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Abstract: As the penetration rate of variable renewable energy such as wind power increases in the
power system, the composition and balance of the system also change gradually. The intermittency
of renewable energy poses great stability challenges to the traditional centralized generation and
load-oriented transmission and distribution methods. Therefore, the Active Distribution Network
Operator (ADNO) with distributed installation at the local level has a good application prospect in
the new scenario. However, ADNO needs to improve its operational efficiency based on the types
of local generation and storage devices and the nature of the market environment. To address this
issue, this paper proposes a forecasting method that considers the coupling fluctuations of spot
electricity prices and renewable energy, and a bi-level optimization operation method based on
the Stackelberg game for optimizing the operation of small-scale ADNO under high wind power
penetration rate. Simulation results show that the proposed methods achieve greater positive impact
on the operational efficiency of ADNO than conventional methods. In addition, the proposed
methods ensure the long-term profitability of ADNO, even with fluctuations in external factors.

Keywords: spot price; renewable energy; active distribution network; operation strategy

1. Introduction

In order to solve the problem of carbon emissions caused by fossil fuel power genera-
tion, energy diversification has become an important trend in power generation. Countries
have put forward their own energy diversification development plans. Among them, the
active distribution network is a promising energy supply model. The so-called active
distribution network refers to an intelligent power system that can achieve bidirectional
flow of electricity, while having energy storage, small-scale power generation units, and
other functions through intelligent control technology.

The potential of active distribution networks in terms of ensuring energy security
and reducing carbon emissions has been widely recognized. According to data from
the International Energy Agency, by 2030, over 130 million households and businesses
worldwide will use active distribution networks [1]. Countries and regions such as China,
the European Union, and the United States have issued relevant policies and plans to
actively promote the construction of active distribution networks.

The potential of active distribution networks in ensuring energy security and reducing
carbon emissions include the following aspects:

• It can achieve precise control of electricity through intelligent control technology,
improve energy utilization efficiency, and reduce energy waste;

• It has energy storage capacity, which can balance the load of power grid effectively
and enhance the stability of the power grid;
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• Through the use of small-scale power generation units, it can better adapt to the
demand for decentralized energy supply and improve the flexibility of energy supply.

Small-scale active distribution networks refer to a new type of power system that
integrates distributed power sources, load control, and energy storage systems on a smaller
scale based on distribution networks, forming a power system that can actively respond
to the needs of the power grid. Small-scale active distribution networks have many
advantages and will become an important part of future power supply systems. Small-scale
active distribution networks are usually based on distribution networks with ten to dozens
of nodes. They are characterized by a small scale but a very large potential base, so their
market potential is also enormous. This power system can not only improve the reliability
and efficiency of power supply, but also provide more services to customers. Therefore,
small-scale active distribution networks have great significance for the future development
of the energy field and the flexibility and low-carbon contribution of power supply systems.
During peak periods of power supply, a large number of small-scale active distribution
networks can quickly respond to power demand, balance the load of the power grid, and
thereby improve the reliability of the power supply system. At the same time, small-scale
active distribution networks promote the use of renewable energy, reduce carbon emissions,
and contribute to the low-carbon development of the power system.

Nevertheless, operators of small-scale active distribution networks also face many
problems. The main problems include the following three points:

1. It is difficult to influence the wholesale market price. Small-scale active distribu-
tion networks need to import electricity from the electricity wholesale market and
distribute it to their customers. As price takers, operators of small-scale active distri-
bution networks passively face price fluctuations;

2. Small-scale active distribution networks rely on controllable fossil energy or unpre-
dictable renewable energy to provide part of their electricity internally to increase
power supply flexibility. The uncertainty of variational renewable energy generation
from internal and external sources can affect profitability;

3. There exists a game relationship between operators and internal customers. The strat-
egy determined unilaterally by the operator may deviate from the equilibrium point.

This paper aims to tackle these problems through a novel conditional forecasting
method and a novel bi-level optimization method. We verify the advantages of the pro-
posed method over conventional methods in improving the operational efficiency of small-
scale active distribution networks through simulation experiments, and analyze the impact
of external factor fluctuations on the long-term revenue of ADNOs. This paper has im-
portant theoretical and practical value for understanding and improving the operational
mechanism of small-scale active distribution networks in the context of low-carbon trans-
formation. The rest of this paper is organized as follows: Section 2 is a literature review.
The conditional forecasting method is established in Section 3. The bi-level optimization
model is established in Section 4. Section 5 is a case study. The conclusions are provided
in Section 6.

2. Literature Review

Active distribution networks (ADNs) are becoming increasingly important due to
the integration of distributed generation, which changes power flow from unidirectional
to bi-directional. In order to manage distribution networks effectively, an active network
management strategy that incorporates emerging techniques of control, monitoring, pro-
tection, and communication is needed. The advantages of active distribution networks
include improved operating economics and reliability of power systems and increased low-
carbon performance. Several articles have explored various aspects of active distribution
networks. Zhao et al. [1] provided a short review of recent advancements and identify
emerging technologies and future development trends for support the active management
of distribution networks. Flexible Low-Carbon Optimal Dispatch of Honeycombed Active
Distribution Network (HADN) is proposed by Xiang et al. [2] as a way to increase low-
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carbon benefits through appropriate HADN dispatch. Ge et al. [3] proposed a substation
planning method that accounts for the widespread introduction of distributed generators
in a low-carbon economy. Li et al. [4] studied a bi-level interactive optimization model
for active distribution networks with microgrids, which minimizes operation cost and
voltage deviation to achieve a low-carbon system. Finally, Xiao et al. [5] proposed a new
Distribution Management System (DMS) framework based on security region, which aims
to help operate the system close to its security boundary in order to improve the efficiency
significantly within the same security standard.

To maintain the optimal operation of a network, extensive research studies have been
conducted under the theme of network management. Usman et al. [6] investigated losses
management strategies in active distribution networks and provided a concise yet com-
prehensive comparison of the most recently proposed losses management approaches and
strategies. Gabash and Li [7] proposed a combined problem formulation for active-reactive
optimal power flow in distribution networks with embedded wind generation and bat-
tery storage. Cortes et al. [8] proposed an iterative procedure for the optimal design of
a microgrid topology in active distribution networks, which applies graph partitioning,
integer programming, and a performance index for the optimal design. Kyriakou and
Kanellos [9] proposed a method for the coordinated optimal operation scheduling of ac-
tive distribution networks that are hosting complex microgrids comprising large building
prosumers and plug-in electric vehicle aggregators. Sedghi et al. [10] presented a paper on
storage scheduling for optimal energy management in active distribution networks consid-
ering uncertainties of load, wind, and plug-in electric vehicles. Jiang et al. [11] proposed
a combined modeling and optimal scheduling method for active distribution networks
with integrated smart buildings. Chen et al. [12] proposed a stochastic optimal operation
strategy for distribution networks whose objective function considers the operation state of
the distribution network. In order to enhance system resilience, Wang et al. [13] proposed a
novel optimal operation strategy for an active distribution network. For the issue of optimal
pricing between ADNOs, Tostado-Véliz et al. [14] proposed an equilibrium problem with
an equilibrium constraints (EPECs) approach, which solves the bi-level problem associated
to each participant sequentially using diagonalization. Finally, Fan et al. [15] proposed a
Lyapunov optimization-based online distributed (LOOD) algorithmic framework for active
distribution networks (ADNs).

Active distribution networks (ADNs) are developing rapidly due to the increasing
penetration of distributed energy resources (DERs), such as renewable energy sources and
electric vehicles. Therefore, forecasting is essential for network management to maintain the
optimal operation of ADNs. This paragraph summarizes recent research on forecasting in
ADNs. Saint-Pierre and Mancarella [16] proposed a scheduling model for active distribution
system management (ADSM) to operate distribution network assets with renewable energy
sources. The model considers uncertainties, market constraints, and scheduled power flows
at the interface with the transmission system. The proposed ADSM approach maximizes
renewable penetration, minimizes deviations from time-ahead schedules, and estimates the
required level of local reserves from dispatchable generation and electrical energy storage
(EES) while accounting for uncertainties. Shen et al. [17] presented a planning model
for ADN that considers long-term investment costs and short-term operation conditions
with EES benefits for peak load shaving and power reliability enhancement. Yu et al. [18]
proposed a novel spatial-temporal graph representation method to characterize and present
spatial and temporal correlations of historical load observations. The graph data are used
to train a model denoted as Spatial-Temporal Synchronous Graph Convolutional Network
(STSGCN) that can forecast load by learning from the graph features. Kalantar-Neyestanaki
et al. [19] presented a method to determine the capability area of an ADN for the provision
of both active and reactive power reserves while considering forecast errors and operational
constraints of the grid and DERs. Cheng et al. [20] proposed a state estimation method for
ADNs based on the forecasting of photovoltaic (PV) power generation using the Gaussian
mixture model (GMM). Cong et al. [21] proposed a day-ahead active power scheduling
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method that considers REG forecast errors to minimize distribution company costs and
achieve optimal power flow with a hierarchical coordination optimization model based on
chance constrained programming.

Overall, recent research has shown that forecasting plays a crucial role in the optimal
operation of ADNs. Various methods, such as branch flow model-based relaxed optimal
power flow [22], dual-horizon rolling scheduling models [23], and state estimation meth-
ods based on PV power generation forecasting, have been proposed to achieve optimal
scheduling of active power and enhance the reliability and efficiency of ADNs. However,
one might neglect the effects of the correlation between the fluctuation of wholesale spot
price and the output of renewable energy. Moreover, one might overlook the function of
ADNO time-of-use subsidy and the game relationship between ADNOs and users. This
paper shows that with proper handling of these factors, ADNO may achieve significant
profitability increase.

3. Conditional Wholesale Power Price Forecast for High VRE Penetration Market
3.1. Correlation between Wind Power Output and Electricity Spot Price in High
Penetration Markets

The Active Distribution Network Operator (ADNO) needs to purchase electricity from
the electricity spot wholesale market and sell it to retail customers. ADNO needs to decide
on the dispatch strategy for the second day in advance. When the spot wholesale price
is too high, ADNO should use appropriate advance dispatching to replace some of the
external electricity supply with internal resources, such as renewable energy generators,
fossil fuel generators, and energy storage equipment. Conversely, when the spot wholesale
price is low, ADNO should optimize its dispatch strategy to maximize the utilization of
cheap electricity from the external power grid. The basic operating model of ADNO is
shown in Figure 1.
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For small-scale ADNOs, due to their small scale, they cannot affect market prices
and can be regarded as price takers in the spot wholesale market. Therefore, they cannot
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increase their profitability by influencing market prices. Therefore, accurate prediction of
market prices is very important to improve their profitability.

On the other hand, appropriate renewable energy installed capacity is meaningful for
reducing the operating costs of ADNOs. Variational renewable energy generation, such as
photovoltaic and wind power, has very low variable costs. However, variable renewable
energy (VRE) has strong intermittency and requires additional controllable distributed fuel
units to supplement it, forming a power source combination. The operating sequence of
ADNO is shown in Figure 2.
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The power generation system is undergoing a trend of low-carbonization, which
means more and more large-scale VRE power generation companies are entering the
wholesale market. As a result, the power spot price is increasingly affected by VRE
output. In the actual market operation, the wholesale market operator Independent System
Operator (ISO) will provide a day-ahead VRE output forecast based on the information of
the entire system.

For ADNOs located at a certain node of the system, they face uncertainties from three
parts: VRE output, spot market price, and user load. For ADNOs in a high VRE penetration
power wholesale market, the first two sources may be correlated. Ignoring this correlation
may lead to a decrease in accuracy of prediction.

This article suggests that ADNOs can use the network-wide VRE output published
by ISO as a condition to predict the local VRE output and node electricity prices. This can
significantly improve the accuracy of predictions.

Based on dataset [24], this study calculated the correlation between VRE generation
and spot prices. The dataset is from ENTSO-e and consists of time-series data of wind
power generation and spot market prices in the DK market for one year. This paper first
standardized the data using the formula:

xt,nor =
xt

|X|2
(1)

where |X|2 =
√

∑t(xt)
2, xt is the value at time t in the time series, and X refers to the entire

time series. xt,nor is the standardized value of xt. The normalized value of wind output and
day-ahead LMP are depicted in Figure 3a. This paper examined the correlation between
the two time series, by calculating the Pearson correlation coefficient at different lag steps.
The calculation method is as follows:

ρW,P,N =
cov
(
XN

W , XP
)

σN
W ,σP

(2)

where cov
(
XN

W , XP
)
= ∑t (xt−N,W,nor − xt−N,W,nor)(xP − xt,P,nor). Here, XN

W represents the
time series of wind power generated N steps earlier, and XP represents the time series of
spot prices. cov

(
XN

W , XP
)

is the covariance between XN
W and XP. xt,·,nor is the standardized

variable of wind power generation time series, and xt,·,nor is the mean of xt,nor. σ· is the

standard deviation of X, calculated as σ· =
√

∑
t
(xt,·,nor − xt, ·, nor)2.
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Figure 3. Pearson correlation coefficient between wind power generation and spot prices at different
lag steps. (a) Shows the normalized value of wind output and day-ahead LMP; (b) shows the
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The time interval of the data used in this paper is 15 min. When N takes values
between −10 and 10, the variation in ρW,P,N is shown in Figure 3b. It can be seen that wind
power generation and spot prices have significant negative correlation (less than −0.5)
when N = 0.

3.2. ADNO Local Wind Power Output and Nodal Price Prediction Based on ISO Wind
Power Forecast
3.2.1. Improved Transformer Time Series Conditional Prediction Model

This study constructs a prediction model based on the principle of Bayesian inference.
As shown in Section 3.1, the local nodal electricity price of ADNO and the wind power
output forecast of ISO are highly correlated under high penetration rates. Therefore, we
built a conditional prediction model, which we apply to the prediction of ADNO local
wind power output and nodal prices separately.

This paper constructs a prediction model based on the principle of maximizing the
conditional likelihood probability, as shown in Formula (3).

p(x|yN , θ) =
T−1

∏
t=t0

p(x(t + 1)|x(t0), . . . x(t), y(t0 − N), . . . , y(t− N), θ) (3)

where N is the time delay step that maximizes the Pearson correlation between the two time
series x and y. This paper constructs a parameter model to map this conditional probability,
and the value of the parameter θ should be the value that maximizes p(x|y, θ), that is,

θ∗ = argmax
θ

p(x|yN , θ) (4)

Regarding the selection of the prediction parameter model, there are linear models
and nonlinear models. Recent studies have shown that nonlinear models represented by
deep neural networks have achieved good results in many complex conditional prediction
tasks [25–27]. In deep neural networks, there are various options for such prediction tasks
based on autoregressive networks (such as LSTM, GRU, etc.) and convolutional networks
(such as WaveNet) [28]. Considering the specificity of this prediction task, this study adopts
the transformer network for prediction. Multiple studies have shown that transformer
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networks can model longer time spans and often achieve better results in price prediction
tasks than autoregressive networks and convolutional networks.

This paper uses the transformer [29] deep neural network for conditional prediction.
It improved the structure of the original transformer to make it more suitable for the
prediction task of this study. The basic structure is shown in Figure 4.
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First, this study adjusts the input and output structure of the transformer. It first
performs mean–variance standardization on all sequences to make them stationary and
ensure that their values are in the range [−1, 1]. Then, it outputs the predicted mean and
variance, rather than the probability of a specific category.

3.2.2. Multi-Head Attention Mechanism

The multi-head attention mechanism in the transformer is a mechanism that can
simultaneously focus on different parts of the input sequence. The transformer uses
the positional encoding module [29] to handle the temporal relationship of data. Its
output matrix is used as the query matrix, key matrix, and value matrix to capture the
dependencies in the time series. Let Q, K, and V be the query matrix, key matrix, and
value matrix, respectively, with dimensions of dq × n, dk × n, and dv × n, where dq, dk,
and dv are the dimensions of the query vector, key vector, and value vector, and n is the
length of the input sequence. The query vector for the i-th attention head is qi = QWQ

i ,
the key vector is ki = KWK

i , and the value vector is vi = VWV
i , where WQ

i , WK
i , and WV

i
are weight matrices. Then, the attention weight αi for the i-th attention head is computed

as follows: αi = softmax
(

qT
i kj√

dk

)
where j is the index of all key vectors, and

√
dk is the
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normalization factor. Here, softmax(zi) =
e(zi)

∑K
j=1 e(zj)

, i = 1, . . . , K where zi is the i-th element

of the input, and K is the length of the input vector. Finally, the output of the multi-head
attention mechanism is obtained by weighted summing all value vectors according to the
attention weights: MultiHead(Q, K, V) = Concat(α1v1,α2v2, . . . ,αhvh)WO where h is the
number of attention heads, and WO is the weight matrix used to map the concatenated
attention heads to the output dimension. Concat denotes the concatenation of vectors.
The multi-head attention mechanism can focus on different parts of the input sequence
simultaneously, which helps capture the dependencies among them. It can also handle
variable-length input sequences because it does not require fixed-length inputs. Moreover,
the multi-head attention mechanism can be computed in parallel, as each attention head
can be computed independently, which improves computational efficiency. In time series
prediction tasks, the multi-head attention mechanism in the Encoder can extract useful
features from time series data. It can aggregate information from different time steps into a
vector representation. The multi-head attention mechanism in the Decoder can also select
the most relevant information from the previous time steps for prediction.

3.2.3. Source Embedding Mechanism

This study introduces the source embedding mechanism in the transformer. The
source embedding mechanism is derived from the literature [30]. The literature [31] applied
this mechanism to the power load clustering, and demonstrated that compared with
traditional clustering methods, the source embedding mechanism can more effectively
mine the statistical characteristics of uncertainty sources. This mechanism encodes any time
series from a certain source into an embedding vector through a deep neural network. The
embedding vectors of the same source are closer to their own centroid in high-dimensional
space. These embedding vectors carry the statistical information of the source and can be
used as input information by other neural networks for better prediction results.

In this study, the CBHG network [32] is used for encoding. For a training batch with K
sources, each source has M training segments, the encoding calculation can be represented
by Formula (5):

ek,m =
CBHG(xk,m)∣∣|CBHG(xk,m)|

∣∣ ∗ 2
(5)

where ek,m is the encoding for the m-th time series segment xk,m of the k-th source.
CBHG(xk,m) represents the output of the CBHG network after inputting xk,m. ||·||2 repre-
sents taking the 2-norm. In this paper, the GE2E loss is used to train this encoding network,
so that for any input segment xi of source i, an embedding vector ei can be output, which is
closer to the centroid of source i in cosine distance and away from the centroids of other
sources. The principle of GE2E loss is to construct a similarity matrix S for each training
batch, whose elements are s ∗ p, m, where p ∈ [1, . . . , K×M]. If

⌈ p
M
⌉
= k (d·e represents

rounding up), it means that these training data belong to source k and is the m-th training
data. The calculation method of sp,m is shown in Formula (6):

sp,m =

{
w · cos

(
ek,m, c(−p)

k

)
+ b,

⌈ p
M
⌉
= k

w · cos(ek,m, ck) + b, otherwise
(6)

where ck is the centroid of source k, whose calculation method is ck = 1
M ∑M

m=1 ek,m. c(−p)
k

is the centroid calculated when
⌈ p

M
⌉
= k, excluding the current training data p, c(−p)

k =
1

M−1 ∑M
m=1,m 6=(p%M) ek,m. cos(ek,m, ck) represents cosine distance, cos(ek,m, ck) =

ek,m ·ck

||ek,m ||2·||ck ||2
,

w and b are the weight and bias parameters that need to be trained. It can be seen that when
m = k, sp,m calculates the distance between the time series segment and its corresponding
source k centroid. When m 6= k,sp,m calculates the average distance between the time series
segment and the centroids of all sources that do not belong to it. We hope that the former is
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smaller and the latter is larger. Therefore, the calculation method of the GE2E loss is shown
in Formula (7):

L
(
ep′m

)
= sp′ ,m − log

(
∑ sp′′ ,k

)
(7)

where
⌈ p

M
⌉
=
⌈

p′
M

⌉
= k,

⌈
p′′
M

⌉
6= k. Then, the total loss value of a training batch is

calculated by Formula (8):
LOSS = ∑ L

(
ep,m

)
(8)

If a database covering enough statistical patterns is used to train this encoding network,
an embedding vector e is an output for any time series outside the training set. This vector
carries good statistical properties and can provide effective information for the prediction
network. The principle of the source embedding mechanism is shown in Figure 5.

Energies 2023, 16, x FOR PEER REVIEW  10  of  28 
 

 

𝐿 𝑒 , 𝑠 , 𝑙𝑜𝑔 𝑠 ,   (7)

where 
‘

k, 
’‘

𝑘. Then, the total loss value of a training batch is calculated 

by Formula (8): 

𝐿𝑂𝑆𝑆 𝐿 𝑒 ,   (8)

If  a  database  covering  enough  statistical  patterns  is  used  to  train  this  encoding 

network, an embedding vector  𝑒  is an output for any time series outside the training set. 

This vector carries good statistical properties and can provide effective information for the 

prediction network. The principle of the source embedding mechanism is shown in Figure 

5. 

Source 
embdding
network

Uncertain source embedding distributionUncertain source raw data

Source 
embdding
network

Training by
GE2E loss

Approching

Away from

Away from

Embedding vectors Source centroids

 

Figure 5. The principle of the source embedding mechanism. 

3.3. Evaluation of Prediction Methods 

This article uses  the ENTSO-E database  [24]  to  train  the embedding network and 

transformer.  The  database  is  a  data  platform  operated  by  the  European Network  of 

Transmission System Operators  for Electricity  (ENTSO-E), which  aims  to  enhance  the 

transparency and comparability of electricity market information in the European Union. 

The database includes spot price data for 20 markets and predicted wind power output 

data for ISO. This article collected local wind power data from 50 locations. The basic time 

interval  of  the data  is  1 h. Based  on  these data,  the node  electricity price  conditional 

prediction  model  𝑝 𝑥 𝑦 ,θ    and  local  wind  power  conditional  prediction 

model  𝑝 𝑥 𝑦 ,θ    were  trained.  Models  𝑝     and  𝑝     use  the  same 

hyperparameters and optimizer settings, as shown in Table 1. 

   

Figure 5. The principle of the source embedding mechanism.

3.3. Evaluation of Prediction Methods

This article uses the ENTSO-E database [24] to train the embedding network and
transformer. The database is a data platform operated by the European Network of
Transmission System Operators for Electricity (ENTSO-E), which aims to enhance the
transparency and comparability of electricity market information in the European Union.
The database includes spot price data for 20 markets and predicted wind power output
data for ISO. This article collected local wind power data from 50 locations. The basic
time interval of the data is 1 h. Based on these data, the node electricity price conditional
prediction model p1(xLMP|yN

ISOwind
, θ1) and local wind power conditional prediction model

p2(xlocalwind
|yN

ISOwind
, θ2) were trained. Models p1 and p2 use the same hyperparameters

and optimizer settings, as shown in Table 1.
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Table 1. Hyperparameters and optimizer settings for models p1 and p2.

Parameter Name Parameter Size

Forecasting network batch size 64
Transformer encoder block number 2
Transformer decoder block number 2
Transformer attention head number 8

Input time series length 72
Input feature Short-time Fourier transform (STFT)

Output time series length 24
CBHG Same as in [32]

Source embedding training batch size 64
optimizer Adam [32]

Learning rate 0.001

This article randomly selected 10% of the data from the original dataset as the test set.
Table 2 lists the evaluation results of the proposed method and traditional non-conditional
probability-based LSTM [33], CNN [33], and sequence to sequence (seq2seq) [34] models
on the test set. This article labeled node electricity price prediction as task1 and local wind
power prediction as task2.

Table 2. Comparison of the performance of our prediction method and traditional methods on the
test set.

Model
Task1 Task2

RMSE 1 MAE 2 RMSE MAE

LSTM [33] 1.003 0.836 0.909 0.840
CNN [33] 0.752 0.753 0.756 0.674
Seq2seq [34] 0.630 0.616 0.535 0.513
proposed 0.540 0.553 0.469 0.453

1 Root mean squared error. 2 Mean average error.

4. Bi-Level Optimization Model for Equilibrium Operation Strategy
4.1. Short-Term and Long-Term Operational Issues Faced by ADNO

Figure 1 shows the basic operating mode of ADNO, which is to buy electricity from
the wholesale market and sell it to customers within the distribution network. We assume
that the wholesale market is sufficiently competitive and that a single ADNO cannot
affect the market price. Therefore, ADNO needs to make accurate predictions about the
spot prices in the wholesale market. On the other hand, ADNO can influence customers’
demand by providing subsidies, as customers have different levels of price elasticity for
electricity demand. Customers have some rigid demand that is almost unaffected by
monetary incentives (such as essential electricity consumption for work and lighting), and
some flexible demand that is influenced by possible subsidy amounts (such as demand
for entertainment and comfort). Therefore, ADNO needs to predict the rigid demand and
influence the flexible demand through subsidies. Since ADNO’s customers are limited
and small-scale, they respond to ADNO’s subsidies individually, and it is difficult to
define the collective response of customer groups to ADNO’s subsidy strategy using a
specific statistical distribution method. In the short term, ADNO needs to optimize its
internal power generation and energy storage scheduling based on the predicted spot
market prices, local renewable energy output, and rigid loads. To find ADNO’s short-term
equilibrium operation strategy, this paper proposes a bi-level optimization model based on
the Stackelberg game. This model is constructed for ADNO in the day-ahead scheduling
using the predicted spot market prices, wind power generation output, and load. Besides
predicting renewable energy output and spot market prices accurately and setting subsidies
appropriately, ADNO also faces the challenge of determining the optimal capacity of energy
storage, internal renewable energy generation units, and fossil fuel generation units when
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investing in network assets. This is ADNO’s long-term operational strategy problem.
Therefore, based on the short-term optimal solution, this paper introduces an efficiency
measurement indicator. When this indicator reaches the marginal optimal value, it can
determine ADNO’s optimal asset size in the long term.

4.2. Hedging Strategies of ADNO for Spot Wholesale Electricity Prices and Renewable Energy
Output Fluctuations
4.2.1. Configuring Energy Storage Systems

Configuring energy storage systems is critical for ADNO. Energy storage systems
allow ADNO to store electricity when spot wholesale prices are low or when there is excess
renewable energy within the system, and release the stored electricity during opposite
conditions to reduce costs. Assuming ADNO has S energy storage systems, and each
system is numbered s, then s ∈ [1, . . . , S]. Similarly, assuming a day is divided into T time
slots, and each time slot is numbered t, then t ∈ [1, . . . , T]. Let PSTRC

s,t be the charging power
of energy storage system s at time t, and PSTRD

s,t be the discharging power of energy storage
system s at time t. The following constraints apply, as shown in Equation (9):{

0 ≤ PSTRC
s,t ≤ (1− bs,t)USTRC

s
0 ≤ PSTRD

s,t ≤ bs,tUSTRD
s

∀t ∈ [1, . . . T], s ∈ [1, . . . , S] (9)

where USTRC
s is the maximum charging power of s, and USTRD

s is the maximum discharging
power of s. bs,t is a binary variable that indicates whether s is charging (0) or discharging (1)
at time t.

Furthermore, assuming the energy storage system s has a maximum capacity of UESTR
s ,

then the following constraints apply, as shown in Equation (10):{
eSTR

s,t = eSTR
s,t−1 + (PSRTC

s,t − PSTRD
s,t )∆t

0 ≤ eSTR
s,t ≤ UESTR

s
∀t ∈ [1, . . . , T], s ∈ [1, . . . , S] (10)

where eSTR
s,t represents the total stored electricity of s at time t, and ∆t represents the

time interval.

4.2.2. Configuring Distributed Fossil Energy

Suppose ADNO has I fossil energy installed internally, and the label of each fossil
energy unit is i, then i ∈ [1, . . . , I]. A typical distributed fossil energy installation is a
small gas turbine. The goal of installing internal power generation is to supplement the
insufficient external power or to replace the expensive external power. Because these
installations are relatively small, this article considers a simple linear cost model for fossil
energy installation i as shown in Formula (11).

Costi = ci · PGEN
i,t + wi,t ·Oi, ∀t = 2, . . . , T (11)

There are constraints on fossil energy unit i as shown in Formula (12):

LGEN
i zi,t ≤ PGEN

i,t ≤ UGEN
i zi,t (12)

where Costi represents the total production cost of i, ci is the marginal cost of i, PGEN
i,t is the

active power output of i at time t, and Oi is the start-up cost of i. zi,t is a 0–1 variable. When
it is 0, it means that i is in the shutdown state at time t; when it is 1, it means that i is in the
running state at time t. LGEN

i is the minimum output of unit i, and UGEN
i is the maximum

output of unit i. There is:

wi,t =

{
1, zi,t − zi,t−1 = 1, ∀t = 2, . . . T

0, otherwise
(13)
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The variable wi,t is also a 0–1 variable. When wi,t = 1, i is started at time t, and its
start-up cost needs to be calculated. Since i is a small unit, this article ignores its shutdown
cost. There are multiple operating constraints for fossil energy installation i. In the active
distribution network, the advantage of distributed fossil energy is that it can adjust its
output quickly to cope with the fluctuations of renewable energy output and the spot price
fluctuations of main grid electricity. Therefore, this article considers the ramp constraint as
shown in Formula (14).

LRAM
i ≤ PGEN

i,t − PGEN
i,t−1 ≤ URAM

i , ∀t = 2, . . . , T (14)

where LRAM
i is the minimum climbing amount of unit i between units, and URAM

i is the
maximum climbing amount of unit i between units.

4.2.3. Configuring Distributed Wind Power Generation

ADNO has V distributed wind power generation units installed internally, each
wind power generation unit is numbered v, and v is within [1, . . . , V]. The advantage of
ADNO’s distributed wind power generation installation is that wind power generation has
almost zero marginal cost and can replace the electricity provided by the main grid at very
low cost. However, distributed wind power generation also has strong randomness and
uncontrollability. This article predicts the local wind power generation output through the
method described in Section 3.

4.3. Customer Electricity Demand and Network Constraints
4.3.1. Customer Electricity Demand

This article assumes that ADNO’s customers have two types of loads: rigid loads
(such as essential electricity consumption for work and lighting) and flexible loads (such as
loads that can be shifted in time). Rigid loads are random and independent of other factors.
Flexible loads depend on prices. Assuming ADNO has J customers, the electricity demand
of customer j at time t is shown in Formula (15):

Demandj,t = dj,t +
∼

dj,t, ∀j ∈ [1, . . . , J], t ∈ [1, . . . , T] (15)

where Demandj,t is the total active power demand of customer j at time t,
∼

dj,t is the rigid
demand of customer j at time t, and dj,t is the flexible demand of customer j at time t. As
the rigid demand of customers is not significantly correlated with the wind power output
forecast of ISO, this article uses the method in reference [35] to predict their rigid demand.

This article assumes that the retail market is fully accurate and that ADNO cannot
affect the retail electricity price pj,t. For flexible demand, ADNO can influence it through
certain subsidy strategies, as follows:

dj,t ∈ Dj,t
(
subj,t

)
, ∀j ∈ [1, . . . , J], t ∈ [1, . . . , T] (16)

where Dj,t is a set of demand responses to subsidies, and subj,t is ADNO’s subsidy strategy
at time t. It can be seen that ADNO can influence the flexible demand of customers by
subsidizing them when the spot price is low or when the wind is strong.

This article assumes that for all j ∈ [1, . . . , J], t ∈ [1, . . . , T], Dj,t is a linear interval of
dj,t, i.e.,:

Lj,t ≤ dj,t ≤ Uj,t, ∀j ∈ [1, . . . , J], t ∈ [1, . . . , T] (17)

where Lj,t = 0. Uj,t is influenced by pt, as shown in Formula (18):

Uj,t = Umax
j,t +

(
subj,t − submax

)
Elaj,t, ∀j ∈ [1, . . . , J], t ∈ [1, . . . , T] (18)
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where Umax
j,t is the maximum flexible demand of j at time t; subj,t is the electricity subsidy

that j can receive at time t; submax is the maximum subsidy value. Elaj,t is the elasticity
coefficient of the power demand subsidy for j at time t.

4.3.2. Network Constraints

The voltage level of the distribution network is relatively low, and the impact of
transmission loss on ADNO operation needs to be considered. This paper constructs a
network model constraint based on the standard distribution network branch model [36].
The power and voltage of nodes have linear constraints as shown in Formula (19):

Pn =
(

Pmn − |Imn|2 · rmn

)
−∑

k∈n

Pnk

Qn =
(

Qmn − |Imn|2 · xmn

)
−∑

k∈n

Qnk

|Un|2 = |Um|2 − 2(rmn · Pmn + xmn ·Qmn) +
(
r2

mn + x2
mn
)
· |Imn|2

(19)

where Pn is the active power injected into node n, Pmn is the active power flowing from
node m to node n, Qn is the reactive power injected into node n, and Qmn is the reactive
power flowing from node m to node n. |Imn| is the amplitude of the current flowing from
node m to node n. rmn is the resistance of the line mn, and xmn is the reactance of the line
mn. Expression k ∈ n means the set of nodes connected to node n on the network. |Un|
is the voltage amplitude of node n. There are safety constraints for on-line voltage and
circuit current: {

|Imn| ≤ Imax
mn

|Un|min ≤ |Un| ≤ |Un|min (20)

At the same time, there is also a non-convex power balance constraint as shown in
Formula (21):

|Imn|2 · um = P2
mn + Q2

mn (21)

In this regard, this paper intends to perform second-order cone relaxation on this
constraint to make it a convex constraint. As shown in Formula (22):∣∣∣∣∣∣∣[2Pmn 2Qmn |Imn|2 − |Umn|2

]T∣∣∣∣∣∣∣
2
≤ |Imn|2 + |Umn|2 (22)

The literature [37] shows that for distribution networks that meet certain conditions
(such as IEEE33), after the above relaxation, the optimal solution of the new problem is
also the optimal solution of the original problem. After second-order cone relaxation, the
difficulty of solving the calculation is greatly reduced.

4.4. Stackelberg Game and Bi-Level Optimization Model

As mentioned in Sections 4.1 and 4.3.1, there are two major assumptions.

Assumption 1. The competition in the wholesale market is enough to be sufficient, and a single
ADNO cannot affect the market price.

Assumption 2. The retail market is fully accurate and ADNO cannot affect the retail electricity price.

Under these assumptions, a Stackelberg Game based bi-level optimization model can
be established.

As mentioned in Section 4.1, the game between ADNO and customers can be modeled
using the Stackelberg game. Based on the contents of Sections 4.2 and 4.3, this text constructs
a bi-level optimization model. In this article, we consider the following decision variables
for ADNO in the current operating plan: PGEN

i,t , PREA
t , PSTRC

s,t , PSTRD
s,t , wi,t, and bs,t. Here,

qGEN
i,t represents the active power dispatch of the i-th distributed fossil unit by ADNO at

time t; PREA
t represents the power purchase amount from the wholesale market by ADNO
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at time t; PSTRC
s,t represents the charging dispatch of the s-th distributed fossil unit by ADNO

at time t; PSTRD
s,t represents the discharging dispatch of the s-th distributed fossil unit by

ADNO at time t; wi,t represents whether ADNO starts the i-th distributed fossil unit at
time t, where 0 means not started and 1 means started; and bs,t represents whether the s-th
energy storage device started at time t is in charging state (0) or discharging state (1).

For customers, they need to make demand decisions at a certain price level after
ADNO makes operating decisions. According to Section 4.3.1, the demand variable for
customers is dj,t, which represents the elastic electricity demand.

ADNO and customers have different decision objectives. ADNO aims to maxi-
mize revenue, while customers hope to minimize electricity costs. Therefore, a bi-level
game model can be constructed for this Stackelberg game as shown in Formula (23). In
Formula (23), the objective function of the upper-level problem is the maximization of

the revenue of the ADNO. ∑J
j=1 ∑T

t=1 pt · (dj,t +
∼

dj,t) is the total electricity sale income.

∑T
t=1( p̂t · PREA

t + ∑I
i (ci · PGEN

i,t + Oi · wi,t) + ∑J
j=1 subj,t) is the total cost, which contains

the electricity import cost p̂t · PREA
t , fossil generation cost (consider start-up and shut-

down cost) ∑I
i (ci · PGEN

i,t + Oi · wi,t), and demand subsidy cost ∑J
j=1 subj,t. The objective

function of the upper-level problem is the minimization of the total cost of customers.
As for the constraints, constraint (a) corresponds to the conditions stated in Section 4.2.1.
Section 4.2.1 describes the constraints on operating variables PSTRC

s,t and PSTRD
s,t , and the

variable set determined by these constraints is defined as ΩSTR. Therefore, PSTRC
s,t , PSTRD

s,t ,
and bs,t are elements of ΩSTR. Constraint (b) corresponds to the conditions stated in
Section 4.2.2. Section 4.2.2 describes the constraints on the operating variable PGEN

i,t , and the
variable set determined by these constraints is defined as ΩGEN . Therefore, PGEN

i,t and wi,t
are elements of ΩGEN . Constraint (b) corresponds to the conditions stated in Section 4.3.2.
Section 4.3.2 describes the network constraints, and the variable set determined by these
constraints is defined as ΩNET . Therefore, PGEN

i,t , PREA
t , PSTRC

s,t , PSTRD
s,t , wi,t, and bs,t are

elements of ΩNET . Constraint (d) is the value positive constraint. Constraint (e) is the
power balancing constraint. Constraint (e) corresponds to the subsidy constraint described
by Formula (16). A bi-level game model can be constructed for this Stackelberg game as
shown in Formula (23), and its detailed mathematical description is shown in Appendix A.

max
qGEN

i,t ,PREA
t ,PSTRC

s,t ,PSTRD
s,t ,wi,t ,bs,t ,subj,t

J

∑
j=1

T

∑
t=1

pt ·
(

dj,t +
∼

dj,t

)
−

T

∑
t=1

 p̂t · PREA
t +

I

∑
i

(
ci · PGEN

i,t + Oi · wi,t

)
+

J

∑
j=1

subj,t


s.t.

PSTRC
s,t , PSTRD
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∑
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T
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∼
dj,t

)
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J

∑
j
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J

∑
j

∼
dj,t +

S

∑
s

PSTRC
t = PREA

t +
I

∑
i

PGEN
i,t +

S

∑
s

PSTRD
t +

V

∑
v

PGEN
v,t

dj,t ∈ Dj,t
(
subj,t

)

(23)

where p̂t represents the spot price at time t; PGEN
v,t represents the output of the v-th wind

power unit at time t; dj,t represents the stochastic demand of the j-th customer at time t.
They are predicted using the method described in Section 3 of this article.
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4.5. Short-Term Equilibrium Solution and Long-Term Optimal Investment Analysis Method

It can be seen that the bi-level optimization model represented by Formula (23) has
an upper layer model with a convex optimization model and a lower layer model with
a linear optimization model. For such a model, the KKT conditions of the lower layer
optimization can be added to the constraints of the upper layer optimization model, and
the original bi-level optimization model can be transformed into a non-convex model with
complementary relaxation equality constraints. The KKT transformed problem formulation
is shown in Appendix A. This paper uses MOSEK (version 10) to find the global optimal
solution to this problem.

The solution obtained based on this method is the short-term equilibrium solution
for the active distribution network operation. In the long run, ADNO may achieve Pareto
improvement through investment in energy storage, power generation, and other assets.
In order to measure the degree of ADNO’s Pareto improvement, this paper proposes an
indicator as shown in Formula (24).

E f f ADNO =
E(Income)

E(CREA + CGEN + CPUN)
(24)

where E(·) represents the expectation. Income represents ADNO’s daily income; CREA

represents ADNO’s daily purchase cost from the wholesale market; CGEN represents
ADNO’s daily generation cost; CPUN represents ADNO’s contract penalty cost caused by
forecasting and scheduling deviations. Therefore, E f f ADNO can be expressed as shown in
Formula (25):

E f f ADNO =

E
(

∑J
j=1 ∑T

t=1 pt ·
(

d*
j,t +

∼
dRlz

j,t

))
∗ K

E
(

∑T
t=1

(
p̂Rlz

t · P*,REA
t + ∑I

i

(
ci · P*,GEN

i,t + Oi · w*
i,t

)
+ ∑J

j=1 sub*
j,t

)
+ Cpun

)
K

(25)

where the asterisk represents the equilibrium scheduling strategy in a period (day); Rlz
represents the realization value of uncertain quantities in a period (day); the subscript
K represents the total number of experiments conducted. Cpun is the penalty value for
ADNO based on the actual value of the unknown quantity. ADNO may be penalized in
the following cases: 1© The spot price estimate is too low, and local electricity could have
been used instead; or the spot price estimate is too high, and too much more expensive
local power generation is used. 2© The output of local wind turbines is overestimated, and
the insufficient part needs to be supplemented with more expensive power generation;
the output of local wind turbines is underestimated, and more expensive local fossil
energy or electricity spot is used. 3© The load forecast is underestimated, and more
expensive electricity spot or local fossil energy needs to be supplemented; the load forecast
is overestimated, and expensive electricity spot is purchased, which could have been
replaced by local wind power generation.

To simplify, this paper calculates Cpun as Cpun = ∑c Creason
c , and the relationship is

shown in Formula (26):
Creason

c = preason
c · qreason

c (26)

where Creason
c represents one of the above three penalties, preason

c is the corresponding unit
penalty cost, and qreason

c is the corresponding deviation.

5. Case Study
5.1. IEEE 33 Test System and Main Experimental Parameters

This article tests the effectiveness of the proposed method on a modified IEEE 33
active distribution network. It is a modified version of the IEEE 33 bus radial distribution
network [38], which is widely used in distribution system analysis [39–41]. Its baseline
configuration is shown in Figure 6, with energy storage systems installed at nodes 1 and 5.
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Wind turbines are installed at nodes 4, 20, and 10, while small gas generators are installed
at nodes 9, 23, and 26.
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As described in Section 3, this paper trains the conditional prediction model and
source embedding model based on 90% of the data in the dataset [24], and randomly
extracts 10% of the data as test data for electricity wholesale prices and wind power output.
We use the node load data in the dataset as the total real-time load sequence value of the
IEEE 33 active distribution network, and obtain the baseline load capacity ratio of IEEE
33 nodes from literature [42]. We distribute the real-time load data according to the capacity
ratio, and obtain the real-time load sequence of each load node. The real-time output data
of wind power generation is also distributed in a similar way. The main hyperparameter
models of the deep neural network model used in this paper are shown in Table 3.

Table 3. The main hyperparameters of the deep neural network model used in this paper.

Parameter Value

Encoder input dimension 72
Decoder input dimension 24
Decoder output dimension 24
Multi-head attention head number 4
Number of encoder blocks 2
Source embedding dimension 128
Encoder output dimension 128
Number of Decoder blocks 2
Number of training batch 48
Active function Tanh
Number of training epoch 200
Training optimizer Adam
Initial learning rate 5 × 10−5

The baseline data used in this article is shown in Table 4.
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Table 4. The baseline data used in this article.

Parameter Value

Network type IEEE33
Total wind turbine capacity 0.5 MW
Total energy storage capacity 0.15 MWh
Total gas turbine capacity 0.6 MW
Average variable cost of distributed gas power
generation 91 USD/MWh

Average start-up cost of distributed gas power
generation USD 20

Average demand Subsidy USD 10
Average spot price USD 81/MWh

5.2. Ablation Experiment of The Forecast Model

According to Section 3.1., in the case of high wind power penetration, there is a high
correlation between wholesale electricity price, wind power output, and ISO predicted
regional wind power output level. Therefore, in Section 3, this paper proposes a prediction
method based on source embedding and conditional prediction. Based on the test data,
the role of source embedding and conditional prediction proposed in this paper can be
tested. For a typical day, this paper compares the role of source embedding and conditional
forecasting in predicting short-term spot prices and local wind power output. The results
are shown in Figure 7.
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Figure 7. Forecast performance comparison curve for a typical day. (a) is the result comparison
of wind power forecast with and without source embedding; (b) is the result comparison of wind
power forecast with and without conditioning; (c) is the result comparison of spot price forecast
with and without source embedding; (d) is the result comparison of spot price forecast with and
without conditioning.
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From Figure 7a,b, it can be seen that for local wind power prediction, source em-
bedding can provide a certain improvement in prediction accuracy when conditional
predictions are used. Moreover, this improvement is larger than the accuracy improve-
ment from conditional prediction with source embedding. This may be because source
embedding can effectively capture the statistical characteristics of wind power output in
different geographical distributions, and the information it provides exceeds the role of
conditional prediction.

From Figure 7c,d, we can see that for the spot price forecast, source embedding can
provide a certain improvement in forecast accuracy when there are conditional forecasts.
However, this improvement is smaller than the accuracy improvement from conditional
prediction with source embedding. This may be because the spot price is greatly affected by
random factors, and the statistical coding of big data can provide less effective information.
However, under high wind power penetration, the system wind power has a significant
impact on the spot price, which is easier to be captured by the conditional probability
prediction model.

As a result, we can see that the source embedding method brings greater accuracy
in wind power forecasting and the conditional method brings greater accuracy in price
forecasting. When they are combined by our method, we obtain better results for both tasks.

This paper compares the control variables of these two factors in the test set and shows
the results in Table 5. We denote the node electricity price prediction as task1 and the local
wind power prediction as task2.

Table 5. Comparison of control variables for predictive effects.

Comparison Factor Test Task RMSE 1

Without source embedding task1 0.621
Without conditioning task1 0.594

Without source embedding task2 0.525
Without conditioning task2 0.553

1 Root mean squared error.

5.3. Equilibrium Scheduling and Short-Term Optimal Strategy

Figure 8 shows the effectiveness of the short-term equilibrium scheduling method
proposed in this study. The baseline system in this paper has high wind power penetration.
During the time period from 0:00 to 9:00 when the spot price is relatively low, through the
method proposed in this paper, ADNO can motivate customers to increase elastic demand.
At this time, a large number of elastic loads are excited to make use of cheap wind energy.
Since the spot price is higher than the marginal cost of internal distributed gas-fired power
generation, ADNO relies on local wind power and gas-fired power generation to meet the
load demand during the peak period of electricity consumption from 9:00 to 18:00. From
0:00 to 3:00 when the spot price is the cheapest, ADNO purchases a part of the electricity
spot and stores it based on energy storage equipment, and releases it during the peak
period of electricity consumption from 9:00 to 18:00 to meet the load demand, as shown
in Figure 8a.

If the spot price changes, ADNO’s equilibrium scheduling result changes significantly.
The dispatch result shown in Figure 8b is the case where the average spot price is reduced
to 50% of the original. At this time, the spot price from 0:00 to 9:00 is cheap enough.
During this time period, ADNO reduced local gas-fired power generation, fully imported
a large amount of spot goods, and increased incentives for customers to flexibly load.
It can be seen that based on the method proposed in this paper, ADNO can effectively
respond to the spot price of the main network. If the main grid wind power output is
too large, resulting in a drop in spot prices, ADNO can increase the consumption of main
grid wind power by dispatching energy storage and stimulating loads. If the main grid
power generation capacity is insufficient and the spot price rises, ADNO can dispatch local
wind power and gas generators to meet the power demand, or reduce the elastic demand
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of customers through incentives. In this process, clean energy has always been provided
priority. The potential for this level of response is far greater than that of a single load, or of
an unorganized distribution network.
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From a short-term subsidy strategy point of view, ADNO also has an optimal subsidy
level. It can be seen that there is an optimal value of ADNO’s subsidy incentives for
customers, as shown in Figure 9. The vertical axis is the ADNO efficiency index shown in
Formula (24), and the horizontal axis is the level of subsidies relative to the benchmark
value. Below this value, efficiency of ADNO can be improved through subsidies. However,
beyond this value, increasing subsidies cannot further improve the efficiency of ADNO.
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By controlling the variables, the effectiveness of the prediction method proposed in the
third section and the game equilibrium scheduling method proposed in the fourth section
can be demonstrated, and the results are shown in Table 6. It can be seen from the table that
since the prediction method proposed in this paper can achieve lower average prediction
errors, the penalty value can be reduced, thereby improving the E f f ADNO index value.
The two-tier optimization model proposed in this paper considers the adjustment effect of
ADNO subsidies on user demand. The results show that in the equilibrium outcome, there
is room for the benefit brought by the subsidy to exceed the cost of the subsidy. Compared
with the single-level optimization model, the method proposed in this paper can further
improve the operating efficiency of ADNO.

Table 6. Comparison study of the proposed methods.

Model Comparison * Eff ADNO Value

With LSTM [33] forecast model 2.209
With CNN [33] forecast model 2.304
With Seq2seq [34] forecast model 2.258
With proposed forecast model 2.496
With single-level (no-subsidy) optimization [43] 2.433
With proposed bi-level optimization 2.496

* All settings are consistent with the baseline other than the comparison factor.

5.4. Sensitivity to Long-Term Factors

Firstly, this article examines the impact of long-term average spot electricity price
levels on the profitability indicator E f f ADNO of ADNO. When the long-term average spot
electricity price levels fluctuate between 10% and 100% of the benchmark values shown
in Table 4, the change trend of E f f ADNO is shown in Figure 10. It can be seen from the
graph that the spot price has about a 50% fluctuation range on the profitability of ADNO,
indicating that spot prices have a significant impact on ADNO’s return on investment. It
is worth noting that the impact of spot price levels on E f f ADNO is marginally decreasing.
In this example, when the spot price exceeds 40% of the benchmark value, it has almost
no impact on E f f ADNO. This is because within this range, ADNO can adjust its demand,
comprehensively dispatch gas and wind power generators, and reduce power imports
from the main grid to maintain the profitability at a certain level.
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This reflects that the method proposed in this article can provide a “safeguard bound-
ary” for ADNO against the fluctuation of spot prices in the main grid. When the fluctuation
of spot prices exceeds this “safeguard boundary”, the profitability of ADNO can be guaran-
teed. This shows the robustness of our method to price variation.

Secondly, this article examines the impact of the elasticity coefficient Elaj,t of subsidies
on the yield indicator E f f ADNO of ADNO. When the mean elasticity coefficient of long-
term average subsidies fluctuates between 10% and 100% of the benchmark value shown
in Table 4, the trend of E f f ADNO change is shown in Figure 11. It can be seen from the
figure that the impact of the elasticity coefficient of subsidies on the yield indicator is about
20%. For ADNO, the smaller the elasticity coefficient of demand for subsidies, the higher
the yield rate of ADNO. Compared with the spot price, there is also a turning point in the
impact effect of the elasticity coefficient, which is about 80% of the benchmark value. After
the elasticity coefficient exceeds 80% of the benchmark value, it almost has no impact on
E f f ADNO. This is because after the elasticity coefficient exceeds this turning point, due to
the high cost of subsidies, ADNO almost no longer stimulates users’ elastic demand.
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This means that as long as the elasticity coefficient of demand for subsidies is within a
reasonable range, ADNO can improve its own revenue by subsidizing users. This shows
the robustness of our method to the subsidy elasticity level.

This article also examines the impact of wind power installed capacity on the prof-
itability indicator E f f ADNO. When the wind power installed capacity fluctuates between
10% and 100% of the benchmark value shown in Table 4, the change trend of E f f ADNO is
shown in Figure 12. If the penalty cost is not taken into account, the increase in wind power
installed capacity can always bring positive returns to ADNO. However, if the uncertainty
caused by the increase in wind power installed capacity leads to prediction errors and
economic penalties, there is also a turning point in the impact of wind power installed
capacity on the return on investment of ADNO, as shown in Figure 12.
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When the wind power installed capacity exceeds this turning point, the return on
investment of ADNO will show a slow downward trend. This shows the robustness of our
method to wind power installed capacity.

6. Conclusions

As the penetration rate of variable renewable energy such as wind power increases
gradually in the power system, the composition and balance of the power system also
changes gradually. The intermittency of renewable energy challenges the stability of the
traditional centralized generation and load-based transmission and distribution methods
at high proportions of renewable energy penetration. Therefore, the Active Distribution
Network Operator (ADNO) with distributed installation at the local level has a good
application prospect in the new scenario. However, ADNO faces the issue of how to
improve operational efficiency based on the types of local power generation and energy
storage installations and the nature of the market environment. In this regard, this paper
proposes a forecasting method that considers the coupling fluctuations of spot electricity
prices and renewable energy, as well as a bi-level optimization operation method based on
Stackelberg game for operation optimization of small-scale ADNO under high wind power
penetration rate. There are three major findings.

• The proposed conditional prediction method is effective. By analyzing the spot
electricity price and wind power output data under high wind power penetration rate,
this paper indicates the significant correlation between the two with zero time lag;
therefore, this paper proposes a method based on ISO wind power prediction, which
predicts the local wind power output and spot wholesale electricity price conditions.
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The method combines conditional prediction, transformer deep neural network, and
a source embedding method, and improves the prediction accuracy compared with
traditional prediction methods. The improvement in prediction accuracy helps to
reduce the penalty cost in ADNO operation and improve operational efficiency.

• A subsidy strategy may further improve the profitability of an ADNO. This paper
proposes a subsidy strategy that considers the impact of ADNO on user demand.
Under this subsidy strategy, a Stackelberg game is formed between the ADNO and
users. This paper proposes a game model and its solution method that considers
the spot electricity price of the main grid, local wind power output, local gas power
generation, local energy storage, and network constraints simultaneously. Through
simulation calculations, it is found that the comprehensive predictive method and
bi-level optimization method proposed in this paper can indeed further improve the
operational efficiency of ADNO compared with traditional methods.

• The proposed model is robust to external long-term factors. This paper compares the
impact of long-term factors under the methods proposed in this paper. It is found
that the methods proposed in this paper can provide a “guarantee boundary” for the
fluctuation of factors such as the spot price of the main grid and the elasticity of user
subsidies. When the fluctuation of factors exceeds this “guarantee boundary”, the
profitability of ADNO can be guaranteed.

However, there are some aspects that need to be attended to in future studies. Firstly,
the improvement is limited to the scenario where local wind power fluctuation is correlated
to grid-level wind power fluctuation, otherwise the conditionality may be missing. Sec-
ondly, the computation may be time consuming as the optimization model is non-convex,
especially for large-scale problems. Although this paper focuses on the off-line application,
further attention may be needed for on-line applications.

Author Contributions: Conceptualization, Y.S. and R.X.; methodology, F.L.; software, F.L.; inves-
tigation, M.J.; writing—original draft, Y.S. and H.L.; writing—review and editing, M.J. and X.G.;
visualization, H.L.; supervision, Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by State Grid Jilin Electric Power Co., Ltd. 2022 science and
technology “Jie Bang Gua Shuai” project, grant number 2022JBGS-05.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclatures

PSTRC
s,t , PSTRD

s,t Charging and discharging power of energy storage system s at time t
USTRC

s , USTRD
s Maximum charging/discharging power of s

bs,t Binary value indicate charging or discharging
eSTR

s,t Total stored electricity of s at time t
∆t Time interval
PGEN

i,t Active power output of i at time t
Costi Total production cost of i
Oi start-up cost of i
LGEN

i , UGEN
i Minimum and Maximum output of unit i

LRAM
i , URAM

i Minimum and Maximum climbing amount of unit i between units
pj,t Retail electricity price of customer j at time t
Demandj,t Total active power demand of customer j at time t

dj,t,
∼

dj,t Rigid and flexible demand of customer j at time t
Dj,t Set of demand responses to subsidies
subj,t ADNO’s subsidy strategy at time t
Elaj,t Elasticity coefficient of the power demand subsidy for j at time t.
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Pn, Qn Active and reactive power injected into node n
Pmn, Qmn Active and reactive power flowing from node m to node n
|Imn| Amplitude of the current flowing from node m to node n
|Un| Voltage amplitude of node n
Ω The variable set determined by constraints
p̂t Spot price at time t;
E f f ADNO ADNO’s profitability indicator
K Total number of experiments conducted
CGEN ADNO’s daily generation cost
CPUN ADNO’s contract penalty cost caused by forecasting and scheduling deviations
CPUN ADNO’s contract penalty cost caused by forecasting and scheduling deviations
PREA

t Power purchase amount from the wholesale market by ADNO at time t

Appendix A

Formula (22) is a simplified form of the bi-level model. A detailed mathematical
description of the bi-level is shown in Formula (A1).

max
qGEN

i,t ,qREA
t ,qSTEC

s,t ,qSTRD
s,t ,φGEN

i,t ,φGEN
v,t ,φSTRC

i,t ,φSTRD
i,t ,wi,t ,bs,t

F =

J

∑
j=1

T

∑
t=1

pt ·
(

dj,t +
∼
d j,t

)
−

T

∑
t=1

 p̂t · qREA
t +

I

∑
i

(
ci · qGEN

i,t + Oi · wi,t

)
+

J

∑
j=1

subj,t


s.t.

LRAM
i ≤ qGEN

i,t − qGEN
i,t−1 ≤ URAM

i ∀t = 2, . . . , T

0 ≤ qSTEC
s,t ≤ (1− bs,t)USTRC

s

0 ≤ qSTED
s,t ≤ bs,tUSTRD

s

eSTR
s,t = eSTR

s,t−1 +
(

qSRTC
s,t − qSTRD

s,t

)
∆t

0 ≤ eSTR
s,t ≤ UESTR

s

qREA
t ≥ 0

|Un|2 = |Um|2 − 2(rmn · Pmn + xmn ·Qmn) +
(
r2

mn + x2
mn
)
· |Imn|2

|Imn| ≤ Imax
mn

|Un|min ≤ |Un| ≤ |Un|min∣∣∣∣∣∣∣[2Pmn 2Qmn |Imn|2 − |Umn|2
]T∣∣∣∣∣∣∣

2
≤ |Imn|2 + |Umn|2

LGEN
t zi,t ≤ qGEN

i,t ≤ UGEN
t zi,t

wi,t =

{
1, zi,t − zi,t−1 = 1
0, otherwise
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∑
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Qn,t ≥ Gn ·φREA
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φGEN
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φGEN
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φj,t −∑
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Qn,t ≤ Gn ·φREA
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φGEN
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φGEN
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φj,t −∑
j∈n

∼
φj,t (L4)

LACT
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(
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(
subj,t
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(A1)

In Formula (A1), Gn is a 0–1 parameter indication whether node n is the interface
node that connects the distribution network and the grid. Variable φREA

t is the reactive
power imported by ADNO in time t. Variable φGEN

i,t is the reactive power generated by
fossil unit i in time t. Parameter φGEN

v,t is the reactive power generated by VRE unit i in time
t. Variable φj,t is the lower level decision variable of reactive power consumption. Variable
φj,t is the lower level decision variable of reactive power consumption by customer j in time

t. Parameter
∼
φj,t is the uncontrolable reactive power consumption by customer j in time t.
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The lower level problem is a relatively simple linear problem. This makes the whole
problem relatively more solvable. We substitute the lower level problem with its KKT
condition. The KKT transformed problem formulation is shown in Formula (A2).

max
qGEN

i,t ,qREA
t ,qSTEC

s,t ,qSTRD
s,t ,φGEN

i,t ,φGEN
v,t ,φSTRC

i,t ,φSTRD
i,t ,wi,t ,bs,t

F =

J

∑
j=1

T

∑
t=1

pt ·
(

dj,t +
∼
d j,t

)
−

T

∑
t=1

 p̂t · qREA
t +

I

∑
i

(
ci · qGEN

i,t + Oi · wi,t

)
+

J

∑
j=1

subj,t


s.t.

Original Upper level conditions
onditon(L1, L2, L3, L4, L5, L6)

[pt · diag]− λT × (A · x− b)− µT

x ≥ 0
λT(Ax− b) = 0

µTx = 0
λ ≥ 0
µ ≥ 0

(A2)

In Formula (A2), x is the original lower level decision variable vector[
d1,1, . . . d1,T , d2,1, . . . d2,T , . . . dJ,1, . . . dJ,T , φ1,1, . . . φ1,T , φ2,1, . . . φ2.T , . . . φJ,1, . . . φJ,T

]T
· diag is

a [J · T]× [J · T] diagnal matrix with all diagnal entries equal to 1. A is a parameter matrix
decided by condition (L1, L2, L3, L4, L5, and L6), which is not shown here due to its huge
length. However, since the original lower problem is pure linear, matrix A is basiclly very
simple to achieve. A is a [4 + 8 · [J · T]]× [2 · [J · T]] shaped matrix. b is a a [4 + 8 · [J · T]]
shaped matrix. λ and µ are the Lagrangian coefficients. λ is a [4 + 8 · [J · T]]× 1 shaped
vector. µ is a 1× [2 · [J · T]] shaped vector.
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