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Abstract: Data collection and large-scale urban audits are challenging and can be time consuming
processes. Geographic information systems can extract and combine relevant data that can be used as
input to calculation tools that provide results and quantify indicators with sufficient spatial analysis
to facilitate the local decision-making process for building renovations and sustainability assessment.
This work presents an open-access tool that offers an automated process that can be used to audit an
urban area in order to extract relevant information about the characteristics of the built environment,
analyze the building characteristics to evaluate energy performance, assess the potential for the
installation of photovoltaics on available building rooftops, and quantify ground permeability. A
case study is also presented to demonstrate data collection and processing for an urban city block,
and the relevant results are elaborated upon. The method is easily replicable and is based on open
data and non-commercial tools.

Keywords: GIS; audits; built environment; cities; sustainability; energy performance; buildings;
rooftop space; ground permeability

1. Introduction

The rapid migration of people in urban environments is reflected by the notable
growth of cities throughout the world, and this growth presents a great challenge. In the
European Union, the degree of urbanization, i.e., the share of the population living in cities
(density of at least 1500 inhabitants/km2 and a minimum of 50,000 inhabitants) is about
42%, reaching as high as 90% in Malta and 56% in The Netherlands, and as low as 16%
in Luxembourg [1]. A city includes a single urban center with a high population density,
which may be split by a wide river (e.g., Budapest) or cover two or more distinct cities
that have expanded towards each other, but are functionally independent (e.g., greater
metropolitan Athens), with at least 50,000 inhabitants each [2].

The urban areas (i.e., cities, towns and suburbs) of the EU are home of about 73% of the
population, while they occupy only 4% of the territory [3]. On an annual basis, European
cities use about 6 to 48 MWh per capita, and contribute to greenhouse gas (GHG) emissions
with 2.5 to 16.4 tons of carbon dioxide equivalent (tCO2-eq) per capita [4]. To set an example,
the EU has initiated an ambitious plan to introduce 100 climate-neutral and smart cities
by 2030 [3]. The cities will implement specific solutions targeting multiple sectors (e.g.,
green energy, construction and operation of near-zero or energy-positive buildings, and
urban transport) and create synergies between citizens, local authorities, private sector and
investors, so that all European cities be climate-neutral and smart cities by 2050.

The buildings sector used 391.1 million tons of oil equivalent (Mtoe) in 2021 (Figure 1),
or 41.6% of the total final energy consumption in the EU-27 [5]. Following the COVID-19
pandemic and the resulting drop in final energy use of 8% that was recorded in 2020, energy
consumption rebounded by 6% in 2021 and exceeded the 2020 trajectory lines towards
the 2030 target (Figure 1). Among all types of buildings, the residential sector consumes
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about double the energy used by services, due to the relatively higher number of residential
buildings and their floor space. As a result, the residential sector is at center stage within
EU policies for improving energy efficiency and curbing energy consumption. Similar
challenges are also faced in other parts of the world. According to the world energy balances
of the international energy agency (www.iea.org), the energy use in buildings reached
2872Mtoe in 2020, which represents 30% of the world total final energy consumption,
averaging 369Mtoe or 62% in Africa, 465Mtoe or 32% in the United States of America, and
453Mtoe or 21% in the People’s Republic of China.
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The preliminary projection of the total EU-27 GHG emissions in 2021 is 3524 million
tons of carbon dioxide equivalent (MtCO2-eq), representing a rebound of about 5% from
2020, a year that reported a notable drop as a result of the economy slowing down during
the COVID-19 pandemic [6]. The contributions of energy-related emissions from the
buildings sector are also significant. Specifically, direct emissions from onsite combustion
in buildings reached about 534 MtCO2-eq, or 15.2% of the total EU-27 emissions in 2021 [6],
while the allocated indirect emissions from power generation to the buildings sector are
estimated at about 509.4 MtCO2-eq, or 14.5% of the total.

The current trends of energy use and emissions reveal a challenging reality for coun-
tries that wish to comply with EU efforts to achieve climate neutrality by 2050 [7]. Moving
forward, the EU has set three intermediate key targets for 2030 that currently stand to
produce a 55% net GHG reduction in emissions from the levels of 1990 [8], at least a 40%
share of renewables, and at least a 36% improvement in energy efficiency compared with
the 2007 baseline projections of a ‘business as usual’ scenario for 2030 [9].

Accordingly, all EU-27 Member States have developed National Energy and Climate
Plans (NECP) for this decade (2021–2030) that detail long-term strategies and mandate
major renovations of buildings, with the aim of a decarbonized building stock to be attained
by 2050 [10]. The work is evolving from a focus on nearly zero-energy buildings (nZEB) that
have constituted new buildings in Europe since January 2021 [11] to zero-emission buildings
(ZEB), as of 2030 [12], in order to meet the longer-term climate neutrality goal. Similar
efforts are also being scaled up from buildings to zero-energy districts [13], alongside other
bottom-up initiatives [14].

1.1. Building Stock Modelling

Within this framework, there is a need to handle a very large number of buildings in
an urban environment, a region, or even a whole nation, in order to assess the effectiveness
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of different renovation measurements and quantify energy savings and the abatement of
carbon emissions. This type of work is usually facilitated by building stock models (BSM)
to support the decision-making process [15]. BSMs are used to quantify emissions from the
operation of a large stock of buildings, model their future evolution, and assess different
renovation measures for the reduction of energy use and the abatement of GHG emissions.
Among the available approaches, bottom-up BSMs utilize building typologies to handle the
diversity of the thousands (or even millions) of existing buildings. The building typologies
represent groups of buildings with the same use (e.g., residential, offices, or commercial
buildings) and vintage that relate to typical envelope constructions, according to the energy
codes and typical technical installations applicable at the time. One European typology
that stands out and has been recognized for its applicability is TABULA, which has been
developed for 20 EU Member States [16] and successfully implemented to calculate the
potential savings resulting from energy efficiency measures, and to prioritize policies. For
example, in Germany, the TABULA database was used to relate the building’s age to the
quantity of heating energy savings resulting from the renovation of residential buildings;
these savings reached 8.6%, compared to only 3.9% when using the limited municipality
data [17]. In Greece [15], using the Hellenic TABULA typology, it was estimated that the
national final energy targets for heating energy use and related emissions will be met
by reaching a 40% share of total energy from solar, along with a 3.6% annual renovation
rate of the building envelope, and a 1.1% system modernization. In The Netherlands [18],
despite the significant number of energy improvements that have been realized, 28.0%
of the dwellings achieved a slightly better energy label category, while only 3.5% had a
major renovation that resulted in an improvement in their energy label by at least three
categories. Finally, in Italy [19], the analysis revealed that renovating the building envelope
and upgrading heat production units can produce an average of 65% energy savings, which
are usually most cost-effective in old and small buildings (e.g., pre-1945 construction period
houses) and in cold climate zones.

The common inputs to bottom-up BSMs include the number of buildings, the size
from the building’s footprint, and the number of floors (which is also related to the building
type, such as a single-family house (SFH) or a multi-family house (MFH), for example, a
multi-story apartment building). This information is usually derived from the census or
from statistical data, which are then matched to the different building types with specific
construction and system characteristics [15]. However, these data are usually updated
every decade, are cumbersome to analyze, and usually are not available with a sufficient
spatial analysis suitable for local planning.

In addition, there is growing interest in the installation of solar systems on building
rooftops, including thermal collectors and photovoltaics (PV), which are common energy
conservation measures in NECP. However, the potential electricity produced by the PV will
depend on the total panel area that can be installed on the buildings’ rooftops. Accordingly,
among the critical parameters for a realistic assessment of potential heat or electricity
produced by solar systems is the available (free) rooftop area (which may be different
from the footprint of existing buildings), the roof orientation and the tilt angle, along with
shading from surrounding buildings and other obstacles [20]. This is another example of
how more detailed information is necessary in order to support more realistic calculations.

Another potential reason for supporting and expediting data identification, along with
the collection and processing of information about the built environment, is the develop-
ment of urban scale sustainability assessment and rating systems [21]. The audit process
for collecting the necessary input data in order to quantify various sustainability criteria
and key performance indicators is usually time-consuming. For example, soil sealing [22]
is one of the key indicators for assessing the environmental impact of urbanization. It refers
to permanent coverage of the ground with impermeable materials such as asphalt and
concrete, compared to the bare soil or vegetation of the natural landscape. It is estimated
that on an annual basis, about 1000 km2 of land in the EU (i.e., an area larger than the city
of Berlin) is taken over for human occupancy, a large percentage of which is eventually
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sealed [22]. Land taking and soil sealing reduce and sometimes practically eliminate the
amount of rain water that the soil can absorb. This has several direct and indirect con-
sequences on the hydrological cycle, the area’s ambient temperature and humidity, and
consequently, on the microclimate, on soil stability as a result of landslide hazards, on the
risk of flooding, and eventually, on fresh water scarcity. The percentage (%) of the weighted
soil surface that is covered with different permeability materials within the total surface of
the area of interest can be used as an indicator to quantify soil permeability.

1.2. Use of Georeferenced Data

Building stock modelling can greatly benefit from an automated process that can
be used to extract up-to-date information about existing buildings, identify a building’s
geometrical characteristics (e.g., building height, footprint), measure the available space
on the rooftop areas, and differentiate the types of ground surface cover and their spatial
distributions. These data can be extracted from images generated by high accuracy aerial
mapping and remote sensing methods, e.g., light detection and ranging (LiDAR) or satellite
images, which are now available to the public for further processing. However, there may
be problems in detecting objects in satellite and aerial images. For example, to detect and
differentiate building heights in urban environments, we must overcome obstacles such
as trees and power lines, which may be located near the buildings in question. Similar
problems can arise when buildings feature different construction materials which may have
different reflective properties [23]. LiDAR data have been used to calculate and visualize
the solar potential of building rooftops, and to develop a 3D city model of Vitoria-Gasteiz,
Spain [24].

Eventually, the survey data can be used to generate digital city models, derive build-
ing footprints and heights, and identify the different types of surfaces within the urban
context. The available information is then stored, analyzed and visualized with geographic
information systems (GIS). Using manual processes to extract information about a build-
ing’s location and shape outlines from optical images is extremely time-consuming and
expensive in large-scale applications; thus, there is a need to automate these processes for
inclusion in GIS [25].

GIS can also be used to facilitate efforts to model energy use and emissions from
a large pool of buildings, and urban building energy modeling [26], by supporting the
geometric characterization of buildings and helping to visualize the spatial distribution of
urban energy use [27]. In this context, polygonal mapping of buildings is commonly used
to extract a building’s footprint from high-resolution images in the form of polygons, and
plays an important role in GIS [28]. The available automatic processes include methods
based on object detection formulas and building vectorization, among others.

Similarly, GIS can expedite efforts to collect the necessary input data, for example,
through quantifying the open and green areas, or through identifying the different types
of materials to then estimate the environmental impacts of soil permeability [29]. Finally,
GIS-supported tools can map different types of information that can facilitate spatial
analysis for urban planners, and can effectively communicate a wealth of information to
decision-makers and other experts.

For example, a case study aiming to exploit GIS using open-source information for
building stock was implemented for a neighborhood in Bologna, Italy [30]. The work
mapped the current energy performance of buildings and identified their renovation
potential. The maps developed from the GIS tool provided an estimate of the energy
use and analysis of both residential and non-residential buildings’ performance. As a
result, the system can help public administrators to develop targeted energy policies
according to the different energy diagnoses of the building stock. In an another effort,
simple GIS files were used to automatically generate urban building geometries that were
then coupled with typical energy use intensities for single- and multi-family houses and
retail buildings to simulate and visualize the energy performance of buildings in Evanston,
IL, USA [31]. A geo-referenced BSM was used to collect, manage and analyze spatial data
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in Trondheim, Norway [32]. The GIS model utilized cadastral maps with all the necessary
data on building types (i.e., three types of residential building and eight types of service
building), the year of construction, and the floor area of the buildings. The work analyzed
various scenarios for energy upgrades of existing buildings, new construction of energy-
efficient buildings, various heating technologies, and energy carriers in order to assess
energy savings and GHG emissions from the present day until 2050. The findings were
integrated in GIS-generated maps to help local planners visualize the results and support
policy decisions by identifying urban areas of interest and the future expansion potential of
the built environment and its impacts on power capacity, the extension of district heating,
local energy production, etc. A geospatial database was created by linking a GIS database
of building footprints with the TABULA building archetypes and their attributes for a
study in Dublin, Ireland [33]. The study exploited data from images in Google Street View,
used census data to link with the construction period, and was complemented with some
field work. The result of the process was the development of a digital ‘twin’ used to model
spatiotemporal energy flows.

GIS has also been used to facilitate the investigation of the degree of urbanization
classification in a geospatial context [34]. In addition to the available tools, global interactive
maps are accessible online for the presentation of the urban center’s database, with a
1 × 1 km resolution, differentiating among an urban center, urban cluster and rural grid
cells [35].

1.3. Aim of This Work

The overall aim of this work is to exploit free public datasets in order to retrieve more
accurate and updated data as the input to a BSM (which is suitable for urban scale spatial
analysis) that are complemented, where necessary, with in situ and statistical data from
other publicly available statistical, cadaster and socio-economic data. Initiating the effort,
this paper presents an automated procedure that was developed for extracting relevant
information about the building’s characteristics and other features of urban environment
from open data, using non-commercial tools provided by GIS. Energy performance indi-
cators and the potential energy savings from the use of PVs on rooftops were calculated.
The procedure was written using a common programming language and implemented as
an external code in a free and open-source geographic information system platform. As
a case study, the workflow and tools were demonstrated on a city block to identify and
size the building’s structures, the free rooftop area for the installation of PV, and the area’s
ground coverage. The data were then used to characterize and visualize the energy class of
the buildings before and after the installation of PVs on the rooftops, along with the area’s
ground permeability factor.

2. Methods

This work developed and tested an automated procedure that exploits GIS to facilitate
the data collection and analysis of information on the built environment in large urban
areas, solely using open-source data. Large-scale urban modeling can be very demanding
in terms of time, data, software and the accuracy of results [36]. Different modeling details
depend on the input parameters, specifically on the data availability and the accuracy of
any simplifying assumptions incorporated into the model.

The procedure was implemented as a code in Python programming language (Supple-
mentary Material), and computed to run on the open-source QGIS python platform [37].
The zonal statistics process used in this procedure already exists and is supported by the
QGIS application programming interface (API). Among other languages, Python is easier
to use, having logical syntax and easy access to well-known libraries such as Google Maps,
making it a very popular language in the GIS community [38].

Each of the processes can be used from third party programs using the Python API
that runs in QGIS. This work used the QGIS software version 3.16, which was the most
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stable according to QGIS.org; meanwhile, this work was also test-run with the 3.22 version,
which was the newest version at the time that the work was completed.

The code was first used to process the information collected from various data sources,
and second to derive some new information. For validation, the code and the various inter-
mediate steps and processes were applied to a city block of a municipality in the northern
Athens metropolitan area (see Section 3). Dealing with a relatively small urban area, it was
possible to validate the results against visual observations and onsite measurements, and if
needed, tweak the implemented rules, criteria and other processes to improve accuracy.

The overall approach identifies the specific buildings in the investigated area, auto-
matically extracts data on the available rooftop areas for the installation of PV, relates the
building characteristics to the energy performance of specific building types, and estimates
the resulting energy savings and the abatement of emissions. Another case study was
performed on the general urban environment to automatically process and extract relevant
data for calculating soil permeability, which is a commonly used sustainability indicator.

Figure 2 presents a flow chart that illustrates the main stages of the overall method.
The necessary input data, along with the main calculation steps and analysis, are elaborated
in the following sections. Finally, all the main results (e.g., building height, number of
floors, type of roof, available rooftop areas, electricity produced by PVs, soil permeability
factor) are stored in a specific output file.
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2.1. Data Sources

The data collected about the built environment targets the definition of the buildings’
architectural characteristics (e.g., number of floors, rooftop available areas) along with
relevant information on the open spaces in the urban area of interest. As shown in Figure 2,
the overall method is divided into ten processes. Each one requires a specific input that
can be obtained from various open-source data sources that are outlined next. As already
mentioned, a fundamental criterion for identifying and using potential data sources in
this work is the requirement that the main information is derived from open data sources.
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This minimizes any complementary data that will have to be provided from competent
companies for the case study in Greece.

The geodata are used to extract a variety of information such as the buildings’ poly-
gons, roads, etc. The procedure (Figure 2) starts with the definitions of the polygons that
outline the footprints of the buildings. The basic information is extracted from a platform
that provides open-source data for about almost every country in the world [39], and
depicts the digitized area of each building.

2.1.1. Building Height and Floors

The main information for deriving the specific geometrical characteristics of all the
buildings in the investigated area (step #1 in Figure 2) is retrieved from a DTM (digital
terrain model) and a DSM (digital surface model) that capture both the features of the
natural and the built environment [40]. The DSM contains remotely sensed elevation data,
with both bare-earth and above-ground information such as vegetation cover. The DTM
contains only ground-level information data. Accordingly, the height of the buildings is
calculated by subtracting the height of the terrain (DTM) from the surface height (DSM).

Since the DTM and DSM files do not contain any additional long-lasting relevant data
for other processes or stages of this work, an automated procedure was first developed
(Supplementary Material) and used to determine the building height data. This information
is then stored in the final output file (a shapefile identified as (*5) in Figure 2) that is the
data depository of all the results of this work.

The number of floors for each building is derived by assuming that the typical floor
height is 3 m. The total floor surface of each building is calculated by multiplying the
number of floors with the building’s footprint area, which was initially derived from the
building polygons. In addition, the number of floors is relevant input data for defining the
building type (e.g., SFH or MFH), which is then related to the total building’s floor area,
energy consumption, etc.

2.1.2. Building Types

The process identifies the building types in terms of characterizing each building as a
“standalone” structure, if all the facades are exposed, or as part of terraced buildings, which
represent a “continuous” construction. The only input data needed for this process are the
buildings’ polygons. A buffer zone of 50 cm is created around the outline of each building.
An intersection of the outlines from the buffered buildings will identify the standalone or
terraced buildings. The 0.5 m distance was empirically defined after examining different
cases of dense urban environments, and this distance may need to be adapted for other
applications. The results of the process were successfully checked for their accuracy when
characterizing buildings by using the Google Street View application [41].

2.1.3. Rooftop Type

This process focuses on building roofs in order to identify the type of roof (e.g., flat
or tilted) and the available rooftop area for the potential installation of solar systems. The
analysis is based on the identification of the rooftop surface colors, utilizing the buildings’
polygons data as well as high-resolution images (3840 × 2160 pixel analysis) that are
extracted from Google Earth [41]. The identified surface colors are related to specific roof
materials and other surfaces. For example, the free rooftop surfaces are identified by
terracotta and shades of brown Roman roof-tiles for tilted roofs, and by the light gray color
of flat concrete tiles for flat roofs. The color pallet and the colors’ associations with specific
building materials and types of roofs may need to be refined, depending on common
construction practices.

To improve the accuracy of the results from this process, it is necessary to use high
image analysis to properly depict all the details on each building’s roof. However, the
available images from Google Earth do not provide sufficient accuracy, and must be
properly processed.
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Accordingly, the first step is to georeference the available images so that they can be
further processed. In this work, this issue is addressed using the Hellenic Geodetic Refer-
ence System (EGSA87) [42]. In addition, the buildings’ polygons data are also georeferenced
with the EGSA87 system. This is necessary in order to have a common reference system for
processing all the data. This initial process uses the buildings polygons data as background,
and automatically clips all the edges and images outside the buildings’ footprint polygons.
The result is a newly georeferenced image that contains only the information that relates to
the building’s roof surface.

The coordinates of the vertices of each building polygon are calculated using the “ex-
tract vertices” process of the open-source QGIS, and then developed using “add geometry
attributes” [37]. The vertices of every examined building are defined with (x,y) coordinates,
and the minimum and maximum coordinates are identified so as to pinpoint the building’s
location in each direction. This way, it is possible to identify the area of the georeferenced
image that belongs to each building. The boundary coordinates of the image are necessary
for this process. These are the starting coordinates, since the vertex coordinates of each
building will lay between them.

Having identified the area of each building, the process to identify the roof surface
colors for each building is facilitated using the “pillow” external library [43]. This library is
used to identify the pixel colors in Python programming language. Accordingly, the entire
roof is considered as a collection of different pixels. By identifying the surface color on each
pixel and summing up their corresponding areas, it is possible to calculate the total surface
area that corresponds to a given color code. The results of this process are the percentages
of each surface color that is detected on every roof. The color pallet used in this analysis
and their interpretations are as follows:

• Grey (light and dark coloration) and grayish white, which refer to concrete tiles on
flat roofs;

• Terracotta and shades of brown, which refer to Roman tiles on tilted roofs;
• Green, which refers to roof gardens, plants or other vegetation;
• Black, which refers to shades in the image.

The distinction between light and dark coloration of grey colors was necessary in
order to identify different objects that may be located on each roof and had to be excluded
from the total available area on each rooftop. In addition, the black colored pixels depict
areas that may not be available for the installation of new solar systems. Finally, the data
are used to identify the available space on each rooftop for the installation of solar systems.

The limitation of this approach is that the definition of the building’s area was only
based on the coordinates of the vertices. As a result, some rooftop pixels may be outside
the actual building polygon; thus, in some cases, the identified area may also contain infor-
mation outside the perimeter of the building roof. To address this problem, a normalization
process was developed in order to adapt the estimated rooftop area. In this context, the
percent of the area that corresponds to each surface color is divided by the sum of the
combined percentages for all four rooftop surface colors (i.e., brown, grey, green and black).
The normalized results are stored in the final output file (the shapefile identified as (*5) in
Figure 2), which is the data depository of all the results from this work.

2.1.4. Roof Orientation

The orientation of the tilted roofs is important when considering the performance of
solar systems that may be installed on the roofs, since it will impact the intensity of the
incident solar radiation. The brown color that corresponds to Roman roof tiles identifies
pitched roofs and differentiates them from flat roofs. However, it is possible to encounter
other colors, for example, different shades of terracotta or burgundy, and even to identify
some other objects and obstacles that are brown-colored within the available roof images.
To handle this issue, the rule was that the specific surface color must be the dominant one,
i.e., it must exceed 60% of the total roof surface, which corresponds to a pitched roof. The
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simplifying assumption is that the design is always a gable roof, with two sloped sections
on opposite sides of the roof ridge, which represents the most popular style of tilted roof.

The orientation of the tilted roof is determined based on the coordinates of the vertices
of the building’s polygons to calculate the azimuth angle (grad) [42] between the long
axis of the building roof and the north direction. The results range from 0 to 400 grad. If
the azimuth angle lies in the range of 0–75, 125–275 and 325–400 grad, then the roof is
characterized as a “double-pitched roof”, which implies that solar systems can be installed
on “both sides” of the roof. Otherwise, the tilted roof is a “single-pitched roof”, which
is referred to as “one side”. Assuming that all titled roofs have a common inclination of
20 degrees according to local urban planning and building regulations, it is possible to
calculate the actual tilted roof area using the rooftop footprint. Although the tilt angle
will depend on the building design and architecture, small deviations are not essential for
this type of work. However, depending on the geographic region, it may be necessary to
account for a steeper slope of up to 40 degrees in areas with significant snowfall, such as
northern parts of Greece.

Buildings with a flat roof are not part of this process. It is evident that in this case, the
orientation of solar systems can be optimized on a flat roof. Accordingly, the characteriza-
tion of flat roof buildings is included in the final output file (the shapefile identified as (*5)
in Figure 2).

2.1.5. Roof Area

The building’s rooftop area is calculated for two categories (step #7 in Figure 2). The
first one refers to flat roof buildings, for which it is possible to use the “add geometry
attributes” process that determines the areas in view. This information is then used to
derive the corresponding segment that is occupied by a specific roof surface color (from
Section 2.1.3) on every building.

The second category corresponds to buildings with a pitched roof. Assuming a tilt
angle of 20 degrees for the gable roofs, which is a common feature of roof architecture, the
tilted surface hypotenuse on each side of the roof is calculated as a function of the footprint
multiplied by the cosine of the tilt angle. The results of the rooftop area for each building
are also stored in the final output file (the shapefile identified as (*5) in Figure 2).

2.1.6. Energy Use and Carbon Emissions

Adapting the concept of the European TABULA building typologies to this type of
work, it is possible to handle the complexities of a building stock and make a first estimate
of their energy and carbon performance. Accordingly, the building types are classified
based on their size (e.g., SFH for buildings with up to two floors, and MFH for buildings
with more than two floors) and vintage (e.g., construction period), which relates to the
different construction practices (e.g., the use of thermal insulation in building codes, and the
energy performance of the building’s technical installations) [44]. For example, according
to the Hellenic energy codes, the first construction period of pre-1980 refers to buildings
with no thermal insulation (e.g., Uwall about 1.9 W/m2·K), the 1981–2010 period refers
to the time at which buildings were constructed according to the first thermal insulation
regulation (e.g., Uwall at 0.7 W/m2·K), the 2011–2017 period refers to the time at which
that buildings were constructed according to new energy efficiency regulations of buildings
(e.g., Uwall from 0.4 to 0.6 W/m2·K, according to the four national climate zones), and the
post-2018 time period refers to the latest and more strict energy efficiency codes for new
buildings (e.g., Uwall from 0.35 to 0.55 W/m2·K for the four national climate zones).

The classification of the studied buildings into different categories allowed the use of
relevant information from the corresponding classes of the Hellenic TABULA typology [44],
associating energy use intensities (EUIs) and carbon emission intensities (CEIs) with each
building. Typical buildings reflect the architectural trends of their age band, with construc-
tion and system characteristics calculated as weighted averages of the corresponding data
for the existing building stock.



Energies 2023, 16, 4309 10 of 26

Ideally, the actual energy use of the buildings may also be retrieved from the utilities
for electricity, natural gas and district heating, although some restrictions apply due to the
limitations on the use of personal data and privacy laws. On the other hand, the delivery of
bulk fuels such as heating oil or biomass from different suppliers may be more challenging
to monitor and keep track of. For example, in Greece, where the use of heating oil remains
popular in areas without access to natural gas, this habit would mandate direct contact
and collaboration with the building owner/manager/occupant in order to collect this
data, provided that invoices are available and accessible. In any event, considering the
constraints of data availability and time restrictions, a detailed analysis of the buildings’
energy performance was not within the scope of this work; in any event, it would be
challenging for large building stocks.

Alternatively, the actual energy consumption of individual buildings may come from
energy performance certificates (EPC) and adapt the calculated values for realistic estimates
of actual energy consumption [45]. In some cases, it may also be possible to use EPC data
on actual thermal and electrical energy consumption, if available, since this information
is included on a voluntary basis. In some cases, it may be possible to directly access the
actual energy consumption data from the national registry for a city or a region, provided
that this information is linked to unique building code identifiers.

This type of information can facilitate the process of identifying the energy classes of
the existing building stock, and identifying hotspots in the parts of a city or the neighbor-
hoods that are dominated by high-energy-consuming buildings. On the other hand, this
process would not be straightforward, because one would need to first relate every physical
building in the investigated areas to the corresponding EPCs, if available. This matching
process can also be challenging, since the information contained in publicly available EPCs
does not reveal personal data and unique building identification data.

Usually, the building EUIs can be based on national averages of actual energy use, they
can be retrieved as an average value from a European database [46], or they can be associ-
ated with archetypal buildings from the European TABULA typology, which is available
for 20 EU Member States [16], one example being the Hellenic TABULA typology [44].

In this work, the EUIs and CEIs of the typical Hellenic buildings are the result of
normative calculations adapted using a derived set of empirical factors as multipliers
for correcting the calculated values to obtain more realistic estimates of actual energy
use [45]. Next, specific energy consumption is calculated by multiplying the average EUI
and CEIs with the corresponding floor area of each building in order to calculate the final
energy consumption (total and electrical) as well as the CO2 emissions of the area in its
present state.

In Greece, normative calculations for residential buildings only account for space
heating, cooling and domestic hot water (DHW), according to the national regulation on
the energy performance of buildings in Greece [47]. For energy labeling, end-uses such as
lighting (only considered for non-residential buildings), cooking, white appliances, and
other plug loads are not taken into account. With regard to actual energy consumption, the
use of electricity for space heating represents 3.0% of the total electricity use in Hellenic
households, while 4.9% is used for cooling, and 9.4% for DHW [48]. Thus, only 17.3% of
the total electrical EUI of buildings is considered within the national calculation method.
Accordingly, the total electricity consumption from the normative calculations should be
adapted by 17.3% in order to include all the different energy uses in the estimated EUIs
from the normative calculations. Depending on the calculation approach, this step of the
method may not be necessary if the calculations include all end-uses.

An energy performance rating is assigned to each building in the investigated area.
According to the national energy performance regulation [47], the scale extends from the
lowest energy class, G (low-performance buildings), to the highest energy class, A+ (high-
performance buildings). The average electrical EUI of residential buildings is estimated and
then transformed into primary energy using the appropriate national primary energy factor.
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In this work, the national conversion factor of 2.9 is used for multiplying the electricity
consumption, according to the national regulation [47].

The final step in the process is the calculation of the carbon dioxide emissions from the
use of electricity. In this work, the national conversion factor of 0.989 kgCO2/kWh for elec-
tricity is used for calculating the carbon emissions, according to the national regulation [47].

2.1.7. Rooftop-Mounted PV

A popular renovation measure for improving the energy performance of existing
buildings and GHG mitigation is the installation of PV on building rooftops. An added
value of this work is that we realistically assess the free rooftop area of each building, which
enables a more realistic calculation of the total power capacity that can be installed on
each building.

The general approach to sizing the installation will utilize information about the free
rooftop area of each building (Section 2.1.5) in order to install the PV panels, optimize
the PV orientation on flat roofs and account for the tilt and azimuth angle of pitched
roofs, and calculate the generated electricity for the selected type of PV panels using an
appropriate tool [49]. In this work, the PV sizing and electricity production follows a
simplified approach which is exemplified during the case study (see Section 3).

Finally, the electricity produced from the rooftop PVs on each building is used to
determine the new energy class of each renovated building. All the results of this process
are collected and stored in a final output file. This completes the development of the
relevant building data and the energy performance assessment of the buildings.

2.1.8. Soil Permeability

This part of the procedure is intended to facilitate efforts in the direction of sustain-
ability assessment. This step is related to the color identification of the ground surface in a
city block. The objective is to facilitate and expedite the process of identifying open green
and soil-covered areas, in contrast to the areas covered and sealed by hard surfaces, such as
buildings, paved roads, sidewalks, etc.

The same color identification procedure as the one used for buildings is followed here.
Again, the city block undergoes a pre-processing procedure in order to qualify for use
under the stipulations of the code. First, the city block is retrieved from the official platform
of the Hellenic national urban planning services; then, it is georeferenced using the QGIS
platform. The process starts with the identification of the city block area and continues with
the color identification process. Both of these steps are performed in the same way as in the
color identification process. The only difference is that this time, the image coordinates are
not necessary, since these are defined by a single polygon. The results of this process are
stored in the city block final output file.

The available information is used to calculate a sustainability indicator of the city
block that relates to the condition of the ground. Urbanization is usually related to soil
sealing with impermeable materials for expanding the built environment, road networks,
and other infrastructures. This poses a great risk to biodiversity, increases the risks of floods
and water scarcity, and contributes to global warming. This indicator may be of practical
importance to decision-makers, in order that they develop strategies and assess solutions
in pursuit of sustainable communities [21].

The calculation of soil permeability requires the type of areas that compose the urban
environment as input data. Specifically, the indicator is defined as a ratio of the sum of the
different type of surface areas multiplied by their corresponding permeability coefficient
(e.g., 1 for grass, 1 for soil, 0 for concrete) to the total area of the city block.

3. Validation Case Study

Validation of the method and tool was performed using a city block of a residential
area in northern metropolitan Athens as a case study. Figure 3 illustrates a high-resolution
image of the area, which is used to facilitate the object definition and the color identification
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process of the buildings and the surrounding area. As a point of caution, the structure
highlighted with the yellow outline in Figure 3 is missing from the DTM and the DSM
models. In addition, the buildings’ polygons shapefile did not include the outline of this
building. Apparently, this is a rather new construction, and as a result, there were no height
data available in the input data files. Consequently, this building was also excluded from
the following process.
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Figure 3. The investigated city block of a residential area with a total of 15 buildings (described in
Table 2).

Table 1 lists the files that were used as the input (*1–4) and output (*5) of the method
(Figure 2) during this validation exercise, and that appear in the code (Supplementary
Material). The results in the *5 file are presented in the output file’s attribute table, which
displays information on specific features of a selected layer, e.g., the buildings’ polygons.
The attribute table is divided into rows and columns. Each row in the table represents a
feature of each building’s characteristics, and each column contains a particular piece of
information about the type of data (e.g., building height, area, etc.) and other features that
each row contains [37]. As far as the city block’s developed data are concerned, the *4 file
was used as the output file.

Table 1. Input (*1, *2, *3) and output (*4, *5) files for the case study.

Code File Name

*1 Municipality_DTM.tif
*2 Municipality_DSM.tif
*3 Building_Polygons.shp
*4 City_Block.shp
*5 Municipality_Building_Stats.shp
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Figure 4 illustrates the derived buildings’ polygons from the available geodata [39] as
a layer over the corresponding high-resolution image. As shown, the polygons realistically
match the footprint of the buildings, and give us confidence that the process can recreate the
building’s dimensions and locations. Also included are two captions for the visualization
of the inputs for the mean heights from DTM and the maximum heights from DSM.

Energies 2023, 16, x FOR PEER REVIEW 13 of 27 
 

 

Material). The results in the *5 file are presented in the output file’s attribute table, which 
displays information on specific features of a selected layer, e.g., the buildings’ polygons. 
The attribute table is divided into rows and columns. Each row in the table represents a 
feature of each building’s characteristics, and each column contains a particular piece of 
information about the type of data (e.g., building height, area, etc.) and other features that 
each row contains [37]. As far as the city block’s developed data are concerned, the *4 file 
was used as the output file. 

Table 1. Input (*1, *2, *3) and output (*4, *5) files for the case study. 

Code File Name 
*1 Municipality_DTM.tif 
*2 Municipality_DSM.tif 
*3 Building_Polygons.shp 
*4 City_Block.shp 
*5 Municipality_Building_Stats.shp 

Figure 4 illustrates the derived buildings’ polygons from the available geodata [39] 
as a layer over the corresponding high-resolution image. As shown, the polygons realisti-
cally match the footprint of the buildings, and give us confidence that the process can 
recreate the building’s dimensions and locations. Also included are two captions for the 
visualization of the inputs for the mean heights from DTM and the maximum heights 
from DSM. 

   
(a) (b) (c) 

Figure 4. (a) The automatically generated layer of buildings’ polygons (yellow areas) over a high-
resolution image of the investigated city block. (b) Mean heights from DTM in meters. (c) Maximum 
heights from DSM in meters. 

The data for the city block were obtained from the online platform of the national 
urban planning services (e-Poleodomia) in Greece [50]. The data were only available in 
portable document format (pdf) files, and had to be digitized using the QGIS platform. 
This information is necessary for developing a process that can identify and extract data 
about the city block with regard to the green and soil-covered areas. 

In order to overcome missing information and simplify the calculation process for 
this case study, some assumptions were made during this stage of the work. All the build-
ings in this city block are considered to have an exclusive residential use, which is actually 
realistic, considering that this is a residential area. 

The concept of building typologies is used in this work to handle the complexities of 
individual buildings in a large building stock, and to make a first estimate of their energy 

Figure 4. (a) The automatically generated layer of buildings’ polygons (yellow areas) over a high-
resolution image of the investigated city block. (b) Mean heights from DTM in meters. (c) Maximum
heights from DSM in meters.

The data for the city block were obtained from the online platform of the national
urban planning services (e-Poleodomia) in Greece [50]. The data were only available in
portable document format (pdf) files, and had to be digitized using the QGIS platform.
This information is necessary for developing a process that can identify and extract data
about the city block with regard to the green and soil-covered areas.

In order to overcome missing information and simplify the calculation process for this
case study, some assumptions were made during this stage of the work. All the buildings in
this city block are considered to have an exclusive residential use, which is actually realistic,
considering that this is a residential area.

The concept of building typologies is used in this work to handle the complexities of
individual buildings in a large building stock, and to make a first estimate of their energy
performance. In this context, the classification scheme of the Hellenic building typology
is defined as a function of the building size (i.e., single-family houses, SFH, for low-rise
buildings with one or two floors, and multifamily houses, MFH); building age, with a
classification based on the year of building construction (which relates to the minimum
code requirement on envelope thermal protection); and building location, which relates
to the prevailing weather conditions for the different climate zones [15]. In this work, the
year of construction (age) of the buildings was estimated by analyzing the façade of the
buildings using the Google Street View application [41].

Each building is assigned an energy performance rating according to the prevailing
energy classes derived from analyzing the EPCs of residential buildings for different
construction periods [51]. Considering that these data are representative national data
for residential buildings in Greece, they were attributed to the buildings of the case study
according to their construction period. For example, the predominant energy class for
the pre-1980 construction period (no thermal insulation) is energy class G. The second
construction period (1981–2010) is dominated by buildings partly insulated according to the
first national regulation, and these are characterized by an energy class D. The third period
(2011–2017) corresponds to an era of energy efficiency regulation of buildings, for which
the most popular energy class is C [51]. In the post-2018 construction period, according
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to the latest and more strict energy codes, the ranking is set at energy class B for all new
buildings, and also for every existing building that undergoes a major renovation.

Regarding the architectural building features, the typical floor height is taken to be
3 m. The calculated number of floors was validated through visual inspection of the actual
buildings. Accordingly, it was confirmed that the process can accurately estimate the
number of floors for 8 out of the total 14 buildings. In the other cases, there was a difference
of 1 floor. This is acceptable and comparable with other open-source tools that achieve
an error of 1 floor in building heights, which is sufficient for most city-scale analysis [52].
Furthermore, a closer investigation revealed that the deviations are attributed to cases in
which the ground floor was below street level (for buildings with semi-basements), or to
cases in which the first floor is above the street level (for buildings with pilotis).

Buildings with tilted roofs are considered to have a gable roof. Apparently, this
simplification is not realistic for two of the buildings in this block (i.e., buildings #7 and #13
in Figure 3), which have more complex geometries.

The results of the process for the identification of the rooftop surface colors were
checked for their accuracy using visual inspection of the outputs and the actual images.
Specifically, for the city block considered in this case study, the identification accuracy in a
small area featuring brown, light grey and green colors was 98%, 94% and 95%, for each
color, respectively. The 95% accuracy for the green was observed in areas with limited
vegetation, while in areas with widespread greenery cover and trees, the accuracy dropped
down to 66% due to shading from trees.

Other possible deviations may have occurred as a result of faded surface colors. For
example, the widest disparity between reality and the interpreted colors was noted on a
rooftop application, with a success rate of only 53% for the brown color on a tilted roof, and
of 43% for light grey on a flat roof. Overall, the process provided results with which the
majority of the surface colors and their interpretation according to the type of rooftop were
in agreement with reality.

3.1. Assumptions and Energy Calculations

The exact year of construction for the buildings was not readily available for this case
study. This information is relevant because it is needed in order to classify each building
under one of four different construction periods that relate to different building codes and
the use of thermal insulation in the envelope construction, both of which have a great
impact on a building’s overall energy performance. Accordingly, the vintage along with its
location and end-use (e.g., SFH, MFH) define the building’s typology.

All the buildings considered in this case study were erected during the second con-
struction period from 1981 to 2010. From the Hellenic TABULA typology, the buildings’
total EUI was 196.4 kWh/m2, while the electrical EUI was 137.3 kWh/m2. The operational
CO2 emissions were estimated at 164.5 kgCO2/m2.

The case study considers the installation of PV on building rooftops. As a rule of
thumb, the installation of 1 kWp of PV requires an available area of about 15 m2 on flat
roof buildings (to avoid self-shading between panels) and 10 m2 on gable roofs [53]. Using
the free rooftop area derived in the previous step (Section 2.1.5), the maximum power of
PV systems to be mounted on each rooftop was limited to 10 kWp, without any battery
storage, which is common for residential buildings and used in most national PV support
programs for urban installations. The type of PV modules considered in this study are
crystalline silicon cells, which are the most common in commercial applications. Finally,
the PV annual electricity production is estimated based on the roof type (e.g., flat or tilted
roof) and the location, using an online tool.

The annual electricity production from the installation of 1 kWp in the studied region
was estimated to be 1592 kWh for flat roofs with optimum orientation. In the case of tilted
roofs, the PV panels are placed on the roof structure with an arbitrary orientation that may
deviate from one that is optimal for the performance of PV. The identification process of
the tilted roof orientation considered two categories. If the orientation of the gable roof is
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between 75 and 125 grad, then the building is considered to be “one-side”. In this case,
the PVs are south-facing, with an optimum performance generating 1460 kWh per year,
which was calculated by averaging the electricity produced for the orientation angles of 75,
100, and 125 grad [49]. However, in this case, only “one side” of a gable roof is considered
exposed to sufficient direct solar radiation, and therefore only half of the pitched roof may
be used for the installation of the PV panels. The other side of the titled roof would face
north, meaning it is not exposed to sufficient diffuse solar radiation to justify the installation
of PV panels. The second category refers to a gable roof with such an orientation that “both
sides” are exposed to sufficient solar radiation and can be utilized for the installation of PV
panels. This time, the annual electricity production was calculated by averaging the values
for a set of three orientations, namely, for an azimuth of 0, 50, 75 grad and then for 125, 175
and 200 grad orientation angles, generating a total of 1348 kWh per year [49].

The assumption is that the electricity produced from the PVs is equally distributed
and used for all individual end-uses of a household. Accordingly, only 17.3% of the
annually produced PV electricity is allocated to the end-uses accounted for using the
Hellenic calculation method for the EPC (i.e., DHW, space heating and cooling) and the
energy labeling of buildings. This is an attempt to make more realistic estimates of the
anticipated energy gains and how they may be reflected in the improved energy class of
the renovated buildings. This way, it is possible to calculate the new energy class of the
buildings following the installation of the PV on the available rooftop areas.

Finally, for the calculation of soil permeability, in this work, the surface areas of interest
include the green-covered and soil-covered areas. The main assumption is that all brown-
colored surfaces correspond to soil. However, this may not always be true, since there may
be different kinds of constructions that may be also identified with a brown color, or are
covered with tiles (for example, garages). Finally, the results of this process are stored in
the final output file for the city block.

3.2. Issues and Challenges

The main challenge in the development of this method was the definition of the color
palette to be used for the identification of the different types of surfaces, such as the rooftop
construction and open areas. Each color (brown, light gray, dark gray, green) had to be
carefully classified for identification. The color palette had to be manually cross-checked
multiple times to identify the best-fitted combinations of R-G-B values in order to accurately
process the color read in each pixel. This iterative process at the end provided a well-defined
color palette that can identify the type of surfaces with sufficient accuracy.

Another demanding process was the optimization method. The differences between
each building (e.g., type of roof, number of floors, orientation) made the computation of
the code challenging. For this purpose, the results for each building were checked against
the real structures to identify possible miscalculations and errors as a result of the various
calculation steps. Following iterative processes to learn from possible real life variations
in the built environment, it was possible to improve the identification rules, and using
the various calculation steps, we gained confidence in the accuracy of this method and its
ability to provide an accurate outcome.

4. Results

In Greece, households used about 4.24 Mtoe, and services used about 2.05 Mtoe, which
represent 28.4% and 13.7% of the total final energy, respectively [5]. The annual EUI of
Hellenic residential buildings over the past decade (from 2010 to 2019) averages about
143.8 kWh/m2 [46]. The environmental impacts of Hellenic buildings is also significant,
accounting for 35% of the total carbon emissions in 2021 [6]. In particular, residential
buildings contribute 13.61 MtCO2, or 19.5% of the total direct and indirect emissions, and
non-residential buildings 10.17 MtCO2, or 14.6% of the total.
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4.1. Energy and Emission-Related Outputs

The original buildings’ polygons (*3) shapefiles (Table 1) initially captured the specific
building identification (bld_id) for each structure and the category code number based
the building’s construction period (e.g., category 2 for the second construction period
of 1981–2010. Currently, it is not possible to automate this process in Greece, since this
information is not readily available from an open database (e.g., the national EPC database,
the national electronic identification (eID) scheme). Eventually, these data will be readily
available, once the electronic city planning geographic information system is enhanced
and enriched with more data from eID. In this case, study, the category data for each
building in the neighborhood were manually added to the *3 shapefile. This is important
information for the evaluation of the optimization methodology; it is used check the
accuracy of the developed data, determine the building type, derive the building envelope
characteristics, and assess the building’s energy performance. Following the execution of
the code (Supplementary Material), the results are collected and stored in the output file,
i.e., Municipality_Building_Stats (*5) file (Table 1). The collected information is presented
in 25 columns (Figure 5).
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Roof Type 

1 SFH 2 1 174 140 Flat 
2 MFH 1 4 311 221 Flat 
3 MFH 2 3 64 32 Flat 
4 MFH 2 4 245 203 Flat 
5 MFH 2 3 100 86 Flat 
6 MFH 1 3 114 72 Flat 
7 SFH 1 1 152 139 Pitched 
8 MFH 1 3 141 92 Pitched 
9 SFH 1 1 172 132 Flat 

10 MFH 2 4 138 127 Flat 
11 MFH 3 5 143 91 Flat 

Figure 5. Example output file for the energy and emissions assessments case study. The column
headings are elaborated upon in the footnotes.

The following sections present an overview of selected results from the implementation
of the developed method in the city block used in the case study.

4.2. Energy Consumption and Emissions

The city block used in this case study includes a total of 15 residential buildings
(Figure 3). Table 2 summarizes the main findings from the implementation of the pro-
posed method to analyze and extract relevant information for the buildings’ architectural
characteristics using the available open data and non-commercial tools provided by GIS.
Most of the buildings are multi-family houses (MFH) from the second age band (i.e., the
construction period of 1981–2010) with flat roofs. There are also four single-family houses
(SFH). Building number 12 was under construction at the time of the study, and therefore it
is not included in Table 2 and is excluded from further analysis.
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Table 2. Building characteristics in the studied city block.

Building No Size (Building Type) Age Band Number of
Floors

Footprint
(m2)

Available Rooftop
Area (m2) Roof Type

1 SFH 2 1 174 140 Flat

2 MFH 1 4 311 221 Flat

3 MFH 2 3 64 32 Flat

4 MFH 2 4 245 203 Flat

5 MFH 2 3 100 86 Flat

6 MFH 1 3 114 72 Flat

7 SFH 1 1 152 139 Pitched

8 MFH 1 3 141 92 Pitched

9 SFH 1 1 172 132 Flat

10 MFH 2 4 138 127 Flat

11 MFH 3 5 143 91 Flat

13 MFH 2 4 167 150 Pitched

14 MFH 2 4 118 102 Flat

15 MFH 2 3 179 133 Flat

In this case, study, the available rooftop areas were used for the installation of pho-
tovoltaics to generate electricity. As a result, both the electricity use and the operational
CO2 emissions of the buildings were significantly reduced (Figure 6). Electricity savings
ranged from 10% to 75%, while the total energy consumption savings ranged from 7% to
56% among the various buildings in the city block under investigation. The abatement of
total operational CO2 emissions ranged from 8% to 58% for the individual buildings. For
the entire city block, the total electrical energy consumption was reduced by 21%, while the
operational CO2 emissions were reduced by 17%.
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4.3. Visualization of Energy Classes

The installation of PV on a building rooftop will reduce the operational energy use
and improve the building’s energy performance. Applying this renovation measure on the
available rooftops of all the buildings in the city block may improve the energy profile of
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the neighborhood. The calculated energy class for each building before and after the PV
installation on the available rooftop areas is illustrated in Figure 7.
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Figure 7. Visualization of the energy class for each building in the investigated city block: (a) initial
condition; (b) after the PV installation on the available rooftops. The legend with the different colored
energy classes (with Greek letters from A+ to H that correspond from A+ to G) corresponds to the
Hellenic EPC of the national regulation.

The initial condition of the studied city block clearly represents a hotspot. The existing
buildings have a poor energy performance that is reflected by the prevailing dark red
rooftop colors, which correspond to energy classes that range from “G” up to “D”. The
energy class of every building is improved by at least one level by installing the PVs. This
type of visualization can facilitate decision-making processes and efforts to identify priority
buildings and areas within a city, and can help to monitor progress and communicate
results following building renovations.

4.4. Soil Permeability

After implementing the derived method and available code (Supplementary Material),
the results related to the assessment of the soil permeability are presented in (Figure 8) and
include the variables outlined in the 7 columns of the output file.
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Figure 8. Example output file for the soil permeability case study. The column headings are elaborated
upon in the footnotes.

The undeveloped areas with soil and green cover within the city block under inves-
tigation are representative of developed suburban metropolitan Athens. The calculated
sustainability indicator is presented in the Sustain_ft column in Figure 8. The value of the
soil permeability indicator is 22.2%, which is considered valid based on the green and soil
areas illustrated in Figure 3.
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4.5. Limitations

The developed automated procedure exploits GIS to audit large urban areas in order
to facilitate the process of collecting data regarding the built environment, for example,
building geometry, architectural characteristics, and open spaces. As a case study, the
method was applied to make a more realistic assessment of the benefits resulting from the
installation of PV on the available building rooftops, whilst accounting for soil permeability.

A practical limitation of the developed method and the code is that there is no auto-
mated input for some information. For example, the construction period and the function
of the specific buildings is missing, as this type of information was not included in the open
databases that were available during the undertaking of this work. This was not a major
obstacle in the specific case study, since it was conducted in an area with buildings that were
constructed during a similar period, and in a predominantly residential area. However,
when considering large urban areas or even an entire city, it will be necessary either to
have access to the specific building end-uses, or to utilize statistical and census data to
categorize the number of buildings using the different typologies in terms of construction
period and residential or non-residential use. For example, a similar study [54], used
OpenStreetMap to extract relevant city district data, which were then complemented with
statistical data from the national building stock and coupled with the energy performance
of archetypal buildings.

In light of this, the need to recover this type of information may be facilitated by
exploiting a building’s energy performance certificates, if available, or by using the insight
and relevant data from the national building census data of the national statistical authority.
In all cases, there may be conflict regarding the availability and accessibility of these data at
individual building scale due to the General Data Protection Regulation (GDPR) and confi-
dentiality of personal data. Accordingly, the challenge will be to collect and match scattered
information from the same database under a unique system of building identification.

Furthermore, the current analysis is limited when assessing the area of a given rooftop
that is available for the installation of solar systems, in that it does not account for possible
roof shading as a result of neighboring buildings, trees, panel-to-panel, or other obstruc-
tions [55]. Similar issues may also occur with shading or other obstructions on ground
surfaces. Apparently, these limitations can introduce some errors. With this in mind,
images extracted from Google Earth were chosen in order to minimize the shade on the
ground surface. In addition, excluding roads and sidewalks from the area’s ground cover
can eliminate some of the problematic shaded areas resulting from traffic and parked cars.

The assumption that tilted roofs are limited to a single geometry that corresponds to a
gable roof should also be amended to consider other possible variations. The pitched roof
orientation and even tilt angle will influence the electricity generation from the installed PV
panels, or the heat production from solar thermal systems. Depending on the geographic
region, and on local urban planning and building regulations, the tilt angle of pitched
roofs can be properly selected to reflect the prevailing conditions (e.g., from 20 degrees in
southern areas up to 40 degrees in areas with significant snowfall).

Overall, the results from the implementation of the procedure were mostly valid
and accurate. However, there were some sporadic miscalculations that occurred with
regard to the number of floors and the identification processes of the available rooftop
areas. The procedure can be further improved by using input from a more analytical DTM
and DSM. This means that these models are free of external objects such as trees or other
irrelevant elements on the roof of the buildings. These issues are elaborated upon in the
following section.

5. Discussion

Traditional urban design methods focus on the form-making process, and lack perfor-
mance dimensions such as energy efficiency. Consequently, there is a need to couple urban
design with energy system models [56,57]. Particularly in Greece, the available data about
the existing building stock and the characteristics of the built environment are very limited.
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As a result, automated processes such as the one initiated in this work, which can facilitate
the process of collecting relevant data in order to assess and optimize buildings’ energy
performance and assess the sustainability of the built environment, are of great importance
for the decision-making process.

This work proposed a method, presented a code and demonstrated how this type of
application can be used to expedite data collection and calculations for relevant applica-
tions. The overall accuracy of the approach is promising. However, there were some small
deviations from the actual conditions in the calculation of the number of floors and the
outline of the building polygons, with some pixels crossing the building line. Furthermore,
during the method and code development, it was possible to check and validate the various
calculation steps, and in some cases, even to calibrate some rules and definitions (for exam-
ple, the surface colors). This was an iterative process carried out by progressively checking
the results against visual inspection of the actual building’s rooftop and site characteristics.

The results from the case study performed in this work quantified and illustrated that
the installation of PV panels would actually improve the buildings energy performance
for every examined building case. The soil permeability indicator calculated for the city
block identified the percentage of the total area that is not yet covered with any kind of
impermeable material. The results were quite accurate when compared with the actual
open areas from a high-resolution image of the city block.

This work demonstrated that the automated method can facilitate the process of
auditing large urban areas to collect relevant information about the built environment,
open spaces and geometry, and the architectural characteristics of buildings. Nevertheless,
the research objects are buildings, and there can be many differences from one building to
the next. For example, the type of roof, the type of construction, and the different elements
placed on each roof (e.g., super structures, chimneys, natural ventilation shafts, existing
solar collectors) are some of the most common differences that are easily observed among
buildings. In addition, buildings tend to change due to aging; thus, their facades and
roofs may deteriorate. This means that materials such as roof tiles may lose their original
surface color, which will cause many variations between the actual situation of a building’s
roof and the developed data. This is an important consideration, since the surface color
was the main parameter used during the automated process to identify and relate specific
surface colors from a predefined color pallet and link them to specific materials. Finally,
the accuracy of the results is greatly dependent on the quality of the input data, as well as
on the assumptions and parameters used to process them and develop the results.

5.1. Building Characteristics and Ground Cover

In this work, the input data were derived from open data sources that may not have the
highest accuracy. For example, in many cases, the buildings’ polygons had to be manually
digitized or georeferenced in order to match with the roofs depicted in the real images. The
accuracy of defining the building’s polygons can be improved using a different approach.
Higher quality polygons can be defined by combining object-based image analysis (OBIA)
with machine learning for detecting residential houses from Google Earth images [58]; in
this way, potential errors can be minimized.

The results from the code itself are also influenced by the accuracy of the derived
data. The parameters set for the color identification process were based on comparing the
results with the actual situation shown in the real image. As already mentioned, the lowest
accuracy for tilted roof buildings was 83%, and was 74% for flat roof buildings.

The heights derived from DTM and DSM models may also alter the results’ accuracy,
as these models play a significant role in the calculation of the building’s height and
number of floors, and eventually on the building’s energy performance assessment. A
DSM model contains height data from every object (surface data) in the studied area. Thus,
adjacent trees and objects on the roofs such as chimneys, antennas, solar collectors or
other super structures are responsible for the potential differences between the actual and
calculated number of floors of the buildings. In addition, the DTM models may not provide
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accurate information about the terrain, as sometimes, a building may have a semi-basement
floor that is constructed below ground level (or constructed above ground level when the
building has pilotis). Nevertheless, the number of floors were accurately estimated for the
majority of the buildings in the case study (57%), and for the rest with accuracy of ±1 floors,
which is considered acceptable for a large-scale analysis [52]. The building height and the
number of floors can also be determined using other methods, including light detection
and ranging data with high resolution [59].

The identification of the types of roof related to surface color identification (e.g., brown
for a titled roof, light grey for a flat roof) experienced some issues. Compared against the
actual roof types and surface coverage, the deviations can be attributed to color fading
and the analysis of the available images. For example, variations in the brown-colored
surfaces related to the Roman roof tiles that cover tilted roofs, and to the whitish color of
the concrete tile surfaces on the flat roof cases.

To overcome issues related to color identification and shading, image segmentation,
classification, multi-source verification, and object identification [23,58] can be used to
further and better analyze images. Considering that the images constitute the most im-
portant element of the process, a more thorough analysis would be desirable in order to
improve the results. These methods can be used to identify objects on roofs (e.g., PV panels,
chimneys, etc.) and ground surfaces, to remove shadows, and to detect buildings, thereby
providing more accurate results. The integration of artificial neural networks has benefited
a variety of applications [60] and may also facilitate the work required to recognize the
relationship between the various inputs/outputs and with GIS [61].

5.2. Building Energy Performance

The notable contribution of the automated process was its capacity to calculate the
available surface on a flat or titled roof along with its orientation in order to more real-
istically assess the potential savings that result from the installation of PV on the roofs
of the buildings. In this work, the PV electricity output was calculated with an external
standalone application, and the results were used as the input in the remaining calculations.
The energy consumption of the buildings was based on average benchmarks that relate to
the identified building typologies. The energy performance of each building was individu-
ally assessed, and then the energy label for each building was estimated before and after
the installation of the PVs. This step of the procedure can be improved by performing more
accurate calculations, or even simulations, by coupling the generated data with external
building performance tools. Similar calculations were also performed for quantifying
CO2 emissions from the electricity consumption before and after the installation of the
PV panels.

The results documented that all buildings were positively affected by the PV installa-
tion and became more energy efficient. Specifically, the energy class of every building was
improved by at least one level (Figure 7). In addition, there were equivalent savings for CO2
emissions. These data are significant because they can help to identify hotspots of poorly
performing buildings, and guide decision-makers in identifying priorities and planning
interventions for the exploitation of renewables and other energy-related renovations in
their municipality.

The results of this work and the outputs from the code can be used to assist decision-
makers in setting up more effective building renovation plans and effective sustainability
plans. Building energy consumption has increased dramatically in the past decade due to
factors such as population growth, more time spent indoors, increased demand for indoor
environmental quality, and global climate change [62].

Beyond the building’s rooftop areas for the installation of photovoltaics, the whole
community could benefit from the installation of more PVs through using open lots in
the city block and nearby open areas that may be available for public use, forming energy
communities [63,64]. By promoting social and solidarity-based economies and innovations
in the energy sector, energy communities can contribute to the reduction of energy poverty,
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promote the production, storage, self-consumption, supply and distribution of energy, and
improve local acceptance of renewable energy sources and energy efficiency for end-uses
at a local and regional level [65].

5.3. Soil Permeability

The findings from the case study revealed that 22% of the total city block’s area is
covered with vegetation. However, the calculation of the soil permeability indicator was
based on the assumption that the city block incorporates surfaces for building structures,
concrete areas, soil and green areas. Thus, the existence of non-building structures (e.g.,
garages or ramps) was not considered, but may influence the accuracy of the results. In any
event, the applicability of this sustainability indicator is strengthened by this automated
process, which can ease the data collection process and facilitate its monitoring. This insight
can then be used to guide decision-makers in making successful plans and strategies in
pursuit of a “green” future.

5.4. Future Directions

The work developed an automated procedure than can extract and process data about
buildings from open data sources to assess energy performance and to reduce energy use
and emissions. Future work will focus on how to enhance specific facets of the overall
procedure, improve the accuracy of the results, consider different building renovation
measures with integrated calculation tools, and extract more data that can be used to
quantify other building and urban sustainability indicators.

Future work can be facilitated by open access to statistical data and other databases
from utilities and local authorities [66]. This may be, for example, through coupling
GIS data with spatial distribution of buildings’ energy consumption, including electricity,
natural gas, and even delivered bulk fuels. In addition, the rooftop analysis developed to
determine the available area for the installation of PV can be enhanced to account for the
impact of shade from surrounding buildings and other obstacles in order to more accurately
size solar systems and calculate their output.

Moreover, the identification of each building based on its end-use (e.g., residential,
school, hospital) using the energy performance optimization method could provide more
accurate results. The introduction of different types of buildings could also provide an
improved overview of the total energy consumption of a city block or a community,
alongside showing decision-makers where to focus their sustainability plans. In addition,
the calculation of more sustainability indicators for the assessment of city blocks can also
lead to more thorough community planning.

One can also consider the development of more enhanced visuals that can be integrated
in flexible decision-making tools. These tools can be used for illustrating the energy
consumption of individual buildings and performing more detailed statistical analyses of
the average energy class of a city block in order to identify hotspots and prioritize different
renovation measures that reduce energy use and emissions.

Finally, the proposed method and code could be used to progressively create databases
about buildings as well as communities in cities that do not have readily available data.
Relevant data can be collected in a common database to provide local authorities with prac-
tical information in order to monitor the current energy and environmental performance
and progress after the implementation of renovation plans or other strategies. This type
of automated procedure can close the gap between the limited available data and other
resources, and successfully tackle the challenges of the EU renovation wave in pursuit of
the 2050 decarbonization target.

6. Conclusions

Growing awareness of sustainability issues is contributing to the evolution of energy
and environmental policies that are applicable to the building sector and urban environ-
ments. Accordingly, there is a need for more information and flexible tools to handle these
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policies’ complexities, and a need to carry out energy use and emission calculations at an
urban scale in order to facilitate efforts to decarbonize the urban environment.

This work developed an automated procedure to facilitate audits and data collection
in the built environment, considering open spaces, and the geometry and the architectural
characteristics of the buildings, using open-source data. The method was implemented with
a computational procedure in Python programming language (Supplementary Material). A
case study for improving buildings’ energy performance was used to assess the benefits of
the installation of PV panels on the available rooftop areas of each building, to quantify
the reduced emissions, and to specify the areas’ soil permeability indicators. The overall
approach can identify hotspots of poorly performing buildings in urban environments,
and can guide decision-makers in setting priorities and planning building renovations
for the exploitation of renewables and other energy-related and sustainable actions in
their municipality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/en16114309/s1, File S1: Computed procedure for the Municipality.
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