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Abstract: Reliable droop-controlled islanded microgrids are necessary to expand coverage and max-
imize renewables potential. Nonetheless, due to uncertainties surrounding renewable generation
and load forecast, substantial power mismatch is expected at off-peak hours. Existing energy man-
agement systems such as storage and demand response are not equipped to handle a large power
mismatch. Hence, utilizing dump loads to consume excess power is a promising solution to keep
frequency and voltage within permissible limits during low-load hours. Considering the uncertainty
in wind generation and demand forecast during off-peak hours, the dump load allocation problem
was modeled within a scenario-based stochastic framework. The multi-objective optimization with
uncertainty was formulated to minimize total microgrid cost, maximum voltage error, frequency
deviation, and total energy loss. The mixed-integer distributed ant colony optimization was utilized
in a massive parallelization framework for the first time in microgrids to solve the decomposed
deterministic problem of the most probable scenarios. Moreover, a flexible and robust load-flow
method called general backward/forward sweep was used to obtain the load-flow solution. The
optimization problem was applied to the IEEE 69-bus and 118-bus systems. Furthermore, a cost
benefit analysis was provided to highlight the proposed method’s advantage over battery-based
power management solutions. Lastly, the obtained results further demonstrate the fundamental role
of dump load as power management solution while minimizing costs and energy losses.

Keywords: ant colony optimization; droop control; dump load; load flow; multi-objective optimization;
islanded microgrid; scenario-based stochastic modeling; wind power uncertainty

1. Introduction

Over the last two decades, a major shift from conventional forms of power generation
toward renewable energy sources (RES) has occurred to minimize greenhouse gas emissions
and facilitate the growth of greener and decentralized electricity supply industry [1].
Likewise, developments in distributed generation (DG) technology, energy conversion
efficiency, government incentive programs, and overall cost reductions have given rise
to microgrids (MGs) as a viable solution for future smart grid projects [2]. Nonetheless,
there are economic and technical challenges that hinder the expansion of islanded MGs
(IMGs) which have high RES penetration. The nature of these challenges is associated
with the uncertainties surrounding variable renewable generation and demand forecast
errors. Conversely, the inability to always match generation with demand, the insufficient
transmission capacity to accommodate excess power generation, storage facilities’ higher
costs, and the need to minimize reliance on fossil fuels are considered the main obstacles
that implicate the optimal operation and control of future IMGs [2].

Adequate control of IMGs is necessitated by international standards, such as IEEE Std.
1547, to maintain voltage and frequency (V− f ) within acceptable margins [3]. Moreover, a
reliable control strategy is fundamental to ensure the autonomous participation of all DGs
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to cover any variations in demand. Therefore, droop control is often selected to enable the
autonomous sharing of loads within an IMG due to its higher reliability and lower costs
compared to other control schemes [4]. As a result, IMGs that adopt the latter strategy
are referred to as droop-controlled IMGs (DCIMGs). Conversely, with RES penetration
levels exceeding 10% in emerging MGs, one major issue remains is how to relieve network
congestion and grid integration difficulties. Hence, alleviating such issues arising from
large power mismatches in DCIMGs shall maintain V− f safe limits [5]. There are several
energy management systems (EMS) that handle power deviation problems in DCIMGs.
Such EMS include energy storage systems (ESSs) [6], demand response programs [7], and
electric vehicle smart charging [8]. Nevertheless, electric vehicle and demand response
programs are often challenging to coordinate and execute [9], while battery ESSs (BESSs)
suffer from high standing losses, environmental degradation, and expensive transportation
costs [10]. Therefore, EMS strategies that are based on electric vehicles and ESSs are suitable
to manage small power mismatches during peak hours as a secondary solution, while
different arrangements should be sought for at the event of prolonged wind generation
exceeding two load cycles.

Dump loads (DLs) are considered as a good solution to absorb excess power to provide
V− f support for synchronous and asynchronous generators [11,12]. Moreover, the use of
DL as dissipated heat with the help of an electronic load controller (ELC) has been utilized
for hydro and wind self-excited induction generators [13,14]. Conversely, DLs were put
into heating and pumping applications to handle V− f deviations of the system [15,16]
while DL application was distributed as an experimental multi-ELC project to provide hot
water and heating services for households in a micro-hydro-driven MG [17]. However, DLs
are considered preliminary when it comes to power management solutions for DCIMGs;
that is, studies seeking DL optimization within an IMG framework are scant. On the other
hand, various attempts were made to find the optimal location and size of DG and ESS units
serving various technical and economic objectives [18–21]. Nevertheless, studies [18–21]
did not account for V− f deviations at low load hours, nor did they consider generation
and demand uncertainties.

To accommodate uncertainties in wind power and demand forecast errors within
an EMS solution, the optimal droop settings of DGs were optimized in [22] to maximize
loadability and minimize fuel costs. Likewise, the total MG cost was minimized in a
real-time EMS as a stochastic solution considering demand response and BESS limits [23].
Conversely, the authors of the stochastic EMS solution in [24] have sought emission reduc-
tions as a stand-alone objective alongside cost minimization while taking BESS as a backup
to the IMG. Moreover, the work in [25] has taken similar approach as [24] by optimizing
the droop setting of dispatchable DGs but with loadability maximization as an additional
objective. In spite of the advancements in the uncertain EMS studies of [22–25], they did
not provide a viable solution to the reliability issues of BESS as an off-peak primary man-
agement solution. Furthermore, the works in [22–25] did not account for the expected high
generation/demand mismatch at low-load hours. Consequently, a novel attempt was made
in [26] by allocating a DL to eliminate V− f deviations during off-peak hours. Thus, provid-
ing a legitimate solution to the efficiency problems of BESS- and demand-response-based
EMS. Furthermore, the single DL allocation given in [26] was extended in [27] to allocate
multi-DL units across a DCIMG to minimize the same objectives. Nonetheless, the DL
problems provided by [26,27] have failed to address MG operational costs, emissions, and
losses expected from DL allocation. Likewise, the work in [26–28] neither distinguished
between dispatchable and non-dispatchable units nor considered uncertainties associated
with wind and load powers.

Uncertainty in DCIMG operation roots back to the random parameters that define
renewable energy and load diurnal state. The DL allocation into DCIMG is considered as
a many-objective non-convex mixed-integer nonlinear programming (MINLP) problem.
Moreover, by adding the uncertain non-decision variables into the optimization problem
(i.e., wind and load uncertain powers), then the optimization problem is changed from a
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deterministic optimization problem with certain dimensions to become stochastic optimiza-
tion problem with random boundaries. To that end, any chosen optimization technique
must be able to accurately handle a significant batch of objective function evaluations within
a reasonably small calculation time. This is considered fundamental to facilitate real-time
EMS solutions within the smallest load cycles possible. Inversely, many of those stochastic
EMS solutions [22–25], have neglected the enormous calculation time that will certainly ren-
der such solutions not fit for load cycles of less than 10 min. Ant colony optimization (ACO)
is an acclaimed metaheuristic for a variety of engineering problems [29,30]. However, the
proposed optimization technique, mixed-integer distributed ACO (MIDACO), is based
on the extension of ACO into the mixed-integer domains known as mixed-integer ACO
(ACOmi) [31] collated with a robust penalty method known as the oracle penalty method
(OPM) [32]. The multi-objective handling by MIDACO is based on the utopia–nadir balance
approach which aims to locate the best point on a Pareto front. Additionally, a massive
parallelization strategy is utilized by fine-grained or co-evaluation parallelization to enable
thousands of function evaluations in the shortest times possible [33,34]. The main two
significant advantages of MIDACO are its high-speed and accurate computational abilities.
Thus, MIDACO is regarded as the state of the art in evolutionary and swarm intelligence
computation for many-objective problems [33,35,36].

Due to the foregoing, it was deduced that ESS- and demand-response-based EMS
strategies are not suitable to manage high power mismatch at off-peak hours. Moreover,
neglecting uncertainty in wind power and load forecast has a negative impact on future
DCIMG planning and optimal set-points. Previous DL studies as a power management
solution during low demand hours [26–28], albeit scarce, have overlooked fundamental
facets of the problem formulation in terms of adequate uncertainty modeling, MG running
costs, DG emissions, and total energy losses. In this article, a novel methodology has
been proposed to tackle shortfalls in previous studies by formulating a multi-objective
stochastic optimization problem across the off-peak hours’ horizon. Four objectives were
minimized in total, viz., the expected total microgrid cost (TMC), the expected maximum
voltage error (MVE), the expected frequency deviation, and the expected total energy loss
(TEL). This was done using a state-of-the-art technique, MIDACO, combined with a newly
developed and robust load-flow method. The stochastic optimization problem for optimal
DL allocation and DG droop selection was modeled on IEEE 69-bus and 118-bus systems.
So far and to the best of the authors’ knowledge, no previous work has addressed the
uncertainty in generation and demand during off-peaks hours within a DCIMG framework.
Furthermore, all DCIMG optimization studies heretofore have neglected the impact of
uncertainty during low-demand hours and their calculation burden. A summary of the
main contributions of this work is as follows:

• The DL allocation problem was tackled for the first time as a stochastic optimization
problem within a scenario-based uncertainty framework.

• A roulette wheel mechanism was utilized to generate 10,000 scenarios for generation
and demand imbalance rather than a set of a few highly probable deterministic
mismatch scenarios, as in [28].

• The DL allocation problem was tackled considering technical, environmental, and
economic objectives to provide comprehensive outlook on the optimal IMG operation
during off-peak hours.

• A robust, adaptive, and derivative-free method, the general backward/forward sweep
(GBFS), was used to provide load-flow solution. GBFS offers more accurate represen-
tation of DG power updates compared to the load-flow method in [28].

• The proposed optimization technique, MIDACO, has been utilized for first time in a
stochastic optimization with uncertainty in microgrids. The proposed technique offers
a massive parallelization framework to handle the calculation burden of uncertainties.
Furthermore, it offers competitive selection criteria for the non-dominated solution
compared to other acclaimed metaheuristics.
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• The advantage of DL-based EMS against battery-based EMS is further demonstrated
via cost benefit analysis to provide yearly hot water demand for the microgrid.

This article is organized as follows: in Section 1, a brief introduction to the DL allo-
cation problem in DCIMG with uncertainty in generation and demand. In Section 2, the
methodology of droop control, uncertainty modeling, the proposed optimization method,
and the proposed load-flow technique are described. In Section 3, the stochastic optimiza-
tion problem is illustrated. Lastly, in Sections 4 and 5, a thorough discussion of the results
and conclusions are presented, respectively. Additionally, to enhance the readability of
this article, lists of all acronyms and symbols used herein are given in Tables A1 and A2,
respectively, in Appendix A.

2. Methodology

In this section, the complete methodology for droop control, scenario-based uncer-
tainty, optimization method, and load-flow technique as proposed in this article are elabo-
rated in more detail.

2.1. Droop Control and Dump-Load-Based Energy Management System

The majority of DG units within IMG are interfaced as voltage source converters
with bidirectional power flow where power electronics enable autonomous power sharing
capability by droop control [4]. To that end, active and reactive powers are shared by means
of active power–frequency (P− f ) and reactive power–voltage (Q−V) droop relationships,
respectively. For an inverter-based DG (IBDG) with inductive output impedance, the P− f
and Q−V droop relations are given mathematically as in Equations (1) and (2) [28]:

f − f0 = mpi(PGi − PGi0), (1)

|Vi| − |V0| = nqi(QGi −QGi0) (2)

where |V0| and |Vi| are the reference and operational voltage at bus i, respectively. QGi0
and QGi are the reference and generated reactive power at bus i, respectively. f0 and f are
the IMG reference and operational frequency, respectively. PGi0 and PGi are the reference
and generated active power at bus i, respectively. mpi and nqi are the active and reactive
droop coefficients at bus i, respectively.

Moreover, the instantaneous droop control action of IBDG forms the foundation of
an IMG hierarchal control strategy. The hierarchal control consists of three levels, viz.,
primary-level, secondary-level, and tertiary-level control. The primary level is achieved
within a matter of seconds in response to the variation in load by the action of IBDG droop
control. The secondary control, on the other hand, dictates the recovery of voltage and
frequency to their nominal values. That is achieved by vertically shifting the curves of
P− f and Q− V upwards or downwards depending on the under- or over-generation
responses, respectively, by the primary control. The P− f and Q−V curves of an IBDG
are depicted in Figure 1.
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Lastly, tertiary control is dictated by the presences of an MG central controller (MGCC) [24].
The MGCC is defined as the complete EMS strategy that is responsible for data collection,
analysis, and optimization to determine the IMG optimal set-points for the controllable
components. The MGCC is responsible for conducting a complete optimal load-flow
of the system considering uncertainties during optimization cycles. The frequency of
the optimization cycles is determined by the IMG needs and can be undertaken days,
hours, or up to 15 min ahead. The shorter the optimization cycle is, the more reliable and
accurate the optimal solutions provided by the MGCC are. The forecasted data presented
to the MGCC are used to determine the optimal droop values and DL setting for the
next IMG operational interval. This is ideally fed to DG and DL using a non-critical and
low-bandwidth communication interface. This type of communication channel is only
necessary at the end of each optimization cycle, thus increasing the reliability of the system.
Likewise, according to the assumed notion of this study, large power mismatch at off-peak
hours could not be sorted by relying only on BESS and demand response programs.

Consequently, IMG planning must be done first to optimize DL location, while a
real-time DL-based EMS is utilized thereafter to deliver the optimal DG droop sets and DL
size by virtue of MGCC. The idea is to balance the system’s V − f fluctuations via dumping
the extra power [28]. Accordingly, this extra DL power can be applied in pumping and
heating applications via electric boilers and water circulation systems. The role of BESS in
this EMS strategy—or any other suitable auxiliary power management solution, for that
matter—would be to simply manage any light deviation in generation and demand during
peak hours. The proposed DL-based EMS of this study is depicted in Figure 2.
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The load model chosen to represent the loads including the DL in the IMG of this
study follows the static load model. According to the literature [37], the static load model
is sufficient to describe the static components and approximate the dynamic components of
the load. To that end, the constant power model was selected for this study by setting all
load coefficients to zero [28].

2.2. Scenario-Based Stochastic Uncertainty Modeling

There are a variety of issues that might affect how definitive a variable is. The ma-
jority of these issues are naturally occurring and related to inaccuracies in previous data
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collection, forecasting future data, and acquiring data specific to that variable [38]. As a
result, the presence of random variables alters the nature of IMG analysis and planning
from a deterministic framework with fixed variables to one of a stochastic nature with
uncertain variables. To that aim, planning issues for IMG must integrate a suitable un-
certainty analysis tool. When it comes to a stochastic framework, probabilistic modeling
is the favored option, where each uncertain variable is described as a probability density
function (PDF) [2]. These PDFs are used to determine the likelihood that a certain random
variable will occur, wherein each PDF is divided into various unique probability levels [38].
There are broadly three main probabilistic methods, viz., Monte Carlo simulation (MCS),
analytical methods, and approximation methods [39,40]. MCS methods are very efficient
when problem solution search space is limited, while analytical methods are best when
the number of random variables is low. Nonetheless, the optimization problem herein
contains a huge solution search space with a large number of random variables. Thus, an
approximation method is the best trade-off to attain an expected good solution. Out of
the available approximation methods, scenario-based analysis is sought after when the
number of random variables is large. To increase the accuracy of the method, the number
of scenarios must increase, which will lead to higher computational burden. Nevertheless,
this issue is eliminated via the proposed optimization technique; MIDACO can handle a
large number of many-objective problems with a huge solution search space in a very fast
calculation effort via massive parallelization framework [33,34,36].

2.2.1. Stochastic Load and Wind Modeling

Forecasted, historical, and measured load data are all determining factors toward the
degree of load uncertainty. The study herein presumes that historical annual load data
are available and that the system peak demand conforms with the IEEE reliability test
system for load hourly shape [41,42]. Additionally, an hour-by-hour prediction system
is used to characterize load uncertainty as a normal-distribution PDF in accordance with
standards within the literature [43,44]. Typically, loads are distributed around the mean
for any given hour, that is, by considering the load’s percentage from the overall system
demand in the form of an annual cumulative percentage. Additionally, for this study, a
seven-hour window from 12 am to 7 am has been chosen to reflect the off-peak hours
scenario with higher accuracy. Thus, normal distribution of each load was segmented
into fifteen levels with lengths equal to half the standard deviation from the mean; that is,
improved uncertainty modeling with a higher number of levels. Conversely, one of the
most significant RESs in the world is regarded as wind energy. However, wind power is
mostly dependent on wind speeds and, hence, is intrinsically intermittent in nature, much
like many other unstable RESs. Therefore, it is essential to account for the influence of
wind speed on wind power through suitable probabilistic uncertainty modeling. Wind
speed, however, fits the Weibull distribution PDF rather than the normal distribution PDF
of a load’s probabilistic model [42,45]. A wind speed (v) represented by a PDF, referred to
herein as φW , with a scale index cs and shape factor ks to conform with Weibull distribution
is given by [45]:

φW(v) =
ks

cs

(
v
cs

)ks−1
e−(

v
cs )

ks
, (3)

For a Weibull distribution, ks and cs may be calculated in a variety of ways. However,
ks and cs may be roughly estimated using the following formulas [42,45,46], provided that
the average wind speed µW and its standard deviation σW of a certain site are known.

ks =

(
σW
µW

)−1.086
, (4)

cs =
µW

Γ
(

1 + 1
ks

) , (5)
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where the symbol Γ() refers to the gamma function. Detailed information regarding the
wind speed PDF as well as ks ands cs derivations are found in [46,47]. Nevertheless, as per
the assumed notion of this study, the wind speed’s mean and standard deviation are known
in the form of historical annual data for a typical wind farm covering the previous three
years [45]. Additionally, according to the study’s presumption, power is always available
during peak hours, whereas wind speeds at higher elevations often tend to progressively
rise during off-peak hours [48]. Subsequently, a PDF for wind speed is also discretized
into several levels or states, where each level reflects a range of projected wind speeds.
To achieve high accuracy for wind speed stochastic modeling, a 30 wind levels/states
were constructed from zero wind speed increasing by a 1 m/s increment. Therefore, the
probability of any given wind state (Wst) is equal to:

Λ(Wst) =
∫ vu

st

vl
st

φW(v)dv, (6)

where vu
st and vl

st are the upper and lower limits of wind speed for state Wst. For a typical
wind turbine (WT), the output power (PW(vst)) as a function of the mean wind speed (vst)
during the state (Wst) is given by [42,45]:

PW(vst) =


0, vst < vci or vst ≥ vco

PWr

(
vµ−vci
vr−vci

)
, vci ≤ vst < vr

PWr, vr ≤ vst < vco

, (7)

vst =
vu

st + vl
st

2
, (8)

where PWr is the WT rated power. vco and vci are the cut-off and cut-in wind speeds,
respectively, with the former also known as the furling wind speed. vµ is the site’s average
wind speed. vr is the WT rated wind speed.

2.2.2. Scenario Generation, Reduction, and Aggregation

A sizable number of wind and load states is created as potential scenarios based on
wind speed and load forecast PDFs. Moreover, by considering a roulette wheel mechanism
(RWM) for this study, each unique PDF will be linked to a separate RWM. Subsequently,
10,000 scenarios are generated, where each (s) scenario is defined by the set (Ωs) of uncertain
variables. As a result, each Ωs consists of the values for each wind and load power random
variable as well as their relative probability (Λi

s). Likewise, the set Ωs is defined in an IMG
for an N number of buses as:

Ωs =
{

Ps
L1, . . . , Ps

Li,lk, Qs
L1, . . . , Qs

Li,lk, Ps
W1, . . . , Ps

Wi,wk

}
, ∀i ∈N, (9)

NV = 2lk + wk, (10)

where Ps
Wi, Ps

Li, and Qs
Li are the WT, load active, and load reactive powers at bus i during

scenario s, respectively. NV is the number of uncertain variables in scenario s. lk and wk are
the total number of loads and WT in the network, respectively. Each RWM is fragmented
into many slots equal to the number of probability levels of the PDF, whereas an RWM slot
length is defined by the random variable’s corresponding normalized probability [24,38].
Each uncertain variable is obtained from the RWM tool using a random number between
0 and 1. That is, an RWM slot is selected depending on the generated random number
and its location on the RWM tool. Subsequently, the uncertain variable tagged with that
slot along with its associated normalized probability are chosen. To attain the required
number of scenarios, the slots selection process is repeated for all uncertain variables
and for every s scenario. Nonetheless, many of the 10,000 created scenarios will have
low probability and thus no bearing on the solution. As a result, eliminating repeated
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and low-probability scenarios must take place by selecting fewer and dissimilar scenarios
with the highest probabilities. A reduced number of scenarios (NR) for this work was
selected as 20 to conform with current norms in uncertainty modeling techniques [24,49].
Lastly, each of the NR scenarios of the stochastic planning problem may then be utilized to
construct a separate deterministic optimization problem. As a result, the probability of each
deterministic problem’s optimal solution within a scenario s will be equal to the convolved
probability of all uncertain variables [50]. It is important to note that this study makes the
premise that the events linked to wind speed and load forecast are uncorrelated [42]. In
other words, neither the occurrence of a certain load state nor the occurrence of a particular
wind speed state is affected by the other. This presumption is consistent with the notion
herein that holds that generation will almost certainly be higher than demand during
off-peak hours. Therefore, for a scenario s, the convolved normalized probability ΛN

s is
obtained by:

ΛN
s =

∏NV
i=1 Λi

s

∑NR
s=1 ∏NV

i=1 Λi
s
, (11)

Additionally, for each s scenario’s deterministic problem, an aggregation technique
based on weighted sum is used; that is, by accumulating the optimal solutions considering
the importance of each scenario based on its higher probability effect. Thereby, the expected
value for the objective function (F̌i(x)) of the stochastic problem taking into account all
NR scenarios is provided by [38,49]:

F̌i(x) =
NR

∑
s=1

Fs
i (x)·ΛN

s (12)

2.3. The Proposed Optimization Algorithm

As mentioned in the introduction, the proposed DL stochastic optimization problem
is a many-objective non-convex MINLP. This implies that the solution search space is
challenging and vast. Such problems are known not to have a solution in polynomial time,
making deterministic solvers inapplicable. Hence, to solve the stochastic many-objectives
problem, a state-of-the-art metaheuristic algorithm, MIDACO, is proposed herein. This
evolutionary algorithm is considered as an advanced hybrid optimization technique. It
employs different heuristics for better exploration and a back-tracking local deterministic
solver for enhanced exploitation [33]. The main components of the MIDACO algorithm
are the ACOmi for constructing iterates, or ants, using PDFs and the OPM for evaluating
penalties from constraint violations [33]. By employing the extended ACO for mixed-
integer domains, the proposed method relies on a multi-kernel Gaussian PDF to construct
solutions instead of a pheromone table as in the primordial ACO. For single-objective
MINLP handling by MIDACO, three parameters are very influential, viz., ANTS, KERNEL,
and ORACLE [33]. That is, for constructing solutions, the method starts with a dynamic
population of ants (Npop) within a (kr) number of kernels to generate and fine-tune ants as
they get evaluated according to their oracle penalty value [31]. A user-desired value for
the objective function known as the oracle (Ω) estimates the penalty function value within
OPM [32]. Conversely, for multi-objective MINLPs, MIDACO uses the utopia–nadir balance
concept to decompose the original problem into a series of single-objective sub-problems,
each solved in the j-th dimension [51]. This approach explores the Pareto front much faster
and more efficiently leading to a better convergence of the multi-objective optimization.
This differs from a non-dominated sorting approach that gives the entire Pareto front an
equal importance making convergence much slower [33,51]. Another advantage for the
utopia–nadir balance approach is that, eventually, the best equally balanced solution is
selected [33,51]. Thus, an additional multi-criteria decision approach is not required in
MIDACO. Accordingly, for any mixed-integer solution x that belongs to set of feasible
solutions F, the utopia (Ui) indicates the fittest overall value for an objective function Fi(x)
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whereas a nadir (Ni) is by far the least fit Fi(x) value that relates to different utopia as
follows [51]:

Ui = min{Fi(x)∀x ∈ F}, (13)

Ni = max{Fi(x) ∀ x : ∃ k 6= i : Fk(x) = Uk}, (14)

Once the utopia–nadir information is known, then the solution x weighted dji (x) and
average Dj(x) distances are calculated for an M-objectives MINLP. This is done for each
objective i within the j-th dimension as follows [51]:

dji (x) = w
j
i ·
(
Fi(x)−Ui

Ni −Ui

)
, (15)

Dj(x) =
∑M

i=1 dji (x)
M

, (16)

Subsequently, by having dji (x) and Dj(x) for each sub-problem as well as the utopia–
nadir information, a scalar function known as the balance function is created [51]:

Bj(x) = ∑M
i=1

∣∣∣dji (x)− Dj(x)
∣∣∣, (17)

Each j-th sub-problem is solved as a single-objective problem using the target function
Tj(x) as defined hereafter [51]:

Tj(x) = ∑M
i=1 dji (x) + Bj(x), (18)

Eventually, the original problem is re-constructed again using the set of target functions
{T1, T2, . . . , TM} evaluated in series or in parallel to attain the Pareto front. For CPU-time-
intensive problems, such as the stochastic one proposed in this article, MIDACO offers a
very efficient parallelization strategy. This strategy, known as fine-grained parallelization,
handles the execution of objective and constraint functions in each individual ACOmi
instance in parallel [33]. To fine-tune multi-objective optimization, MIDACO utilizes the
parameters, viz., BALANCE, EPSILON, and PARETOMAX. As for the former, it dictates the
Pareto front search direction, thus expediting the convergence. The latter two parameters
influence the precision and number of Pareto point collection, respectively. Other parame-
ters such SEED and ACCURACY enhance the solution’s global optimality and suitability,
respectively [33]. The proposed optimization technique flow chart is depicted in Figure 3.

2.4. The Proposed Load-Flow Method

There exist different load-flow techniques such as Gauss–Seidel, Newton–Raphson,
and backward/forward sweep (BFS) [28]. Nonetheless, many of them are not well-
equipped to provide load-flow for IMG because of the low X/R ratio in distribution
systems. Moreover, IMG has a variable system frequency and no constant slack bus volt-
age. Therefore, a special BFS (SBFS) method was proposed in [28] to account for droop
Equations (1) and (2). However, the reactive power update in SBFS does not account for
local DG voltage measurements. These local measurements are necessary for IMG with
little or weak communication infrastructure. Conversely, GBFS was proposed in [52] which
has two main stages, viz., BFS stage and update stage. These will be described briefly
as follows.
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2.4.1. Backward/Forward Sweep Stage

At this stage, all IMG variables are initialized, and all system quantities are calculated.
The value 1 ∠ 0

◦
p.u. is given to voltages of all system buses including the virtual bus

(VB). A VB mimics the behavior of a slack bus in grid-connected load flow; however, it has
a variable voltage. Subsequently, inject currents as well as branch currents for all buses
are calculated in forward sweep. Inversely, voltages on each system bus, except VB, are
obtained in the backward sweep as follows [52]:

[Ii] = ([Si]/[Vi])
∗, (19)

[Bi] = [BIBC][Ii], (20)

[Vin] = [V1]− [BCBV][Bi], (21)
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V′in = Vin − ζ1.(Vin −Vi), (22)∣∣∆V′in
∣∣ = ∣∣V′in −Vin

∣∣, (23)

∆ f = −mpT ·(PG1 −R{V1·B∗1}), (24)

∆V1 = −nqT ·(QG1 −I{V1·B∗1}), (25)

where, for a radial system with n buses, [Si], [Vi], [Ii], and [Bi] are all column vectors of
size n− 1 by 1 and correspond to at bus i as the apparent power inject, initial bus voltage,
current inject, and branch current, respectively. [BIBC] and [BCBV] are matrices of size
n− 1 by n− 1 for branch inject–branch current as given in [53] and branch current–bus
voltage as given in [28], respectively. [V1] and [Vin] are column vectors of size n− 1 by
1 for VB voltage and new bus voltages, respectively. ζ1 is the dynamic damping factor to
suppress the oscillations in the system voltage error vector

∣∣∆V′in
∣∣ as obtained stochastically

by MIDACO in [52]. V′in is the new bus voltage vector as attained using ζ1 and another
sweep for Vi. ∆ f and ∆V1 are the system frequency and VB voltage deviations, respectively.
PG1 and QG1 are VB-generated active and reactive powers, respectively. In the case that the
VB has no DG unit connected to it, these values are set to zero. V1·B*

1 is the total apparent
power exchanged at the VB. mpT and nqT are the system effective active and reactive droop
coefficients at VB as defined in [28], and are given by:

mpT =
(
∑gk

i∈GK
m−1

pi

)−1
, (26)

nqT =
(
∑gk

i∈GK
n−1

qi

)−1
, (27)

2.4.2. The Update Stage

In this stage, the VB voltage and system frequency are updated along with the DGs’
active and reactive powers as follows:

V1c+1 = V1c + ζ2·∆V1, (28)

fc+1 = fc + ∆ f , (29)

PGi = ∆ f /mpi + PGi0; ∀i ∈ GK;GK ⊆N, (30)

QGi = (|Vin| − |V0|)/nqi + QGi0; ∀i ∈ GK, (31)

where fc+1 and fc are, respectively, the system frequency at the c + 1 and c-th iterations. V1c
and V1c+1 are, respectively, the VB voltage at the c + 1 and c-th iterations. ζ2 is the dynamic
damping factor to suppress the oscillations in the VB voltage error vector |∆V1| as obtained
stochastically by MIDACO in [52]. Calculation of ζ1 and ζ2 is presented in more detail in
the following section. PGi0 and QGi0 are the active and reactive power reference points at
bus i, respectively. GK and N are sets for system generating buses and all system buses,
respectively. Another distinct feature of GBFS compared to other BFS-based methods such
as modified and nested BFS [52] is having one loop. This calculation loop with the counter
c helps in minimizing computation burden by eliminating many internal loops. Moreover,
according to GBFS implementation, the reactive power update of DG units considers the
local voltage at each generating bus to mimic the nominal voltage |V0| recovery of DG
units. However, such an approach will often cause divergence problems for ill-conditioned
systems. Such issues are due to IMG with lower droop settings, high generation/demand
mismatch, or higher line impedance. As a result, the correction vector for reactive power
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was proposed by GBFS in [52] and denoted here as γi. The aim of γi is to eliminate the
reactive power error |∆QGi| in the IMG.

γi =

(
Qc

∑i∈GK |∆QGi|
− 1
)
·{|∆QGi|}·β, (32)

where Qc is the IMG correction factor based on average reactive power in the IMG, and is
provided by [52]:

Qc = −(QG1 −I{V1·B∗1}), (33)

Furthermore, to ensure adequate reactive power correction, β, a binary constant, was
added to (32) to disable or enable the reactive power correction based on IMG needs [52]:

β =

{
0, ∀ Qmin < QGi < Qmax

1, ∀ QGi ≤ Qmin, QGi ≥ Qmax
, (34)

Subsequently, the reactive power reference is adjusted to account for any power limit
violations. Thus, a new reactive power value (Q′Gi) is used and given by [52]:

Q′Gi = QGi0 + γi + |∆QGi|; ∀ i ∈ GK, (35)

If β = 0, this implies γi is disabled and no change to reactive power is performed, i.e.,
Q′Gi = QGi. In addition, due to frequency update, line impedance (Zi) is updated.

Zi = Ri + jXi( fc+1/ fc) (36)

where Ri and Xi are the resistance and reactance of the line connecting bus i and i + 1,
respectively. Lastly, GBFS exits the loop when the condition for convergence is satisfied;
in other words, by attaining an objective function (F(x0)) value below the voltage error
threshold (εTh), as will be explained in the next section. That is, GBFS terminates when
F(x0) < εTh, noting that εTh = 10−8 for all investigated cases in this article. A flow chart
of GBFS is depicted in Figure 4.
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3. Optimization Problem Formulation

In this section, the objective functions and constraints for the stochastic DL optimiza-
tion considering uncertainty in wind and load power are described in detail.

3.1. Objective Function for Dynamic Damping Factors in GBFS

The objective in the optimization problem of GBFS is to obtain a concurrent min-
imization of the two main voltage error vectors

∣∣∆V′in
∣∣ and |∆V1|. This is achieved by

stochastically adjusting the dynamic damping factors ζ1 and ζ2. A weighted sum approach
was elected to attain the dynamic adjustment of ζ1 and ζ2 without computational overhead
and extra run time. This is attributed to weighted sum benefit in simplifying and trans-
forming the multi-objective problem into a single objective [40,54]. Furthermore, due to the
existing knowledge of the objective function desired threshold, i.e., εTh, the search efforts
in MIDACO are greatly reduced. Therefore, the prosed optimization method is tuned
accordingly using the parameters FOCUS and FSTOP. The former parameter can guide
the search efforts of MIDACO towards a local region, which is known to have the desired
threshold, whereas the latter parameter will terminate the algorithm once the objective
function exceeds that threshold [33]. Subsequently, as in Equation (37), the GBFS objective
function to obtain ζ1 and ζ2 is provided as:

F(x0) = w1·max
{∣∣∆V′in

∣∣}+w2·|∆V1|, (37)

x0 = {ζ1, ζ2}, (38)

0 < ζ1 ≤ 3, (39)

0 < ζ2 ≤ 3, (40)

where w1 and w2 are weights of
∣∣∆V′in

∣∣ and |∆V1| and equal to 1 for enhanced conver-
gence [52]. x0 is the decision variable for the objective function F(x0) in the GBFS implementation.

3.2. Objective Function for Dump Load Stochastic Optimization

In this study, four objective functions are defined as the expected total microgrid cost
(TMC), the expected maximum voltage error (MVE), the expected frequency deviation
(|∆ f |), and the expected total energy loss (TEL). Those objectives are constructed consider-
ing all reduced scenarios NR spanning across the chosen off-peak horizon (i.e., 12–7 am).
Consequently, an objective function Fi(x1) with the decision variable x1 is defined as:

Fi(x1) = {TMC, MVE, |∆ f |, TEL}, (41)

x1 = {PDL, QDL, mnDL, NDL}, (42)

where PDL, QDL, are, respectively, the dump load’s active and reactive powers. NDL is the
DL bus location. mnDL refers to the optimal droop setting considering the allocation of DL.
The value of mnDL influences DG droops as follows:

mpi = mnDL, (43)

nqi = 10·mnDL, (44)

Having reactive droop slightly above the active droop value is common and known
to further improve the load-flow convergence [19,55]. Moreover, an aggregated sum for
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all NR deterministic problems within each hour that belong to the set (H) defining the
off-peak horizon is given as total expected objective function F̌i(x1):

F̌i(x1) =



F̌1(x1) =
H
∑

h=1

NR
∑

s=1
F

h,s
1 (x1)·ΛN

s

F̌2(x1) = max
hεH

{
NR
∑

s=1
F

h,s
2 (x1)·ΛN

s

}
F̌3(x1) = max

hεH

{
NR
∑

s=1
F

h,s
3 (x1)·ΛN

s

}
F̌4(x1) =

H
∑

h=1

NR
∑

s=1
F

h,s
4 (x1)·ΛN

s

(45)

where H is the total number of hours with a set H. An expected non-dominated solution
using the Pareto front optimization technique, MIDACO, is used to find x1 that satisfies all
constraints and minimizes Equation (45). The stochastic objective function F̌i(x1) is solved
by aggregating all deterministic optimization problems’ objective function (Fh,s

i (x1)) in a
solution matrix (SM) of size H × NR. The four objectives are detailed as follows:

3.2.1. Total Microgrid Cost

The four base cost functions making up the TMC objective described in this work
which are also dispersed throughout the off-peak horizon for each reduced scenario are
given as fuel cost (FC), maintenance cost (MC), emissions cost (EC), and technical costs
(TC). Such a combination is the preferred idea when considering the typical technical,
environmental, and economic goals for any IMG optimization task. Furthermore, we
implicitly reduce emissions and losses by including active power generation from all
dispatchable DGs as a component in the TMC objective. Therefore, it would be unnecessary
to include a separate objective to address emissions due to the linear relation between
active power and emissions. Nevertheless, network losses should be tackled as a separate
objective since the relationship between apparent power and branch current components is
not linear. Conversely, the TMC cost function considered herein is based on MG operational
and running costs. Thus, it does not include capital or standing costs of the MG such as
DL or storage installation costs. It is a common practice in the literature to neglect other
form of costs apart from running costs, as they are mainly dependent on dispatchable unit
generation [24,56–58]. Moreover, as per the notion of this study, DL application should at
least offset the costs of storage installation for the same purpose. Nonetheless, a complete
cost benefit analysis of DL and battery EMS is given separately in the discussion section.
Given the foregoing, TMC is obtained as [56,57]:

F
h,s

1 (x1) = TMCs
h = FCs

h + MCs
h + ECs

h + TCs
h, (46)

FCs
h = (ψ f uel/ηP)·∑i∈GK

Ph,s
Gi , (47)

MCs
h = ψmain·∑i∈GK

Ph,s
Gi , (48)

ECs
h = Ψemis·ψemis·∑i∈GK

Ph,s
Gi , (49)

TCs
h = RCs

h + FRCs
h, (50)

where for a scenario s during the off-peak hour h, the total microgrid, fuel, maintenance,
emissions, and technical costs are given by TMCs

h, FCs
h, MCs

h, ECs
h, TCs

h, respectively.
The dispatchable DG’s generated active power is given by Ph,s

Gi . In addition, the reactive
and frequency costs are given by RCs

h and FRCs
h, respectively. ηP is the efficiency in fuel

consumption by a dispatchable DG. Ψemis is the dispatchable DG’s emissions rate. ψ f uel ,
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ψmain, and ψemis are, respectively, the fuel, maintenance, and emissions cost coefficients,
noting that the technical cost is about MG reliability and stability as represented by RCs

h and
FRCs

h costs. Reactive power is not connected with fuel, albeit leading to increased losses
and penalties for generating reactive power [57]. Conversely, when frequency deviations
are out of the permissible range, the FRCs

h costs are required to ensure MG supply quality.
Although technical costs often refer to V− f deviations concurrently, in this article, only
frequency penalty costs were elected. This is due to the fundamental role of frequency in
IMG supply quality and the stringent permissible tolerance for frequency in the system
(±0.4%) [59]. Accordingly, RCs

h and FRCs
h are provided by [56,57]:

RCs
h = Ψvar·(FCs

h + MCs
h + ECs

h)·
∑i∈GK Qh,s

Gi

∑i∈GK Ph,s
Gi

, (51)

FRCs
h = ψ f req·

(
f h,s
ss − f0

)
, (52)

where Ψvar is the dispatchable DG’s reactive power coefficient [60]. f h,s
ss is the IMG steady

state frequency at scenario s during the off-peak hour h. ψ f req is a penalty cost coefficient

for frequency [56,59]. Qh,s
Gi is the reactive generated power by the dispatchable DG at

scenario s during the off-peak hour h. Additionally, DCIMG quality of supply as well as
safe operating constraints necessitate the provision of technical costs [56]. It is known that
a renewable DG does not cause emissions since it consumes zero fuel. Furthermore, each
WT in this article was assumed in maximum power point tracking (MPPT) control, acting
as an induction generator with a 0.9 leading power factor [24,61].

3.2.2. Maximum Voltage Error

In an IMG, a good stability and reliability indicator is the voltage. Therefore, many
DG allocation studies have opted for stability indices such as total voltage variations and
voltage stability index. Nonetheless, the allocation herein is for DL and not DGs. Thus, a
flattened voltage profile is desired to ensure system voltages as close to nominal as possible.
As a result, MVE was elected to attain voltage error minimization across the IMG, and is
provided by [38]:

F
h,s

2 (x1) = MVEs
h = max

iεN

{∣∣∣|Vh,s
in | − 1

∣∣∣} (53)

where Vh,s
in is bus i voltage at scenario s during the off-peak hour h.

3.2.3. Frequency Deviation

On the other hand, the expected IMG frequency error is achieved as follows:

F
h,s

3 (x1) = |∆ f s
h| =

∣∣∣mpT ·
(

Ph,s
G1 −R

{
Vh,s

1 ·B
h,s
1
∗})∣∣∣ (54)

where Vh,s
1 , Bh,s

1 , and Ph,s
G1 are, respectively, the voltage, branch current, and the active power

at the VB within a scenario s during the off-peak hour h.

3.2.4. Total Energy Loss

As for the fourth objective, the expected total energy loss, it is calculated as follows:

F
h,s

4 (x1) = Ph,s
loss·t

s = ∑n−1
i=1 R{Zi}·

∣∣∣Bh,s
i

∣∣∣2·ts (55)

where, for each scenario s during the off-peak hour h, the active power loss and the branch
current are given by Ph,s

loss and Bh,s
i , respectively. th is the time duration at each s scenario

which is equal to one hour.
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3.3. Constraints for Dump Load Stochastic Optimization

In any IMG, there are different technical constraints that must be satisfied to ensure
adequate and stable operation [3,62]. Moreover, for each deterministic optimization prob-
lem, load flow must converge for any given scenario s and off-peak hour h. This very stable
behavior signals power balance constraint adherence. Moreover, for each objective function
evaluation the frequency, thermal, bus voltage, and dispatchable DG power limits must
be adhered concurrently. These constraint functions (gh,s

i (x1)) are handled during each
scenario s at any given off-peak hour h as follows.

Bus i’s voltage limits:
0.95 ≤

∣∣∣Vh,s
in

∣∣∣ ≤ 1.05, (56)

Thermal limits: ∣∣∣Bh,s
i

∣∣∣ ≤ |Bi_max|, (57)

Steady-state frequency limits:

0.996 ≤ f h,s
ss ≤ 1.004, (58)

Dispatchable DG power output limits:

0 ≤ Ph,s
Gi ≤ 4, (59)

0 ≤ Qh,s
Gi ≤ 2.5, (60)

According to the presumption herein, non-dispatchable units operate with an MPPT
algorithm (i.e., in PQ mode). Therefore, in any given scenario, the WT will always re-
main within power limits and thus were excluded from the constraint-handling function.
Inversely, the limits for the decision variable x must be satisfied once at every function eval-
uation after the aggregated effect of all NR scenarios during low load hours (i.e., ∀h ∈H)
are taken into consideration. Thus, neither DL location, DL size, nor DG droop gains are
affected by scenario or hour change. These are provided as follows [28]:

DL size limits:
0.002 ≤ PDL ≤ 1, (61)

0.002 ≤ QDL ≤ 1, (62)

Droop coefficient limits:
10−4 ≤ mnDL ≤ 0.05 (63)

Noteworthy is that the per-unit system was used to write all numerical data using
system nominal frequency as 50 Hz, power base 500 kVA, and 12.66 kV and 11 kV as
voltage base for the 69-bus and 118-bus systems, respectively.

4. Results and Discussion

The case studies considered for the IMG in this work are the IEEE 69-bus and 118-bus
systems which are shown in Figure 5a,b, respectively.

System line and load data were obtained from [63,64] for the 69-bus and 118-bus
systems, respectively, while the 69-bus and 118-bus system generation bus locations were
obtained from [26,65], respectively. All DGs and MG ratings are given in Table 1 for the
dispatchable and non-dispatchable units which were obtained from [24,58], respectively.
Furthermore, it was assumed that all non-dispatchable DGs were WT units, while dispatch-
able DGs, on the other hand, were installed as natural gas turbine (NGT) units. The DG
arrangements for the no DL case (i.e., the base case) are given, respectively, in Tables 2 and 3
for the IEEE 69-bus and 118-bus systems. The pre-islanding reference generation for all
NGT units were assumed as 2.545 + j1.909 p.u. at 0.8 lagging power factor, while WT
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units, on the other hand, were rated at 0.5 MW capacity with 0.9 leading power factor
operation [24]. Due to the expected large power mismatch as per the notion of this study,
two and four identical DLs were considered in the stochastic optimization problem for
the 69-bus and 118-bus systems, respectively. The DLs were rated at 500 kVA each and
allocated simultaneously with the same size and to the same location for both test systems.
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Table 1. Technical characteristics of DG units and MGs under study.

NGT WT Others

Parameter Value Parameter Value Parameter Value

Pmin (MW) 0.20 υr (m/s) 10.5 Ψvar 0.3
PNr (MW) 2.00 PWr (MW) 0.5 ψ f req ($/Hz) 100

ηP 0.37 υci (m/s) 4.5 - -
Ψemis (Tonne/MWh) 0.2016 υco (m/s) 22.0 - -
ψemis (USD/Tonne) 40.7 υµ (m/s) 10.5473 - -
ψ f uel (USD/MWh) 20.5 υσ (m/s) 3.7282 - -
ψmain (USD/MWh) 3.0 - - - -

Table 2. DG unit arrangements for 69-bus system.

DG Unit DG Type No. of Units Bus No. mpi nqi

DG1 NGT 1 1 −0.05 −0.05
DG2 NGT 1 6 −1 −1
DG3 NGT 1 15 −0.1 −0.1
DG4 WT 1 30 - -
DG5 WT 1 55 - -
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Table 3. DG unit arrangements for 118-bus system.

DG Unit DG Type No. of Units Bus No. mpi nqi

DG1 NGT 2 1 −0.05 −0.05
DG2 NGT 2 20 −1 −1
DG3 NGT 2 39 −0.1 −0.1
DG4 NGT 2 47 −1 −1
DG5 NGT 2 73 −0.2 −0.2
DG6 WT 2 80 - -
DG7 WT 2 90 - -
DG8 WT 2 110 - -

The simulation was modeled and executed in MATLAB®® environment on hardware
comprising an Intel core i7 2.6 GHz 8 GB RAM. Furthermore, the stochastic optimization
problem was initialized for each deterministic problem with 0, 0, and 109 values for
ANTS, KERNEL, and ORACLE, respectively. Meanwhile, PARETOMAX, BALANCE,
and EPSILON were set to 1000, 0, and 0.01, respectively. The parameter selection is
recommended at the respective values to allow for the best mix between exploration,
exploitation, and speed [33]. Lastly, to initialize the GBFS optimization problem [52,66], the
parameters FSTOP and FOCUS were set to 10−8 and 100, respectively. A hard-stopping
criterion is chosen for MIDACO by fixing the maximum number for function evaluations,
known as MAXEVAL, to 10,000.

4.1. Multi-Objective Optimization

As discussed previously, by concurrently considering all 20 reduced scenarios as per
the desired accuracy rate, the formulated many-objective stochastic problem was created
to minimize the expected TMC, MVE, |∆ f |, and TEL. Moreover, the chosen sampling rate
for uncertainty modeling has resulted in NR deterministic optimization problems, each
with constant load and wind power. It should be noted that the locations of DGs within
each test IMG were selected to minimize losses while meeting network demand without
relying on any external sources [65]. Based on the forgoing, a non-dominated solution that
considers all scenarios during the off-peak horizon for each expected objective function in
the stochastic optimization problem is given in Table 4.

Table 4. Multi-objective expected results considering stochastic scenarios.

Test System 69 118

Allocation Case No DL With DL No DL With DL

NDL - 30 - 73

PDL (p.u.) - 1.2831 - 1.7670

QDL (p.u.) - 0.4004 - 0.2389

mnDL - 0.0014 - 0.0003

TMC (USD) 6991.7 831.30 7635.6 941.61

MVE (p.u.) 0.0937 0.0245 0.1024 0.0324

|∆f |(p.u.) 0.1901 0.0022 0.2405 0.0005

TEL (kWh) 200 228.9 1472.8 1270.3

Time (s) - 638 - 872
First step size only for |∆ f |.

Similarly, the utopia–nadir balance approach has resulted in finding the optimal
non-dominated solution at the center of the Pareto front to satisfy all objectives. The
non-dominated solution is highlighted in green as depicted in the Pareto front for the
IEEE 69-bus and 118-bus systems in Figure 6a,b, respectively. According to results, the
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consideration of uncertainty in load forecast and wind speed in the DL allocation problem
has resulted in costs savings, better voltage profile, and optimal supply quality if compared
to the base case (i.e., without DL allocation while using droop sets of Table 2 or Table 3).
Taking the TMC for the base case in particular, a significant increase in MG costs is observed
against the DL allocation cases of both test systems. This is attributed to the higher fuel
consumption and emissions by the dispatchable DGs in the IMG without DL. Furthermore,
higher technical costs were incurred for operating the IMG without DL allocation, that is,
to guarantee supply quality. Conversely, a smoother frequency profile is observed for both
test systems utilizing the DL as a power management solution according to the improved
expected |∆ f | during the off-peak hours as provided in Table 4.
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Moreover, flatter voltage profiles were achieved by DL’s optimal sizing as well as DG’s
optimal droop setting as depicted in Figures 7 and 8 for the 69-bus and 118-bus systems,
respectively. Meanwhile, the advantage of DL allocation in DCIMG has significantly
reduced the expected averaged over-frequency by 0.1847 p.u. and 0.2114 p.u. for the 69-bus
and 118-bus systems, respectively, against the base case. The advancements in frequency
profiles are provided in Figures 9 and 10 for the 69-bus and 118-bus systems, respectively.
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As for the fourth objective (i.e., TEL), it is generally affected by the pre-existing reactive
power mismatch in the IMG. In one hand, for an IMG with relatively small reactive power
mismatch, the resultant TEL will be greater after the DL inclusion. On the other hand, when
the pre-existing reactive power mismatch is relatively large, the resultant TEL will be lower
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after DL inclusion into the MG. This situation is explained after examining the reactive
power compensation in predominantly capacitive networks and the role of DL allocation
in IMGs. Notwithstanding the size of the existing reactive power mismatch before DL
allocation into the network, considering TEL criterion within the many-objectives DL
allocation will ensure loss reduction. Those refer to losses that would have been otherwise
incurred by the general DL utilization in distribution networks as seen from the single- and
two-objectives results for the DL allocation presented in [28].

4.2. Comparison with Other Metaheuristics

The efficacy of the expected non-dominated solution offered by the proposed method
herein is compared against other acclaimed evolutionary and swarm intelligence tech-
niques, viz., multi-objective genetic algorithm (MOGA) [67], multi-objective particle swarm
optimization (MOPSO) [68,69], and the non-dominated sorting genetic algorithm (NSGA-
II) [70,71]. The parameters for MOPSO, NSGA-II, and MOGA, were adopted from [28].
Accordingly, 11 parameters were initialized for MOPSO, namely, population and repository
size both 100, leader and deletion selection pressures both 2, and starting and ending inertia
weights values 0.5 and 0.001, respectively. The cognitive and social learning coefficients
were 0.1 and 0.2, respectively, grid per dimension 7, and mutation rate 0.1. As for NSGA-II,
four parameters were set: population size 100, distribution index for mutation 20, distribu-
tion index for crossover 100, and mutation probability 0.25. Lastly, MOGA’s population size
was 100, crossover probability 0.8, and mutation probability 0.001. The results obtained by
each metaheuristic technique are given in Table 5.

Table 5. Comparison of expected results against different methods.

Method MOGA NSGA-II MOPSO MIDACO

Bus System 69 118 69 118 69 118 69 118

NDL 30 79 28 62 49 69 30 73

PDL (p.u.) 1.5624 2.0357 1.2834 1.7750 1.6615 2.3868 1.2831 1.7670

QDL (p.u.) 0.9545 0.4547 0.6879 0.4463 0.6033 1.1205 0.4004 0.2389

mnDL (p.u.) 0.0014 0.0003 0.0015 0.0003 0.0014 0.0003 0.0014 0.0003

TMC (USD) 896.36 957.71 834.00 944.68 916.69 972.57 831.30 941.61

MVE (p.u.) 0.0262 0.0387 0.0254 0.0419 0.0250 0.0330 0.0245 0.0324
|∆f | (p.u.) 0.0021 0.0005 0.0022 0.0005 0.0020 0.0004 0.0022 0.0005

TEL (p.u.) 0.4951 3.1302 0.4616 2.9582 0.5296 3.0059 0.4578 2.5405

MAXEVAL 400 400 200 200 400 400 10,000 10,000

Time a (s) 9763 12,061 12,203 12,843 7617 9214 638 872
a Algorithm computation time, first step size only for |∆ f |.

According to results, an overall best for TMC and TEL was found by MIDACO for the
69-bus system, whereas MIDACO’s TEL for the 118-bus system was substantially smaller if
considered against the other methods. Inversely, taking the |∆ f | obtained by all methods
as reference, the superiority of the proposed method is exemplified by the quality of the
non-dominated solution achieved. Moreover, both MIDACO and NSGA-II have returned
close values for TMC; nonetheless, the attained objectives of TEL and MVE were worst
from NSGA-II compared to MIDACO’s. Despite having much lower maximum function
evaluation parameter, i.e., MAXEVAL, by MOPSO, MOGA, and NSGA-II, their recorded
calculation times, albeit utilizing a parallelization strategy, were quite long, rendering them
not practical. Noteworthy is that the DL locations attained by the four metaheuristics are
not similar. This is attributed to the challenging and complex nature of many-objective
optimization problems. Nonetheless, the handling of integer domains within MIDACO
is enhanced to avoid premature convergence of the internal ACOmi instances [31]. On
the other hand, the competitive edge offered by MIDACO’s fine-grained parallelization
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strategy was demonstrated by having much lower calculation times despite the huge
number of function evaluations. The speed and accuracy advantage of MIDACO against
the other metaheuristics proposed herein, shall indeed facilitate a competitive solution with
decent and practical speeds. This is necessary for real-time optimization of challenging and
stochastic MINLPs forming future IMGs.

4.3. Cost Benefit Analysis

As discussed in the optimization problem formulation, DL allocation is expected to
reduce total running costs of the MG; that is, by considering fuel, maintenance, emissions,
and technical cost reduction because of optimal dispatchable units’ generation. Nonetheless,
the assumption was that DL costs are offset by utilization of the power into useful operations
rather than having it stored or dissipated. Therefore, to demonstrate the effectiveness of
the proposed DL-based EMS (DLEMS), a cost benefit analysis (CBA) was conducted. The
attained results of this analysis will signify the DL solution’s advantage against a battery-
based EMS (BEMS). By considering CBA for DLEMS and BEMS, the costs associated with
DL and BESS installations will be analyzed, respectively. Thus, to put the CBA into practical
perspective, the advantage of using DLEMS against BEMS considering power regulation
in primary off-peak hours is investigated. This implies that the CBA has considered two
unique EMS approaches to provide a system’s hot water demand, namely, DLEMS and
BEMS. In the former EMS approach, the overgeneration of excess power is absorbed by DL,
while a portion of the system’s demand for water-heating boilers and pumps is covered
by the DL active and reactive powers, respectively [27]. Furthermore, the remainder of
hot water demand is supplied by electric-powered boilers from non-renewable sources.
Conversely, for BEMS implementation, BESS is utilized to store the excess overgeneration
power mismatch, while the system demand for hot water is supplied by natural-gas-fired
boilers and pumps.

The motivation for the CBA herein is to provide a comprehensive economic dimension
as a reflection from the DL solution to the V− f regulation in highly penetrated IMG.
Therefore, a more realistic approach was adopted in this study contrary to that provided
in [27]. This was performed by considering all capital, fuel, maintenance, and running costs
for hot water system installation and maintenance. Moreover, by considering uncertainties
in wind and load powers, the amount of available power to be dumped was determined
using stochastic scenario-based modeling. Additionally, in addition to assuming the
levelized cost of energy (LCOE) for storage solutions in [27], the CBA herein has considered
LCOE for gas and electric water-heating systems. Accordingly, when it comes to investment
analysis for costs of producing energy, LCOE is widely used in the industry and academia
to provide sufficient investment return overview for different energy technologies [72].
Subsequently, the CBA is used to measure the cost-effectiveness of relieving high power
congestion during off-peak hours with a DL solution rather than a storage solution. As
a result, the analysis was conducted assuming two LCOEs for electric boilers, viz., from
renewable and non-renewable sourced electricity. Furthermore, the provision for the total
demand for hot water is scheduled during low-load hours by storing the hot water in
dedicated cylinders to be used later via on-demand water circulation systems [27,73].
The hot water volume for total daily demand (Vtot

hw ) in this article is assumed on average
(considering winter and summer days) as 817.06 m3 and 1293.67 m3 for 69-bus and 118-bus
systems, respectively [24,73]. Similarly, the hot water volume (Vhw ) equation is derived
from the obtainable energy to produce heat as follows [73]:

Vhw =
Phw·ηhw·h
Cw·ρw·∆T

, (64)

where Phw is the power utilized by the boiler for heating water during h hours. ρw is the
density of water. Cw is the specific heat of water. ηhw is the boiler efficiency for heating
water and assumed as 0.99 and 0.80 for electric (ηele

hw) and gas (ηgas
hw ) boilers, respectively.
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∆T is the difference between the set-point temperature Tst, assumed at 60 ◦C, and the inlet
temperature Tin, assumed at 10 ◦C, and is given by [27,73]:

∆T = Tst − Tin, (65)

Due to the foregoing, the utilization of electric or gas boilers for water heating will
accumulate the following costs:

HCe
hw = ψeleR

LCOE·PDL·h + ψeleN
LCOE·Pele

hw·h, (66)

HCg
hw = ψ

gas
LCOE·P

gas
hw ·h + SCBESS, (67)

SCBESS = ψBESS
LCOE·PDL·h, (68)

where HCg
hw and HCe

hw are the BEMS and DLEMS costs for heating water, respectively.
Pgas

hw and Pele
hw are the power needed by gas and electric boilers to cover the total system

demand for hot water, respectively. Note that PDL was deducted from Pele
hw to represent

renewable-based electric boiler costs. ψ
gas
LCOE is the gas boiler LCOE coefficient, which is

valued at 57.13 USD/MWh (53 EUR/MWh) [72]. ψeleN
LCOE and ψeleR

LCOE are the non-renewable-
and renewable-sourced boilers’ LCOE, respectively, which are valued at 70.06 USD/MWh
(65 EUR/MWh) for ψeleN

LCOE and 33.42 USD/MWh (31 EUR/MWh) for ψeleR
LCOE [72]. Notewor-

thy is that the LCOE from [72] does not account for long distance thermal losses, nor the
cost associated with long-distance thermal installation and maintenance. Nonetheless, the
costs incurred from long-distance thermal operation are assumed the same for both EMSs
in question and was omitted form the comparison. As for a BEMS strategy, PDL (i.e., the
excess power) would require storage in an appropriate BESS. This will lead to extra costs
which are called storage costs (SCBESS). The value of SCBESS is dependent on the required
storage power and the LCOE for the corresponding storage technology [74]. Accordingly,
two LCOE coefficients for storage technologies are considered herein to attain a better com-
parison against DLEMS. Thus, two BESS types are used in the BEMS implementation, viz.,
Nickel–Cadmium (Ni-Cd) and Lithium-ion (Li-ion). The cost coefficients for Ni-Cd (ψNi

LCOE)
and Li-ion (ψLi

LCOE) technologies are assumed as 691.06 USD/MWh (641.1 EUR/MWh) and
658.61 USD/MWh (611 EUR/MWh), respectively [74].

All technical parameters and cost coefficients used in the CBA of this study are
provided in Table 6. Lastly, the average daily hot water demand Vtot

hw is used to calculate
the total cost for hot water per calendar year (HCtot

hw). This is done for both DLEMS and
BEMS implementations as follows:

HCtot
hw =

{
HCe

hw·365.25
HCg

hw·365.25
(69)

Table 6. Microgrid data for CBA of water heating system.

Cost Coefficients Technical Characteristics

Parameter Value Parameter Value

ψeleR
LCOE (USD/MWh) 33.42 Tin (◦C) 10

ψeleN
LCOE (USD/MWh) 70.06 Tst (◦C) 60

ψ
gas
LCOE (USD/MWh) 57.13 Cw (J/Kg. ◦C) 4200

ψLi
LCOE (USD/MWh) 658.61 ρw (Kg/m3) 997

ψNi
LCOE (USD/MWh) 691.06 ηele

hw 0.99
- - η

gas
hw 0.80

Provided in Table 7 are the results of the CBA for the 69-bus and 118-bus systems.
According to the results, the costs associated with DLEMS to cover yearly hot water
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demand were much lower than they were for BEMS. This is true for both BESS technologies
implemented, i.e., Li-ion and Ni-Cd. Likewise, the estimated costs for hot water demand per
calendar year using the Ni-Cd-based BEMS were USD 2,535,058.14 and USD 3,746,532.52
for the 69-bus and 118-bus systems, respectively. Similarly, using the cheaper BESS option
(i.e., Li-ion) in the BEMS implementation did not result in significant cost reductions, as
they were USD 2,474,229.79 and USD 3,662,771.75 for the 69-bus and 118-bus systems,
respectively.

Table 7. Yearly hot water demand using different EMS strategies.

EMS Method Using DL Using Li-ion Using Ni-Cd

Test system 69 118 69 118 69 118

PDL (MW) 0.6416 0.8835 0.6416 0.8835 0.6416 0.8835

Pele
hw (MW) 5.3584 8.6165 - - - -

HCe
hw (USD/day) 3175 5065.90 - - - -

Pgas
hw (MW) - - 7.4251 11.7563 7.4251 11.7563

HCg
hw (USD/day) - - 6774.07 10,028.1 6940.61 10,257.4

SCBESS (USD/day) - - 3380.5 4655.1 3547.1 4884.4

Vtot
hw (m3/day) 817.06 1293.67 817.06 1293.67 817.06 1293.67

HCtot
hw ($/year) 1,159,667.99 1,850,319.83 2,474,229.79 3,662,771.75 2,535,058.14 3,746,532.52

Saving method - Using DL instead of Li-ion Using DL instead of Ni-Cd

Net savings
(USD/year) - - 1,314,561.79 1,812,452.0 1,375,390.14 1,896,212.69

On the other hand, using DLEMS for the same purpose (i.e., heating systems hot
water demand per calendar year) has resulted in significant and expected reductions in
costs valued at USD 1,159,667.99 and USD 1,850,319.83 for the 69-bus and 118-bus systems,
respectively. The major cost factors affecting this huge difference between DLEMS and
BEMS are the storage and gas boiler costs. The latter is attributed to the higher power
required for gas boilers to produce the same volume of hot water if compared with the more
efficient electric boilers. The amount of power required by gas boilers were 7.4251 MW
and 11.7563 MW for the 69-bus and 118-bus systems, respectively. Conversely, the power
required by electric boilers were just at 6 MW and 9.5 MW for 69-bus and 118-bus systems,
respectively. As for the former cost factor, BESS are still expensive considering different
variables such as installation, end-of-life, and replacement of batteries [74]. Moreover,
despite that storage costs are dropping as technology advances, the overall cost elements of
BESS are still not accounted for in medium- and long-term solutions [74].

Contrariwise, the notion of this study conforms with current norms that renewable
energy penetration levels in DCIMG are rising in the foreseeable future. This will lead
to higher periods of excess power mismatch that BEMS are not equipped to handle eco-
nomically. Therefore, investing in more BESSs is not cost-effective as demonstrated by this
CBA. Inversely, taking the DLEMS implementation for the 118-bus systems as an example,
significant savings are achieved against the BEMS implementation. This is translated to
huge saving of USD 1,812,452.0 and USD 1,896,212.69 for not using the Li-ion and Ni-Cd
storage options, respectively. Furthermore, as mentioned previously, renewable energy
is expected to increase drastically, leading to further reductions in electric boilers over all
costs. Contrariwise, excess renewable power at off-peak hours will lead to more curtailment
of renewable energy, higher costs of storage solutions, and loss of renewable transmission
links. Therefore, an investment in DLEMS as a power management solution instead of
BEMS is a more cost-effective venture.



Energies 2023, 16, 4257 26 of 30

5. Conclusions

In this article, the uncertainty surrounding demand forecast and renewable generation
within the DL allocation problem to regulate V− f in highly penetrated DCIMG was
investigated. A scenario-based stochastic modeling of uncertainty was used to model load
forecast errors and wind generation. An RWM tool was used with higher accuracy to
generate 10,000 scenarios by segmenting the load and wind PDFs into 15 and 30 probability
levels, respectively. The optimal DL location and size as well as optimal DG droops
were determined as a many-objectives problem to account for expected TMC, MVE, |∆ f |,
and TEL. This was achieved using a state-of-the-art metaheuristic technique, MIDACO,
combined with a robust and efficient load-flow method called GBFS. The optimization
problem was applied on the IEEE 69-bus and 118-bus systems for validation. Moreover,
a massive parallelization framework using the fine-grained parallelization strategy of
MIDACO was utilized to handle the stochastic many-objectives problem. The proposed
method has shown huge advancements in uncertainty handling via reduced calculation
burden for probabilistic-based methods. Results have demonstrated the advantage of DL
allocation as an off-peak power management solution for large power mismatch when
considering uncertainty. Moreover, the efficacy of the proposed method was compared
with different evolutionary and swarm intelligence techniques. Likewise, the obtained
results by the proposed method showed better accuracy and significant speed advantage in
calculation times. Moreover, the results provided by the CBA have provided a competitive
economic advantage for DLEMS over BEMS as an off-peak power management solution.
Future work could be extended to address a different mix of renewable and non-renewable
generation, multiple dump load allocations at multiple different buses, hybrid power
management systems using BESS and DL to handle power variation at peak and off-peak
hours, respectively, and the modeling of other uncertainty factors such as loss of generation
and inverter failure.
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Appendix A

Table A1. List of Acronyms.

Acronym Definition Acronym Definition

ACO Ant Colony Optimization MIDACO Mixed-Integer Distributed Ant
Colony Optimization

ACOmi Mixed-Integer Ant Colony Optimization MINLP Mixed-Integer Nonlinear Programming
BEMS Battery-based Energy Management System MOGA Multi-Objective Genetic Algorithm
BESS Battery Energy Storage System MOPSO Multi-Objective Particle Swarm Optimization
BFS Backward/Forward Sweep MPPT Maximum Power Point Tracking
CBA Cost Benefit Analysis MOGA Multi-Objective Genetic Algorithm
DCIMG Droop Controlled Islanded Microgrid MOPSO Multi-Objective Particle Swarm Optimization
DG Distributed Generation MVE Maximum Voltage Error
DL Dump Load NGT Natural Gas Turbine
DLEMS Dump-Load-based Energy Management System Ni-Cd Nickel-Cadmium
EMS Energy Management System NSGA-II Non-Dominated Sorting Genetic Algorithm
ELC Electronic Load Controller OPM Oracle Penalty Method
ESS Energy Storage System PDF Probability Density Function
GBFS General Backward/Forward Sweep p.u. Per Unit
IBDG Inverter-Based Distributed Generation RES Renewable Energy Resources
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Table A1. Cont.

Acronym Definition Acronym Definition

IMG Islanded Microgrid RWM Roulette Wheel Mechanism
LCOE Levelized Cost of Energy SBFS Special Backward/Forward Sweep
Li-ion Lithium-ion TEL Total Energy Loss
MCS Monte Carlo Simulation TMC Total Microgrid Cost
MG Microgrid VB Virtual Bus
MGCC Microgrid Central Controller WT Wind Turbine

Table A2. List of Symbols and Nomenclatures.

Symbol Definition Symbol Definition

f , f0, fss Operating, reference, and steady state frequency Qc
Average reactive power correction factor in
the system

V− f Voltage and Frequency P− f , Q−V Active power-Frequency, Reactive power-Voltage
Vi , V0 Operational and reference voltage at bus i ∆QGi Reactive power error vector
PGi , PGi0 Generated and reference active power at bus i β A Boolean constant to enable reactive

power correction
QGi ,
QGi0

Generated and reference reactive power at bus i Q′Gi Desired reactive power at bus i

φW(v) Wind speed probability density function Ui , Ni The objective function’s utopia and nadir values
ks, cs Weibull distribution shape factor and scale index wj

i
Matrix of weights for each sub-problem

v Wind speed dji (x), Dj(x) Solution x weighted and average distance
µW , σW Average and standard deviation for wind speed Bj(x) The balance function
Wst Wind speed state Tj(x) The target function
Λ(Wst) Probability of occurrence for a wind speed state ζ1, ζ2 Dynamic damping factors for GBFS
vu

st, vl
st Upper and lower limits for wind speed state x0 GBFS decision variable

vst Mean wind speed during wind state Wst F(x0) GBFS objective function

PWr Rated wind turbine power TMCs
h

Total microgrid cost at scenario s during off-peak
hour h

vco , vci Cut off and cut-in wind speeds for the wind turbine FCs
h, MCs

h, ECs
h, TCs

h
Fuel, maintenance, emissions, and technical costs
at scenario s during off-peak hour h, respectively

vµ Wind site average speed RCs
h, FRCs

h
Reactive and frequency costs at the scenario s
during the off-peak hour h, respectively

vr Rated wind turbine speed Ph,s
Gi , Qh,s

Gi

Active and reactive powers generated by
dispatchable DG unit at the scenario s during the
off-peak hour h

Ps
Li , Qs

Li Load’s active and reactive random powers in scenario s ψ f uel , ψmain, ψemis
Fuel, maintenance, and emissions cost coefficients,
respectively

Ps
Wi Wind turbine’s active random power in scenario s Ψemis Emissions rate by the dispatchable DG

Ωs A set of all random variables in the stochastic problem ηP
Fuel consumption efficiency by the
dispatchable DG

ΛN
s Convolved normalized probability for a scenario s Ψvar Reactive power coefficient of the dispatchable DG

Fi(x) The objective function of the MINLP problem ψ f req Frequency penalty cost coefficient

Fs
i (x) Objective function value during scenario s f h,s

ss
Steady State frequency during scenario s at
off-peak hour h

F̌i(x) The expected value for the objective function Vh,s
in

Voltage at bus i considering scenario s during the
off-peak hour h

PG1, QG1 Virtual bus generated active and reactive powers MVEs
h

Maximum voltage error considering scenario s
during the off-peak hour h

nqi , mpi Voltage and frequency droop coefficients at bus i Ph,s
G1 , Vh,s

1 , Bh,s
1

Active power, voltage, and branch current at the
virtual bus considering scenario s during the
off-peak hour h, respectively

nqT , mpT Equivalent voltage and frequency droop coefficients ∆ f s
h

Frequency deviation considering scenario s during
the off-peak hour h

mnDL Optimum droop settings for dump load allocation th Off-peak time duration at each s scenario
PDL,
QDL

Dump load’s active and reactive powers Ph,s
loss, Qh,s

loss
Active and reactive power losses considering
scenario s during the off-peak hour h, respectively

lk, wk, gk The microgrid total number of loads, wind turbines,
and generating units, respectively. Bh,s

i
Branch current at scenario s during the off-peak
hour h

NV Number of uncertain variables in scenario s NR Number of reduced scenarios in the stochastic
problem

N All system buses set RCs
h, FRCs

h
Reactive and frequency costs at the scenario s
during the off-peak hour h, respectively

GK
Dispatchable DG buses of the microgrid as a subset
of N x1 Dump load problem decision variable

Ploss,
Qloss

Total microgrid’s active and reactive power losses F̌i(x1) Dump load expected objective function

∆V1, ∆ f The virtual bus’s voltage and frequency deviations g
h,s
i (x1)

Dump load constraint handling function at
scenario s during the off-peak hour h

εTh Tolerance threshold value for convergence criteria HCe
hw, HCg

hw
Water heating costs using dump load and battery
energy management systems, respectively

c Load-flow method iteration counter SCBESS Battery storage costs
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Table A2. Cont.

Symbol Definition Symbol Definition

Si , Ii Apparent power and current inject at bus i HCtot
hw Total yearly hot water costs

Bi Branch current flowing from bus i to bus i + 1 Vtot
hw Total yearly volume of hot water

Bi_max Maximum limit for branch current Bi Pele
hw , Pgas

hw
Power required for electric and gas
boilers, respectively

Zi , Ri , Xi Impedance, resistance, and reactance seen by Bi ψeleR
LCOE, ψeleN

LCOE
Levelized cost of energy for renewable and
non-renewable sourced electric boilers

Vin New voltage value for bus i after forward sweep ψ
gas
LCOE Levelized cost of energy for gas boilers

V′in The damped system voltage vector ψLi
LCOE, ψNi

LCOE
Levelized cost of energy for Li-ion and Ni-Cd
batteries, respectively

fc, fc+1 Frequency at iterations c and c + 1, respectively Tin, Tst
Inlet and set-point temperature for water
heating boiler

V1c,
V1c+1

Voltage at iterations c and c + 1, respectively Cw, ρw Specific heat and density for water, respectively.

γi Reactive power correction vector ηele
hw, η

gas
hw Efficiency of electric and gas boilers, respectively
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