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Abstract: Battery energy storage systems (BESSs) are a promising solution for increasing efficiency
and flexibility of distribution networks (DNs) with a significant penetration level of photovoltaic (PV)
systems. There are various issues related to the optimal operation of DNs with integrated PV systems
and BESS that need to be addressed to maximize DN performance. This paper deals with day-ahead
optimal active–reactive power dispatching in unbalanced DNs with integrated single-phase PV
generation and BESS. The objectives are the minimization of cost for electricity, energy losses in the
DN, and voltage unbalance at three-phase load buses by optimal management of active and reactive
power flows. To solve this highly constrained non-linear optimization problem, a hybrid particle
swarm optimization with sigmoid-based acceleration coefficients (PSOS) and a chaotic gravitational
search algorithm (CGSA)called the PSOS-CGSA algorithm is proposed. A scenario-based approach
encompassing the Monte Carlo simulation (MCS) method with a simultaneous backward reduction
algorithm is used for the probabilistic assessment of the uncertainty of PV generation and power
of loads. The effectiveness of the proposed procedure is evaluated through aseries test cases in a
modified IEEE 13-bus feeder. The simulation results show that the proposed approach enables a large
reduction in daily costs for electricity, as well as a reduction in expected daily energy losses in the
DN by 22% compared to the base case without BESS while ensuring that the phase voltage unbalance
rate (PVUR) is below the maximum limit of 2% for all three-phase buses in the DN.

Keywords: distribution network; PV generation; battery energy storage; optimal power dispatch;
uncertainty; scenario reduction

1. Introduction

In light of the recent energy crisis, in the midst of the energy transition towards
carbon-free power systems, the advantages of renewable energy sources (RESs), such as
photovoltaic (PV) generators, the growth of which has been exponential over the last
twenty years [1], position them in the center of related policies. However, they suffer
from variability and stochasticity of output power, which is their main drawback [2] and
a challenge in terms of attracting the interest of the research community. A promising
approach towards a more flexible use of PV sources is their combination with battery
energy storage systems (BESSs) to fully exploit the potential of PV units integrated into
distribution networks (DNs) [3,4].

In the last few years, a number of authors have addressed the issues of optimal power
dispatch in DNs with integrated BESSs. These studies have been focused on several main
aspects, such asmodeling BESSs; defining the BESS function in DNs, i.e., objective functions
of the optimization problem; defining control variables, dependent variables, and technical
constraints; and the choice of solution methods.

A BESS is a combination of a voltage source converter and a battery pack such that the
active and reactive power can be controlled independently [5–10]. In most research articles,
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BESSs are modeled as a set of equations defining that the stored energy at any given time
segment is a function of the stored energy the and charge/discharge power at the previous
time segment. Internal losses of BESSs are accounted for through the charge/discharge
efficiency coefficients or functions. The limits of the reactive power output to be provided
by a BESS are also defined in these models.

Depending on the function that a BESS performs in the DN, the objectives for the
optimal power dispatch can be summarized in three groups: technical objectives, financial
objectives, and multi-objectives. Financial objectives can be related to the maximization of
revenues of an RES-BESS based on hybrid power plant [11]; the reduction in the energy
cost from the source grid [12,13]; or the minimization of distributed generator dispatch
costs [14], power generation costs, and load-shedding costs [6]. Technical objectives are
the base objectives and include static voltage stability improvement [7], transient voltage
stability enhancement [9], energy loss minimization [10], voltage fluctuation mitigation [15],
minimization of the voltage deviations at load buses [16], and reduction in power imbal-
ances [17]. Researchers often adopt multi-objective functions with different combinations
of financial and technical objectives, such as the simultaneous maximization of the total
yield from an RES and minimization of the total costs of the energy loss in DNs [5] or the
simultaneous minimization of power exchange cost between a DN and the transmission
network and the penalty cost of the voltage deviation in the DN [8].

In its most general mathematical formulation, the optimal power dispatch in DNs
with integrated RES and BESS is a non-linear, non-convex, large-scale, dynamic optimiza-
tion problem with constraints. There are two approaches to solving it, namely classical
optimization methods and metaheuristic methods.

Non-linear optimization models are implemented in the GAMS environment and
solved using CONOPT3 solver [5], CPLEX solver [6], and KNITRO solver [12]. The big M
method was used in [8] to transform the model into a mixed-integer linear programming
problem and solved using commercial software. The interior-point solver fmincon in
MATLAB R2021a [10] and the simplex solver through the docplex Python library [11] are
also suggested for optimal power flow in DNs with a BESS, whereas Giuntoli et al. [14] used
the CaADdi framework to interface with the IPOPT solver for non-linear programming.
In recent research, some population-based methods, such as PSO, have been proposed to
find the optimal power dispatch solution in DNs with BESSs [7,16].

The focus of this paper, which is a continuation of the research started in [13], is the
problem of optimal power dispatch in unbalanced DNs with single-phase PV generation
and BESSs. The main contributions of this study are as follows:

1. A dynamic model of the optimal active power dispatch (OAPD) in unbalanced DNs
with single-phase PV and BESSs is proposed to minimize energy costs from the
source network;

2. The optimal reactive power dispatch (ORPD) in unbalanced DNs with single-phase
PV and BESSs is considered. The objective functions consist of minimizing energy
losses and voltage unbalance at three-phase load buses with the reactive powers of
solar PV inverters and BESSs as control variables;

3. A scenario-based approach encompassing the MSC method and the simultaneous
backward reduction technique is proposed for modeling the uncertainty of PV gener-
ation and load in DNs;

4. A novel hybrid PSOS-CGSA algorithm is proposed and applied to solve optimal
active–reactive power dispatch problems;

5. A modified IEEE 13-bus feeder for evaluating the solvability and applicability of the
proposed approach is proposed and defined.

The proposed methodology is presented in a structured way through the flowchart
in Figure 1.
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Figure 1. Flow chart of the proposed methodology.

The rest of this paper is organized as follows. In Section 2, a scenario-based model
is formulated for the optimal dispatching of active power in DNs by operating mode
control of BESSs. The problem of optimal reactive power dispatch in unbalanced DNs
with single-phase PV and BESS inverters is elaborated in Section 3. The solution method
based on the hybrid PSOS-CGSA metaheuristic algorithm is briefly presented in Section 4.
The simulation results are discussed in Section 5, whereas the main conclusions are listed
in Section 6.

2. Active Power Dispatch by BESS

The battery operation mode is determined by two basic parameters: charge/discharge
power (Pbat) and state of charge (SoC). Since the battery capacity is limited, the SoC of the
battery must be viewed as a dynamic quantity, as follows [11]:

SoCφ(t) = SoCφ(t− ∆t) + ∆SoCφ (1)

∆SoCφ =

[
Pbat,ch,φ(t− ∆t)ηch,φ −

Pbat,dch,φ(t− ∆t)

ηdch,φ

]
∆t

Cbat,φ
(2)

where Cbat,φ is the total capacity of the battery; Pbat,ch and Pbat,dch are the charging and
discharging power of the battery, respectively; ηch and ηdch are the charging and discharging
efficiency, respectively; ∆t is the time segment (for example, 1 h); and φ denotes the phase,
where φ∈(a,b,c).

Battery power and SoC must always be within defined limits, as follows:

0 ≤ Pbat,ch,φ(t) ≤ Pbat,chmax (3)

0 ≤ Pbat,dch,φ(t) ≤ Pbat,dchmax (4)

SoCmin ≤ SoCφ(t) ≤ SoCmax (5)

SoCφ(t = 0) = SoCφ(t = T) (6)

Pbat,ch,φ(t) · Pbat,dch,φ(t) = 0 (7)

where Pbat,chmax and Pbat,dchmax are the maximum charging and discharging powers of the
battery, respectively; SOCmin and SOCmax are the predefined minimum and maximum
charge levels, respectively; and T is a time horizon, e.g., 24 h.

Battery charge/discharge power (Pbat) and SoC are mutually dependent variables.
Taking into account the variability of the electricity price, their relationship can be expressed
as follows [13]:
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Pbat,φ(t) =



0 if cg(t) ≤ cgav
and SoCφ(t) = SoCmax

aφ(t) · Pbat,chmax if cg(t) ≤ cgav

and SoCmin ≤ SoCφ(t) < SoCmax
0 if cg(t) > cgav

and SoCφ(t) = SoCmin
−aφ(t) · Pbat,dchmax if cg(t) > cgav

and SoCmin < SoCφ(t) ≤ SoCmax

(8)

where cg(t) is the day-ahead electricity price from the source grid at time t, cgav is the
average electricity price during the day, and aφ(t) is a coefficient within the range [0–1].

The coefficient aφ(t), which defines the power of the BESS, can be determined in
different ways. In [13], the coefficient aφ(t) was calculated based on the relation of the
electricity price at the time t with the mean electricity price during the day. A similar
approach was adopted in [18], where the coefficient aφ(t) was calculated as a function of
the difference in the electricity price from the predefined lower price limit for discharging
and the upper price limit for charging. However, the charging/discharging powers of the
BESS determined in this way do not guarantee the optimal dispatch of the active power
according to the adopted objective function. Therefore, in this paper, the coefficient aφ(t) is
considered as a control variable, the value of which is optimized to ensure the minimization
of a given objective function.

The basic equation of the active power dispatch problem is the power balance con-
straint (9), which must be satisfied at each time segment (t):

∑
φ∈(a,b,c)

Pg,φ(t) = ∑
φ∈(a,b,c)

[
PL,φ(t)− PPV,φ(t) + Pbat,φ(t)

]
(9)

where Pg,φ(t) is the active power from/to the source grid at time t in phase φ, PL,φ(t) is
the total active power of the load at time t in phase φ, PPV,φ(t) is the total active power
generation of PV units at time t in phase φ, and Pbat,φ(t) is the active power of the battery at
time t in phase φ, where φ∈(a,b,c).

2.1. Objective Function for OAPD

By controlling the operating mode of the battery, i.e., the charging/discharging power
and SoC, the active power flows in the distribution network can be significantly influenced.
In this way, the exchange power with the source power grid is directly affected, as well
as other parameters of the distribution networks, such as power losses, voltage profile,
etc. The operating costs of the distribution network mostly depend on the value of the
energy from/to the source grid. Considering various PV generation and load demand
scenarios with their probabilities, the objective function for OAPD can be formulated as the
minimization of the expected cost for electricity, as follows:

minCost = min

[
Ξ

∑
ξ=1

(
Cξ

g + Cξ
bat

)
p(ξ)

]
(10)

Cξ
g =

T

∑
t=1

∑
φ∈a,b,c

cg(t)Pξ
g,φ(t) (11)

Cξ
bat =

T

∑
t=1

∑
φ∈a,b,c

cbatP
ξ
bat,φ(t) (12)

where ξ and Ξ are the current scenario and the total number of scenarios, respectively;
p(ξ) is the probability of scenario ξ; Cξ

g and Cξ
bat are the total cost for electricity from the
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source grid and operating cost of the battery in scenario ξ, respectively; cg and cbat are the
electricity price from the source grid and the unit operating cost of the battery, respectively;
and T is the considered period (i.e., 24 h).

Two assumptions should be kept in mind here, namely:

• The retail electricity prices have the same daily profile as the wholesale electricity
prices and fluctuate hourly;

• The DN transacts the wholesale markets through some energy agent such as an
aggregator.

The power output of a PV source is determined by the solar irradiation at a given
moment, and its value cannot be influenced. Therefore, the cost of PV generation is
not taken into account in the objective function (10) because it cannot be optimized by
controlling the charge/discharge power of the battery.

For stable operation, constraints (3)–(7) and (9) must be satisfied. The output power
of the PV generator is limited by the maximum output power, i.e., the nominal power.
Additionally, Pg,φ(t) must be restricted by minimum and maximum values.

2.2. Modeling of Uncertainties
2.2.1. PV Generation Modeling

The power of the PV source as a function of solar irradiance can be expressed as
follows [16]:

PPV(S) =

{
Ppvn

S2

SstcRc
for S < Rc

Ppvn
S

Sstc
for S ≥ Rc

(13)

where Ppvn is the nominal power of the PV source, S is the solar irradiance on the PV
module surface, Sstc is the solar irradiance under standard test conditions, and Rc is a
certain irradiance point.

To model the stochastic nature of the solar irradiance, it is most convenient to use the
Beta probability density function (PDF):

fb(S) =


Γ(α+β)

Γ(α)Γ(β)
S(α+1)(1− S)(β−1),

for 0 ≤ S ≤ 1, α ≥ 0, β ≥ 0
0, otherwise

(14)

where fb(S) is the Beta function of the solar irradiance (S), α and β are the shape parameters
of the Beta distribution, and Γ is the Gamma function.

Based on the data of the long-term measurement of the solar irradiance in a given
area, characteristic daily diagrams of the solar radiation can be estimated with statistical
indicators, i.e., mean value (µS) and standard deviation of the solar irradiance (σS) in a
given time interval t (e.g., an hour). Using the mean value and standard deviation of the
solar irradiance, the shape parameters of the Beta PDF can be calculated for a time interval
(t) as follows:

β = (1− µS) ·
(

µS(1 + µS)

(σS)
2 − 1

)
(15)

α =
µS · β
1− µS

(16)

2.2.2. Load Modeling

The normal (Gaussian) probability function is most commonly used to model load
uncertainty in distribution systems. Generally, the load level is assumed to be a random
variable (L) following the same PDF within each hour of a given daily load diagram [2].

fn(L) =
1√

2πσL
e
− (L−µL)

2

2σ2
L (17)
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L = µL +
√

2σLerf−1(2r− 1) (18)

where µL and σL are the mean value and standard deviation of L, respectively; r is a random
number in the range of [0, 1]; and erf(·) and erf−1(·) are the error function and the inverse
error function, respectively.

2.2.3. Scenario Generation

The Monte Carlo simulation (MCS) method is suitable for modeling the uncertainties
of solar irradiance and load level. Starting from probability density functions for solar
irradiance and load, the parameters of which are determined based on historical data, e.g.,
previous years, the MSC method can generate a large number of scenarios for day-ahead
profiles of solar irradiance and load levels. Although a larger number of scenarios (e.g.,
several thousand) provides a more faithful modeling of the uncertainty of the output power
of the PV source and the load level, on the other hand, it means a higher computation
burden. In distribution network operation control applications, such as optimal power
flow, methods with high accuracy and low computational burden are needed.

As a compromise between a good approximation (modeling) of the uncertainty of
stochastic input variables (solar irradiance and load) on the one hand and a significant
reduction in calculation time on the other hand, a scenario reduction strategy aggregating
similar scenarios can be applied. In doing so, it must be ensured that the metric of the prob-
ability distribution of the reduced set is close enough to the original set of scenarios. There
are several algorithms for reducing the number of scenarios, such as k-means clustering,
backward reduction, and fast forward selection. In this work, the simultaneous backward
reduction algorithm [19–21] was employed to reduce a ternary scenario tree for the daily
PV generations and load profiles.

3. Optimal Reactive Power Dispatch

In this paper, it is assumed that PV arrays and batteries are connected to unbalanced
DNs via single-phase converters. Depending on the nominal apparent power of the
converter and the active power level of the corresponding PV source or battery, they have
the ability to control the generation/absorption of reactive power, that is, they can be used
as an additional regulation resource in DNs [13,22], as illustrated in Figure 2.

Figure 2. Inverter capability curve:(a) diagram of the two-quadrant regulating capacity of a PV
model; (b) diagram of the four-quadrant regulating capacity of a BESS model. The red line indi-
cates “consumer mode” and the blue line “generator mode” considering active power from/to the
distribution network.

In this paper, we do not specifically deal with power converter topologies. For practical
realization, several power converter topologies can be applied to connect BESSs to the
grid [23]. The conventional structure of power converter for BESSs consists of a bidirectional
DC/DC stage and a DC/AC stage. The basic requirement that they must fulfill for the
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ORPD problem is that their rated power be equal to or greater than the rated power of
the battery and that they have the ability to control the reactive power through a DC
bus capacitor.

Therefore, for DNs with PV units and BESSs, the problem of ORPD can be posed as a
problem of determining the optimal reference values of the available reactive powers of
the inverters and the slack bus voltage magnitudes with a certain objective function under
specified active power outputs of all PV and BESS inverters representing the solution of
the active power dispatch, as explained in Section 2.

3.1. Objective Function for ORPD
3.1.1. Active Power Loss Minimization

The level of active power losses is one of the most important indicators of the effi-
ciency of distribution network management because they represent the direct costs for a
distribution company. Therefore, the minimization of active power losses is one of the most
common and important objective functions in OPF studies used by distribution system
operators. Considering different (reduced) scenarios for PV generation and load profiles
with their respective probabilities, the objective function for ORPD can be formulated as a
minimization of the expected daily energy loss as follows:

Fobj1 = min

[
Ξ

∑
ξ=1

Wξ
loss p(ξ)

]
(19)

Wξ
loss =

T

∑
t=1

NB

∑
i = 1

φ ∈ a, b, c

Ri,φ

(
Iξ
i,φ(t)

)2
(20)

where Wξ
loss is the total energy loss in scenario ξ, NB is the number of branches in the DN,

Ri,φ is the resistance of branch i in phase φ, and Iξ
i,φ is the current magnitude through the

ith branch in phase φ for scenarioξ.

3.1.2. Voltage Unbalance Minimization

High penetration of single-phase PV systems and relative variations in per-phase
loading lead to an increase in voltage imbalance in distribution networks. It is well known
that significant voltage unbalance may lead to higher network losses, increased heating of
network components such as transformers, and costly damage or derating of three-phase
motors [24]. In this paper, the phase voltage unbalance rate (PVUR) is used as the voltage
unbalance metric. The PVUR is calculated at each three-phase bus using the line-to-ground
voltage magnitudes (Va, Vb, and Vc) [24]:

PVUR(%) =
∆Vmax

P
Vavg

P
· 100,

where Vavg
P = Va+Vb+Vc

3 ,
∆Vmax

P = max
{∣∣∣Va −Vavg

P

∣∣∣, ∣∣∣Vb −Vavg
P

∣∣∣, ∣∣∣Vc −Vavg
P

∣∣∣} (21)

According to IEEE standard 141-1993 [25] the maximum value of PVUR must not
exceed 2% for distribution networks. To ensure that the PVUR value at any three-phase
bus does not exceed this limit, the minimization of the expected maximum of PVUR in the
DN can be defined as an objective function:

Fobj2 = min

[
Ξ

∑
ξ=1

PVURξ
max p(ξ)

]
(22)

where PVURξ
max is the maximum value of the PVUR in the DN for scenario ξ.
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3.2. Constraints
3.2.1. Equality Constraints

The equality constraints for the ORPD problem are typical non-linear power flow
equations for three-phase unbalanced DNs [26,27].

3.2.2. Inequality Constraints

There are two types of inequality constraints: functional operational constraints, such
as slack bus active power limits (23), load bus voltage limits (24), and branch flow limits (25);
and feasibility region constraints defined by inverter reactive power limits (26) and slack
bus voltage limits (27).

Pφ
grid,min ≤ Pφ

grid(t) ≤ Pφ
grid,max (23)

Vφ
i,min ≤ Vφ

i (t) ≤ Vφ
i,max, i = 1, . . . , NL (24)

Sφ
i (t) ≤ Sφ

i,max, i = 1, . . . , NB (25)

−
√(

Sφ
in,i

)2
−
(

Pφ
in,i(t)

)2
≤ Qφ

in,i(t) ≤
√(

Sφ
in,i

)2
−
(

Pφ
in,i(t)

)2
(26)

Vφ
0,min ≤ Vφ

0 (t) ≤ Vφ
0,max (27)

where Pφ
grid(t) is the active power from/to the source grid at time t in phase φ; Pφ

grid,min and

Pφ
grid,max are the minimum and maximum power from/to the source grid, respectively;Vφ

i (t)

is the voltage magnitude at load bus i in phase φ; Vφ
i,min and Vφ

i,max minimum and maximum

limits of the voltage magnitude at load buses, respectively; Sφ
i (t) and Sφ

i,max are the apparent
power value and maximum apparent power value of the ith branch in phase φ, respectively;
Qφ

in,i is the reactive power injection of the inverter connected to phase φ at the ith bus; Sφ
in,i

and Pφ
in,i(t) are the maximum (rated) apparent power and the active power at time t of the

PV (or BESS) inverter connected to phase φ at the ith bus, respectively; and Vφ
0 (t), Vφ

0,min,

and Vφ
0,max are the value, minimum, and maximum limits of the voltage magnitude at the

slack bus in phase φ, respectively.

4. Solution Method

The hybrid PSOS-CGSA algorithm introduced in [27] was applied to effectively
solve the above defined optimal active/reactive power dispatch. This is a metaheuris-
tic population-based optimization algorithm constructed by the hybridization of particle
swarm optimization with sigmoid-based acceleration coefficients (PSOS) [28] and the
chaotic gravitational search algorithm (CGSA) [29]. Its performance in terms of simplicity,
efficiency, and robustness has been demonstrated in solving various complex optimization
problems, such as distribution system state estimation [27], dynamic economic dispatch [30],
and optimal power flow in DNs [13].

4.1. Application of PSOS-CGSA for Active Power Dispatch

In the optimal active power dispatch problem presented in Section 2, the objective
function is defined by Equation (10). The control variables are coefficients aφ(t), which
define the power of the BESS according to (8). Therefore, a search agent can be written as:

xi(t) = [aa,i(t), ab,i(t), ac,i(t)] i = 1, . . . , N (28)

where N is the total number of search agents (population size), and aφ,i(t) is the value of
control variable a within search agent i for phase φ at iteration t.
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A summary of the algorithm proposed to solve the active power dispatch is repre-
sented by the flowchart in Figure 3.

Figure 3. Flowchart for the active power dispatch using PSOS-CGSA.

4.2. Application of PSOS-CGSA for Reactive Power Dispatch

The vector of control variables in the problem of ORPD consists of the reactive powers
of the PV and BESS inverters and the slack bus voltage magnitudes and can be expressed
as follows:

xi(t) =
[

Qφ
i,1(t), . . . Qφ

i,j(t), . . . , Qφ
i,Ni

(t), Vφ
0 (t)

]
i = 1, . . . , N (29)

where Qφ
i,j is the reactive power of the inverter at the jth bus in phase φ, Ni is the total

number of buses in which inverters are connected, and Vφ
0 is the voltage magnitude at the

root bus of phase φ∈(a,b,c).
The application of PSOS-CGSA in solving the problem of optimal reactive power

dispatch is presented in the flowchart in Figure 4.
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Figure 4. Flowchart for the reactive power dispatch using PSOS-CGSA.

5. Simulation Results

The proposed approach for the day-ahead optimal dispatching of active and reactive
powers was simulated on a modified IEEE 13-bus feeder [31]. In the modified IEEE 13-bus
feeder, the single-phase PV sources are connected to buses 634, 645, 646, 611, 675, 692, and
652, as shown in Figure 5. Single-phase PV sources, each with the same rated power of 250
kW, are connected to the grid via single-phase inverters. Single-phase BESSs, each with a
rated power of 0.9 MW and a capacity of 3.6 MWh, are connected at bus 680 in all three
phases via single-phase converters with rated apparent power of 1.1 of the rated power of
the batteries. Data on PV and BESS parameters are given in Tables 1 and 2, respectively.

Table 1. Parameters of PV units.

Ppvn (kW) Sstc (kW/m2) Rc (kW/m2)

250 1 0.12

Table 2. Parameters of BESS.

Pbat,chmax (MW) Pbat,dchmax (MW) SoCmax (%) SoCmin (%) ηch= ηdch cbat (EUR/MWh)

0.9 0.9 80 20 1 10
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Figure 5. Single-line diagram of the modified IEEE 13-bus test system.

The daily load profile is represented by the mean hourly values shown in Table 3, with
a standard deviation of 10%. The daily solar irradiance profile used in the simulation is
represented by the mean hourly values and standard deviations given in Table 4. The day-
ahead electricity price (EP) data used are shown in Table 5. The maximum value is estimated
according to the electricity price for Serbia on the spot market in January–February 2023.

Table 3. Load profile data.

Hour µL (p.u.) Hour µL (p.u.) Hour µL (p.u.)

1 0.1591 9 0.5644 17 0.6715
2 0.2045 10 0.5372 18 1.0000
3 0.1948 11 0.6026 19 0.9310
4 0.1858 12 0.5496 20 0.7588
5 0.1963 13 0.4893 21 0.8244
6 0.1866 14 0.4847 22 0.9924
7 0.3154 15 0.4493 23 0.7869
8 0.5499 16 0.4390 24 0.5222

Table 4. Solar irradiance data.

Hour µS (W/m2) σS (W/m2)

8 158 120
9 386 248
10 538 277
11 669 261
12 748 242
13 819 221
14 862 207
15 870 197
16 853 205
17 779 237
18 700 258
19 572 263
20 357 206
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Table 5. Electricity price data.

Hour cg (EUR/MWh) Hour cg (EUR/MWh) Hour cg (EUR/MWh)

1 67.59 9 83.53 17 82.02
2 65.31 10 81.26 18 82.77
3 52.40 11 72.14 19 85.05
4 45.56 12 68.35 20 88.85
5 50.12 13 65.31 21 101.00
6 59.23 14 65.00 22 91.13
7 71.38 15 68.04 23 80.50
8 82.02 16 72.90 24 73.66

5.1. OAPD Results

As explained in Section 2, using MCS, there are 2000 solar irradiance and load scenarios
generated, as shown in Figure 6. By applying the simultaneous backward reduction
technique, these 2000 scenarios were reduced to the 10 scenarios shown in Figure 7.

Figure 6. Scenarios generated by MCS.

Figure 7. Reduced scenarios of solar irradiance and load.

By applying the proposed approach for the optimal active power dispatch, the expected
total operating costs of each scenario were determined; the results are shown in Table 6.
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Table 6. Expected costs.

Scenario Probability Cost (€)

1 0.0420 440.22
2 0.0760 590.36
3 0.0565 483.70
4 0.0760 552.52
5 0.0580 361.21
6 0.1100 462.06
7 0.2250 416.95
8 0.1265 339.61
9 0.1205 524.65
10 0.1095 444.86

Expected 453.16
Bold indicates the best results.

The optimal value of the expected daily cost for electricity is EUR 453.16. According
to (10), this value is obtained as the sum of the costs in each reduced scenario multi-
plied by the corresponding probability. In view of this, the expected day-ahead charg-
ing/discharging schedule of the BESS was obtained as shown in Figures 8 and 9.

Figure 8. Expected battery power during the day.

Figure 9. Expected battery SoC during the day.

For comparison, Figure 10 shows the daily costs for electricity in the following cases:
(i) without a BESS integrated into the DN (base case), (ii) with a BESS in the DN applying
the charge/discharge schedule approach presented in [13], and (iii) with the BESS in the
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DN using the proposed OAPD algorithm. The results in Figure 10 clearly indicate that the
proposed PSOS-CGSA-based approach for OAPD leads to a large reduction in costs for
electricity compared to the base case and the approach for OAPD in [13].

Figure 10. Comparison of expected daily costs for electricity: (i) without BESS, (ii) with the BESS
using approach in [13], and (iii) with the BESS using the proposed OAPD algorithm.

5.2. ORPD Results

Here, the optimal values of21 control variables should be determined, as follows:

x =

[
Qa

634, Qb
634, Qc

634, Qb
645, Qc

645, Qb
646, Qc

646, Qa
692, Qb

692, Qc
692, . . .

Qa
675, Qb

675, Qc
675, Qc

611, Qa
652, Qa

680, Qb
680, Qc

680, Va
650, Vb

650, Vc
650

]
The simulation studies were performed for the following two test cases:
Case 1: Minimization of the active power losses (Fobj1);
Case 2: Minimization of the phase voltage unbalance rate (Fobj2).
The voltages at the load buses must be within the range of [0.94–1.06] (p.u.). The volt-

age of the root bus (V0) can be changed in the range of [0.9–1.1] (p.u.), while the limits of
the reactive power of the converter are variable, according to (26).

The results are given in Tables 7 and 8. In the base case, the PV sources and BESS
operate with unity power factor, and the root bus voltage is equal to 1 p.u. Tables 7 and 8
show the expected values of total active energy losses (Wloss) and maximum values of the
phase voltage unbalance rate (PVURmax), respectively, for all ten reduced scenarios.

Table 7. ORPD results for Wloss.

Scenario Probability
Wloss (kWh)

Base Case 1 Case 2

1 0.0420 969.62 725.76 849.90
2 0.0760 931.60 730.77 859.22
3 0.0565 878.93 681.53 813.92
4 0.0760 931.63 726.75 879.11
5 0.0580 973.22 761.71 882.67
6 0.1100 1016.80 805.72 951.66
7 0.2250 937.08 724.04 873.22
8 0.1265 990.97 776.68 919.96
9 0.1205 804.23 616.91 759.31
10 0.1095 977.61 772.15 905.42

Expected 940.44 732.62 873.16
Bold indicates the best results.
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Table 8. ORPD results for PVURmax.

Scenario Probability
PVURmax (%)

Base Case 1 Case 2

1 0.0420 12.54 7.70 1.14
2 0.0760 10.45 6.46 2.93
3 0.0565 8.42 7.43 2.05
4 0.0760 8.97 7.32 1.51
5 0.0580 11.91 6.46 2.75
6 0.1100 10.01 7.85 2.67
7 0.2250 8.34 6.46 1.71
8 0.1265 8.06 6.83 1.16
9 0.1205 6.46 7.58 1.46
10 0.1095 10.55 6.43 2.29

Expected 9.10 6.96 1.91
Bold indicates the best results.

Applying the proposed procedure for ORPD achieves a reduction in expected energy
losses of 22% compared to the base case, while the expected value of the maximum PVUR
drops from 9.1% to 1.91%. There are significant energy savings, and it is ensured that the
PVUR index level is below the maximum limit of 2% for all three-phase buses in the DN.

Based on the results shown in Tables 7 and 8, it can be seen that in the case of the
minimization of active energy losses (Fobj1), the best scenario is 9, and in the case of the min-
imization of the voltage unbalance (Fobj2), the best scenario is scenario 1. Figures 11 and 12
show the optimal values of the control variables for these best scenarios.

The voltage profiles at bus 671 for the best scenario in Case 1 and the best scenario in
Case 2 are shown in Figures 13 and 14, respectively.

In Case 1, ORPD reduces the active energy losses compared to the base case, while
the voltages are within the permissible limits, as shown in Figure 13. The phase voltage
magnitudes are much closer to each other in Case 2 (Figure 14) than in Case 1 (Figure 13).
Clearly, this is as a consequence of the PVUR minimization in Case 2.

Figure 11. Optimal values of control variables for the best scenario (9) in Case 1.
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Figure 12. Optimal values of control variables for the best scenario (1) in Case 2.

Figure 13. Voltage profile at bus 671 in Case 1.

Figure 14. Voltage profile at bus 671 in Case 2.

5.3. Evaluation of PSOS-CGSA

The efficiency of the proposed solution algorithm (PSOS-CGSA) [27,30] was con-
firmed by a comparison with well-established metaheuristic algorithms genetic algorithm
(GA) [32], particle swarm optimization (PSO) [33], and the gravitational search algorithm
(GSA) [34]; their recently improved versions, PSOS [28] and CGSA [29], phasor PSO
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(PPSO) [35], hybrid PSO and GSA (PSO-GSA) [36], and hybrid PPSO and GSA (PPSO-
GSA) [2]; and two recently proposed algorithms, namely the arithmetic optimization
algorithm (AOA) [37] and the tunicate swarm algorithm (TSA) [38].

Algorithm parameters were adopted based on their default values in the cited ref-
erences. The population size and maximum iteration number were set as N = 50 and
itmax = 200 for all case studies. All algorithms were employed to solve the problem of
OAPD under the same terms and input data.

The daily costs for electricity obtained for all 10 reduced scenarios are shown in
Figure 15. Furthermore, the expected daily costs for electricity obtained using different
solution methods are shown in Figure 16. It is clear that the proposed hybrid PSOS-CGSA
method finds better solutions for the OAPD problem, i.e., provides lower costs in each of
10 scenarios and the least expected daily cost for electricity compared to other algorithms.

Figure 15. Comparison of solution methods applied for OAPD.

Figure 16. Comparison of expected daily electricity costs obtained by different methods.
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6. Conclusions

In this paper, a two-stage approach for the dynamic day-ahead optimal active-reactive
power dispatch in unbalanced DNs with high penetration of single-phase solar PV systems
and BESS was proposed. The simulation results conducted on a modified IEEE 13-bus test
system indicate the conclusions that can be summarized as follows:

• The proposed OAPD ensures minimum costs for electricity from the source grid
for all scenarios generated by the MSC method and the simultaneous backward
reduction algorithm;

• Single-phase PV inverters and BESSs can serve as efficient reactive power manage-
ment resources;

• The proposed ORPD approach enables the reduction in active power losses in the DN
and the reduction in the voltage unbalance on the three-phase load buses below the
permitted limit;

• The proposed PSOS-CGSA solution technique provides better solutions for optimal
power dispatch problems compared to other well-established metaheuristic algorithms,
such as GA, PSO, GSA, and modified and hybrid versions of PSO and GSA.

The proposed methodology performed very well for the assumptions and limita-
tions applied in this study. In future work, we plan to relax two of the most important
assumptions, namely inclusion of operating costs of PV generation in the OAPD model
and consideration the ORPD model regarding other power quality parameters, such as
harmonic distortion. This will be accomplished by extending the objective functions for
the OAPD model and implementing an algorithm for harmonic power flows in the ORPD
model, taking into account non-linear loads and corresponding constraints.
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