the SG include the rotor
speed of the SG (ω), the power angle (δ), the sub-transient electromotive force (E

′
q), and the

excitation voltage (Ef). Note, NDFIG and NSG are the numbers of DFIG and SG. Therefore,
the dimension of x is N × 1, where N = 20× NDFIG + 4× NSG. The dimension of y is M× 1,
where M = 28 × NDFIG + 8 × NSG.

3. Second-Order SMC Design for LFO Damping

To damp the LFOs, the second-order SMC, including the switch control based on
the super-twisting algorithm and the equivalent control based on the eigen-analysis, is
designed based on the state equations of the wind power system.

3.1. Sliding Surface Design

By linearizing at the operating point, the state equation of the wind power system is
derived [28] { d∆x

dt = A∆x + B∆y
0 = C∆x + D∆y

(2)
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Then, with the SMC installed at the convertors of the DFIG, the control signal of the
SMC (u) is introduced, and the state equation is extended to{ d∆x

dt = AN×N∆x + BN×M∆y + EN×1u
0 = CM×N∆x + DN×N∆y + FM×1u

⇒ d∆x
dt =

(
A− BD−1C

)
∆x +

(
E− BD−1F

)
u = Asys∆x + GN×1u

(3)

where A, B, C, and D are the coefficient matrices of the state variable and algebraic variable,
E, F, and G are the coefficient matrices of u, Asys is the state matrix of the power system
with the DFIG, the dimension is N × N, and ∆ denotes the increment.

Equation (3) is solved to obtain many eigenvalues of the power system, in which,
the electromechanical oscillation closely associated with the SGs is the most critical to the
angular and frequency stability of power systems. The electromechanical modes are the
most destabilizing mode of the power system, so it needs to be damped to make it stable.
Then, the eigen-analysis is carried out to find the electromechanical mode [28]{

Asysv = λv
λ = σ + iµ

(4)

 0.1 < f < 2.5

ρ =

∣∣∣∣ ∑xk∈SG,MT pk
1−∑xk∈SG,MT

∣∣∣∣� 1
(5)

where λ is the eigenvalue with the real and imaginary parts σ and µ, v is the right eigen-
vector, the dimension is N × 1, f is the frequency, ρ is the electromechanical loop ratio, p is
the participation factor, and the subscript MT denotes the mechanical transient of the SGs
described by the power angle and rotor speed (δ and ω).

Among the electromechanical modes, from (6), the critical mode with the lowest
damping ratio is found. Where ξ is the damping ratio, the superscripts max and min denote
the maximum and minimum values. {

σ < σmax

ξ < ξmin (6)

The variables of the critical mode strongly associated (δ and ω) are selected to formu-
late the sliding surface (s) in this paper. Since the power angle of the SGs may not recover
to the initial value when the fault is cleared, s is formulated with the rotor speed difference
between the SGs, as

s1×1 = ∆ωi,j = ∆ωi − ∆ωj = ϕ1×N∆xN×1 =
[
0 0 . . . 1 −1 . . . 0

]


∆x1
∆x2
. . .

∆ωi
∆ωj
. . .

∆xN


(7)

The sliding surface is about the variable of the SGs, while the control signal of the
SMC may be considered as the variable of the DFIGs. Since the DFIGs and the SGs are
connected through the transmission system, the relation between s and u is complex, which
is difficult to drive based on a nonlinear model. Hence, the state space model of the power
system with the DFIGs is applied to design the SMC. Combining (3) and (7), the first- and
the second-order derivatives of s are derived

∂s
∂t

= ϕAsys∆x + ϕGu = ϕAsys∆x (8)
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∂2s
∂t2 = ϕA2

sys∆x + ϕAsysGu (9)

where ϕG = 0, and ϕAsysG 6= 0, i.e., the relative degree is 2, and the second-order SMC is
required. The conclusion based on the linear model in this paper is the same as that based
on the nonlinear model in [31], and by the former, the difficulty in deriving the derivatives
of the sliding surface is reduced effectively.

3.2. Super-Twisting Algorithm-Based Switch Control Design

In this part, the switch control usw given with the signum function is set, whose
value changes adaptively to enforce the states’ slide along the sliding surface. Among
the algorithms for usw, the super-twisting algorithm reduces chattering, and improves the
robustness of the SMC [43], hence it is applied here

uSW = k1uSW1 + k2uSW2{
uSW1 = |s|

1
2 sgn(s)

puSW2 = 1
2 sgn(s)

k1 < 0, k2 < 0

(10)

where sgn(s) is given in (11), and k1 and k2 are the coefficients controlling the gains of usw1
and usw2, respectively.

sgn(s) =


1, s > |ε|
s
ε , −|ε| < s < |ε|
−1, s < −|ε|

(11)

To ensure the system reaches the stable state in finite time with the control of the SMC,
the coefficients k1 and k2 should satisfy the convergence condition [28], where M|s|1/2

imposes the bound of the system’s disturbances.{
k1 > 2M
k2 > k1

5Mk1+4M2

2k1

(12)

3.3. Improved Equivalent Control of SMC

To drive the state reaching the sliding surface more quickly, the equivalent control ueq
is derived by setting ∂2s/dt2 to 0 (13), where Meq shows the connection between ueq and
the system states. The dimension of Meq is 1 × N.

∂2s
∂t2 = ϕAsys

2∆x + ϕAsysGueq = 0

⇒ ueq = −
(

ϕAsysG
)−1

ϕAsys
2∆x = Meq∆x

(13)

Since ueq works on the value of ∂2s/dt2, which helps to drive s and ∂s/dt to 0, the
corresponding LFO mode is damped. As shown in Figure 2, the equivalent control adds a
feedback path to the RSC, by which, the active power of the DFIG is regulated to damp the
LFO modes.

By combining (3) and (13), a closed-loop model is derived{
p∆x = Asys∆x + Gueq
ueq = Meq∆x

(14)

where ueq is seen as an algebraic variable, and the state matrix with ueq i.e., Asys,eq, is
derived in (15), based on which, the LFO modes are found.

p∆x =
(
Asys + GMeq

)
∆x = Asys,eq∆x (15)



Energies 2023, 16, 4256 7 of 18

Energies 2023, 16, x FOR PEER REVIEW 7 of 19 
 

 

( )

2
2

sys sys eq2

1 2
eq sys sys eq

=0s u
t

u

ϕ ϕ

ϕ ϕ
−

∂ = Δ +
∂

 = − Δ = Δ

Α x Α G

Α G Α x M x
 

(13)

Since ueq works on the value of ∂2s/dt2, which helps to drive s and ∂s/dt to 0, the cor-
responding LFO mode is damped. As shown in Figure 2, the equivalent control adds a 
feedback path to the RSC, by which, the active power of the DFIG is regulated to damp 
the LFO modes. 



 
Figure 2. Closed-loop model of power systems with equivalent control. 

By combining (3) and (13), a closed-loop model is derived 

sys eq

eq eq

p u
u

Δ = Δ +
 = Δ

x Α x G
M x

 (14)

where ueq is seen as an algebraic variable, and the state matrix with ueq i.e., Asys,eq, is derived 
in (15), based on which, the LFO modes are found. 

( )sys eq sys,eqpΔ = + Δ = Δx Α GM x Α x
 (15)

As shown by the gray area in Figure 3, the marginal values of the damping ratio and 
the real part of the eigenvalues (ξlim and σlim) decide the LFO modes threatening the sys-
tem’s stability.  











cλ

c

1,2 ,
i

i n
λ λ≠

= 

*

*

*



*
 



 
Figure 3. Impact of ueq on the LFO modes of power systems. 

From Figure 3, it can be seen that the improvement in the critical mode (λc) strongly 
associated with the states of s quantifies the damping effect of the equivalent control on 
the LFO. However, for systems with multiple LFO modes, ueq may affect other LFO modes 
(λi ≠ λc), reducing the stability level. 

To alleviate the undesirable effect, an improved equivalent control ueq* is proposed 
with an adjustable gain Keq (16). By substituting (16) to (14), one obtains (17). It can be seen 

Figure 2. Closed-loop model of power systems with equivalent control.

As shown by the gray area in Figure 3, the marginal values of the damping ratio
and the real part of the eigenvalues (ξlim and σlim) decide the LFO modes threatening the
system’s stability.
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From Figure 3, it can be seen that the improvement in the critical mode (λc) strongly
associated with the states of s quantifies the damping effect of the equivalent control on the
LFO. However, for systems with multiple LFO modes, ueq may affect other LFO modes
(λi 6= λc), reducing the stability level.

To alleviate the undesirable effect, an improved equivalent control ueq* is proposed
with an adjustable gain Keq (16). By substituting (16) to (14), one obtains (17). It can be seen
that ueq* reduces the value of ∂2s/dt2. The damping effect improves with the increase in
Keq (not larger than 1), but the undesirable effect may be more obvious.

ueq∗ = KeqMeq∆x = Kequeq (16)

∣∣∣∣∂2s
∂t2

∣∣∣∣ = ∣∣∣(1− Keq)ϕAsys
2∆x

∣∣∣ ≤ ∣∣∣ϕAsys
2∆x

∣∣∣ (17)

With ueq*, both the state matrix Asys,eq*, and the LFO modes are related to Keq (18),
where the subscript 0 denotes the initial value. Hence, Keq may be tuned to improve the
flexibility and the control effect of the SMC, as shown in Section 4.

d∆x
dt =

(
Asys + KeqGMeq

)
∆x = Asys,eq∗∆x

⇒ λi = λi,0 + ∆λi(Keq)
(18)

The proposed improved SMC is shown in Figure 4. With the SMC, the state space
equation of the power system is given by

d∆x
dt = Asys∆x + Gu = Asys∆x + G

(
usw + ueq

)
=
(
Asys + GKeqMeq

)
∆x + Gusw

= Asys,eq∗∆x + Gusw

(19)
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4. Optimization to Keq Based on The Second Eigen-Sensitivity

To optimize Keq to balance the damping effect and undesirable effect of ueq*, the linear
matrix inequality or Lyapunov function may be applied [44], which is, however, difficult
due to the state matrix of a high order. Hence, the second-order eigen-sensitivity model is
improved to derive Keq.

4.1. Optimization Model to Keq

The damping effect of ueq* is shown with the change in the critical mode; hence,
the objective function F is given by the damping ratio ξc with the correlation with the
eigenvalue λc.

F = min(−ζc) =
σc

(σc2+µc2)
1/2 = real(λc)

(real(λc)
2+imag(λc)

2)
1/2

=
real[λi,0+∆λi(Keq)](

real[λi,0+∆λi(Keq)]
2
+imag[λi,0+∆λi(Keq)]

2)1/2

(20)

From (14), the correlation is between the eigenvalue λc and Keq. Therefore, the optimal
Keq may be calculated to obtain the minimum result of F.

To limit the undesirable effect to other LFO modes, the inequality constraints of the
real part and the damping ratio are included in (21). The bound of Keq is given in (22).

g1 :
{

σi ≤ σlim
ζi ≥ ζlim

(21)

g2 : 0 ≤ Keq ≤ 1 (22)

The optimization model may be solved by a heuristic method or direct solution.
The former is easy to implement, but it is time-consuming, and cannot guarantee global
optimization. The latter, e.g., the interior point method, is straightforward, and has the
advantage of fast convergence. Based on the latter, F is augmented to the Lagrange function
L with the Lagrange multipliers qT and oT (23), where the inequality constraints are changed
to the equality constraints with the slack variables (κ and l). The optimal solution is obtained
when the derivatives of L with respect to all the variables and Lagrange multipliers are 0,
which is derived with the Newton iteration.

L = F− qT
(

g1,2 − l − gmin
1,2

)
+oT

(
g1,2 + u− gmax

1,2

)
− qTl − oTκ

g1,2 + u− gmax
1,2 = 0

g1,2 − l − gmin
1,2 = 0

(23)
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4.2. The First- and Second-Order Eigen-Sensitivities

The difficulty of solving (23) is to find the derivatives of λi and ξi with respect to
Keq, and form the Jacobian and Hessen matrices for the optimization. Hence, the eigen-
sensitivity is to be derived. The first-order eigen-sensitivity is quite common

∂λi
∂Keq

= wT ∂Asys,eq∗
∂Keq

v (24)

The second-order eigen-sensitivity is given by (25), where w is the left eigenvector, I is
an identity matrix, and the superscript T denotes the transpose.

∂2λi
∂K2

eq
= 2wT

(
∂Asys,eq∗

∂Keq
− ∂λi

∂Keq
I
)

∂v
∂Keq

+ wT ∂2Asys,eq∗
∂K2

eq
v (25)

To solve (25), the sensitivity of the eigenvector (∂v/∂Keq) is required, derived as (26)
and (27). However, (Asys,eq* − λiI) is singular and (27) cannot be solved.(

Asys,eq∗ − λiI
)
v = 0 (26)

(
Asys,eq∗ − λiI

) ∂v
∂Keq

+

(
∂Asys,eq∗

∂Keq
− ∂λi

∂Keq
I
)

v = 0 (27)

Multiplying a complex number k∠θ to both sides of (26), one obtains (28). It can be
found that the eigenvectors corresponding to different k and θ satisfy (26). Hence, for each
eigenvalue, there are numerous eigenvectors, as shown in Figure 5.(

Asys,eq∗ − λiI
)
(vk∠θ) = 0 (28)Energies 2023, 16, x FOR PEER REVIEW 10 of 19 
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The red line in Figure 5 is the eigenvectors considering the effect of k, and the blue line
is the eigenvectors after considering the θ, which has directionality.

To find a unique eigenvector for eigen-sensitivity analysis, the constraints of the
magnitude and angle of vj are to be added, where C1 and C2 are the constants (29).

vj =
∣∣vj
∣∣∠θj = C1∠C2 (29)

The normalization condition is derived in (30). Combining (27) and (30), the eigenvec-
tor sensitivity and the second-order eigenvalue sensitivity are found, which removes the
obstacle to optimize Keq for the SMC.

∂vj

∂Keq
= 0⇒


∂|vj|
∂Keq

= 0
∂θj

∂Keq
= 0

(30)
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Then, the LFO mode λi and its damping ratio ξi are given by the first- and the second-
order eigen-sensitivities

λi = λi,0 +
∂λi

∂Keq
Keq +

1
2

∂2λi
∂K2

eq
K2

eq (31)

ξi = ξi,0 + µi

(
− ∂σi

∂Keq
µi + σi

∂µi
∂Keq

)
1
|λi|

3 Keq

+ 1
2|λ|5


3σiµ

2
i

(
∂σi

∂Keq

)2
+ σi

(∣∣λi

∣∣2 − 3µ2
i

)(
∂µi

∂Keq

)2

+µi

(
−
∣∣λi

∣∣2 + 3µ2
i − 3σ2

i

)
∂σi

∂Keq

∂µi
∂Keq

µi

∣∣λi

∣∣2(−µi
∂2σi

∂Keq2 + σi
∂2µi

∂Keq2

)
K2

eq

(32)

4.3. Framework of Eigen-Sensitivity-Based Second-Order SMC

The proposed eigen-sensitivity-based second-order SMC is given in Figure 6. It has
four steps: (i) derive the state space model of the power system with the DFIG and find the
critical LFO modes, (ii) design the sliding surface based on the states strongly associated
with the critical mode, (iii) optimize Keq based on the eigen-sensitivities to balance the
damping effect on the critical mode and the undesirable effect on other modes, and (iv)
design the switch control based on the super-twisting algorithm.
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It should be noted that although the SMC is nonlinear, the above control is based on a
linearized state space at a given initial point; hence, it is feasible for large systems. For the
systems with high nonlinearity, uncertainty, or extremely large disturbance, the successive
multi-step optimization may be applied.

The chattering phenomena of the SMC is a restriction of the proposed method. In
future work, it is possible to consider how to improve the SMC law to suppress the
chattering problem. In addition, the adaptive optimization of the Keq at different operating
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points of the power system makes the SMC more adaptive. The POD control effect is
improved in the transient situation of the DFIG-integrated power system.

5. Case Study

The case studies are performed on the New England 39-bus system [54] (Figure 7). At
bus 9, a wind farm with 90 DFIGs is aggregated to DFIG1. At bus 21, a wind farm with
40 DFIGs is aggregated to DFIG2. The wind speeds υw1 and υw2 of the two wind farms are
12 and 9 m/s, respectively. The parameters of a single DFIG are found in [49]. The criterion
to find the critical model is σlim = −0.1 and ξlim = 0.02.
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5.1. Deciding the Location of SMC Based on Eigen-Analysis
5.1.1. Impact of DFIG on LFO

The LFO modes without/with the DFIGs are shown in Figure 8. Some modes change
notably with the DFIG. Among the LFO modes, λ25,26 is considered as the critical mode
due to the lowest damping ratio. λ is the eigenvalue of the power system.
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5.1.2. Selecting the Sliding Surface

Figure 9 shows the participation factor of the SGs to λ25,26. It is found that SG1 and
SG8 are most strongly associated with λ25,26; hence, the difference in their rotor speeds is
selected to design the sliding surface, i.e., s = ω1–ω8 = ω1,8.
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5.1.3. The Optimal Location of SMC

To decide the location of the SMC, the first-order sensitivities of λ25,26 with respect to
the control parameters of the DFIGs’ converters are calculated. With regulating Ps, Qs, Vdc,
or Qg, noted as schemes a, b, c, and d, respectively, the largest value of the eigen-sensitivities
corresponding to different control loops is shown in Figure 10. The eigen-sensitivity with
the active power loop of the RSC of DFIG1 is the largest. Hence, the SMC is installed at the
active power control loop of the RSC of DFIG1.
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5.2. Validation of Impact of Equivalent Control
5.2.1. Effect of Conventional Equivalent Control

The impact of the conventional equivalent control ueq on the states is studied with
the LFO modes of the power systems with and without ueq. As seen in Table 1, the critical
mode λ25,26 (in bold) strongly associated with the states of the sliding surface is improved.
However, in addition to λ25,26, ueq changes other modes. The damping ratio of λ30,31 (in
bold) is now negative, which means the undesirable effect endangers the stability of the
power systems.

Table 1. Undesirable Effect of Conventional Equivalent Control.

Without ueq With ueq

Eigenvalue (p.u.) Ξ Eigenvalue (p.u.) ξ
λ21,22 −0.244 ± 7.794i 0.0313 −0.261 ± 7.809i 0.0334
λ23,24 −0.202 ± 7.601i 0.0267 −0.135 ± 7.778i 0.0173
λ25,26 −0.136 ± 7.374i 0.0183 −2.196 ± 3.957i 0.4852
λ28,29 −0.158 ± 6.694i 0.0236 −0.162 ± 6.690i 0.0242
λ30,31 −0.180 ± 6.050i 0.0297 1.097 ± 4.662i −0.2290
λ32,33 −0.221 ± 5.836i 0.0379 −0.240 ± 5.847i 0.0409
λ34,35 −0.172 ± 5.697i 0.0302 −0.176 ± 5.735i 0.0307
λ36,37 −0.249 ± 5.273i 0.0471 −0.289 ± 5.244i 0.0512
λ38,39 −0.124 ± 5.210i 0.0237 −0.114 ± 5.233i 0.0217
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5.2.2. Effect of Improved Equivalent Control

To avoid the undesirable effect, the improved equivalent control ueq* is applied. The
locus of λ25,26 and λ30,31 and their damping ratio with different Keq are studied to quantify
the damping effect with ueq*, as shown in Figure 11. The ξ is the damping ratio of the
power system. A large Keq helps to damp λ25,26, but yields the negative damping mode of
λ30,31. Hence, Keq may be optimized to improve the control effect.
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The first- and second-order sensitivities of λ25,26 and λ30,31 with respect to Keq are
given in Table 2, providing information about the impact of ueq* on the states. The sign
of ∂ξ25,26/∂Keq and ∂ξ30,31/∂Keq explains the different trends of λ25,26 and λ30,31 with the
change in Keq. The second-order eigenvalue sensitivity is quite large, which shows the non-
linearity of the power systems, and adds the difficulty of robust control to the LFO modes.

Table 2. The first- and second-Order Sensitivities of LFO Modes.

Eigen-Sensitivities (p.u.) Eigen-Sensitivities (p.u.)

∂λ25,26/∂Keq −1.6223 ± 0.7648i ∂λ30,3/∂Keq 0.4455 ± 0.0325i

∂2λ25,26/∂K2
eq −3.7300 ± 0.6762i ∂2λ30,31/∂K2

eq 0.3393 ± 1.3890i

Based on the first- and the second-order eigen-sensitivities, Keq is optimized to design
ueq*. With the constraints of λ30,31, the undesirable effect is considered. The optimized Keq
is 0.117, and λ25,26 and λ30,31 are given in Table 3. At the expense of optimizing Keq, ξ25,26
is less than that in Table 1, but ξ30,31 satisfies ξlim, showing that the constraint is effective to
limit the undesirable effect.

Table 3. Control Effect with Optimized Keq.

Mode Value Mode Value

λ25,26 (p.u.) −0.374 ± 7.386i λ30,31 (p.u.) −0.121 ± 6.035i
ξ25,26 0.0506 ξ30,31 0.0200

5.2.3. Validation of Damping Effect of the Proposed SMC

A 3-phase short fault at bus 1 occurs at 0.3 s and is cleared at 0.4 s. At first, the effect
with the second-order eigen-sensitivity-based equivalent control ueq* on the sliding surface
is verified. Then, the control effect of ueq* and the super-twisting algorithm-based switch
control usw is verified.

At first, the equivalent control law is introduced. The rotor dynamics of SG1 and SG8,
closely related to the sliding surface, are shown in Figure 12. Oscillations of ω1,8 and δ1,8
damped by ueq (blue) and ueq* (red) are compared with those without ueq (black). It can be
seen that the negatively damped mode λ30,31 caused by ueq yields the oscillation of ω1,8 and
instability of δ1,8, which is successfully avoided by using ueq*. δ is the power angle of the SG.
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Then, usw is applied independently, or together with ueq*. For scheme (a) without the
SMC, (b) with usw, and (c) with ueq* and usw, the rotor dynamics are shown in Figure 13.
Oscillations of ω1,8 and δ1,8 are damped with three schemes, but the attenuation time is
different. With the criterion of 5% of the oscillation amplitude, the attenuation times of
scheme (c), i.e., 20.58 s and 20.83 s, are much shorter, i.e., ueq* accelerates the states reaching
the sliding surface; hence, it improves the system’s stability.
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To validate the damping effect of the proposed SMC, the largest magnitudes of ω1,8
and δ1,8 are given in Table 4. It can be found that the oscillations are damped by the SMC
with usw effectively. By adding ueq* in scheme (c), the magnitudes are decreased by 12.8%
and 12.5%, respectively. The damping effect is more obvious.

Table 4. Damping Effect on SG with Proposed SMC.

No SMC usw ueq* + usw

∆ω1,8 (p.u.) 8.31 × 10−4 6.64 × 10−4 5.60 × 10−4
∆δ1,8 (◦) 2.33 2.06 1.76

5.3. Validation of Robustness of SMC

To validate the control effect of the proposed SMC in uncertain system conditions, the
wind speed of DFIG1, varying from 9 m/s to 14 m/s, is given in Figure 14. The oscillations
of ω1,8 in Figure 15 show that the LFOs are damped by the proposed SMC effectively, which
proves the robustness of the SMC against the variation in wind speeds. Vw1 is the wind
speed of DFIG1.
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Figure 14. Wind speed change.
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6. Conclusions

This paper studies the LFO damping of the SGs in wind power systems. The state
equations of the system with the SGs and DFIGs are derived to find the critical modes.
The states strongly associated with the critical modes are applied to select the sliding
surface of the SMC. The equivalent control of the SMC is improved with a gain to avoid
the undesirable effect on the noncritical modes. The optimization model of the gain with
the objective of the damping ratio of the critical mode and the constraints of the noncritical
modes is proposed and solved with the second-order eigen-sensitivity. The theoretical
derivation and numerical results show that:

(1) Using the existing SMC with the equivalent control, the damping ratio of noncritical
modes may be decreased, which is avoided in this paper with the proposed improved
equivalent control of the gain constrained by the optimization model.

(2) The analytical model of the eigen-sensitivity is the basis to derive the optimization
model for the gain. The eigenvector sensitivity is necessary to find the second-order
eigen-sensitivity.

(3) Compared with the existing SMC, the proposed SMC not only damps the LFO effec-
tively, but also accelerates the states reaching the sliding surface; hence, it saves time
for the LFO damping. It is robust with different wind speeds.

The main restriction in the proposed scheme is the chattering phenomena caused
by the discontinuous control action when the operating system approaches the sliding
manifold. The improved sliding mode control law to suppress the chattering problem
is considered in future work. Since the LFOs are damped by the PSS at the SGs and the
PODs at the high-voltage dc converter stations, the shunt or series compensators, the wind
farms, and photovoltaic stations, in the following research, the dynamic interaction among
these dampers may be included to optimize these parameters against uncertain system
conditions and severe disturbances.
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Nomenclature

Abbreviations
DFIG Doubly fed induction generator.
GSC, RSC Grid/rotor-side converter.
LFO Low-frequency oscillation.
PAC Pitch angle control.
POD Power oscillation damper.
PSS Power system stabilizer.
SG Synchronous generator.
SMC Sliding mode control.
WT Wind turbine.
Notations
A, B, C, D, E, F Coefficient matrices.
Asys State matrix of power systems.
F Objective function.
I Identity matrix.
L, o, q Lagrange function, Lagrange multipliers.
p Participation factor.
s, u Sliding surface, control signal of the SMC.
V, I, Y Voltage, current, and admittance matrix
w, v Left/right eigenvector.
x, y State/algebraic variable.
υw Wind speed.
ω, f Rotor speed and frequency.
δ Power angle.
ρ Electromechanical loop participation ratio.
λ, ξ Eigenvalue and damping ratio.
σ, µ Real/imaginary part of eigenvalues.
κ, l Slack variables.
∆ Deviation of variables.
N Number of state variables
M Number of algebraic variables
Subscripts
c Critical mode.
eq Equivalent control.
eq* Improved equivalent control.
sw Switch control.
s, r Stator and rotor.
d, q Direct/quadrature axis.
MT Mechanical transient.
T Transmission system.
t Transfer shaft.
0 Initial value.
lim Marginal value.
Superscripts
min, max Minimum/maximum value.
* Reference value.
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