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Abstract: Green hydrogen is gaining increasing attention as a key component of the global energy
transition towards a more sustainable industry. Chile, with its vast renewable energy potential, is well
positioned to become a major producer and exporter of green hydrogen. In this context, this paper
explores the prospects for green hydrogen production and use in Chile. The perspectives presented
in this study are primarily based on a compilation of government reports and data from the scientific
literature, which primarily offer a theoretical perspective on the efficiency and cost of hydrogen
production. To address the need for experimental data, an ongoing experimental project was initiated
in March 2023. This project aims to assess the efficiency of hydrogen production and consumption in
the Atacama Desert through the deployment of a mobile on-site laboratory for hydrogen generation.
The facility is mainly composed by solar panels, electrolyzers, fuel cells, and a battery bank, and it
moves through the Atacama Desert in Chile at different altitudes, from the sea level, to measure the
efficiency of hydrogen generation through the energy approach. The challenges and opportunities
in Chile for developing a robust green hydrogen economy are also analyzed. According to the
results, Chile has remarkable renewable energy resources, particularly in solar and wind power,
that could be harnessed to produce green hydrogen. Chile has also established a supportive policy
framework that promotes the development of renewable energy and the adoption of green hydrogen
technologies. However, there are challenges that need to be addressed, such as the high capital costs
of green hydrogen production and the need for supportive infrastructure. Despite these challenges,
we argue that Chile has the potential to become a leading producer and exporter of green hydrogen
or derivatives such as ammonia or methanol. The country’s strategic location, political stability, and
strong commitment to renewable energy provide a favorable environment for the development of
a green hydrogen industry. The growing demand for clean energy and the increasing interest in
decarbonization present significant opportunities for Chile to capitalize on its renewable energy
resources and become a major player in the global green hydrogen market.

Keywords: green hydrogen; Chile; Antofagasta desert; Electrolyzer; green ammonia; carbon neutrality

1. Introduction

Green hydrogen (GH) is a clean energy carrier that can be produced by splitting water
molecules into hydrogen and oxygen using renewable energy sources, such as solar, wind,
or hydro power. The hydrogen produced in this way has no carbon footprint and can
be used in several industries, including transport [1], manufacturing [2,3], and power
generation [4–6]. In addition to its direct application as a fuel source, GH plays a vital
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role as a versatile raw material to produce various synthetic hydrocarbon fuels. These
synthetic fuels, commonly referred to as “electro fuels” or “E-fuels,” are derived from the
utilization of captured carbon dioxide or the separation of nitrogen from the atmosphere
through a reaction with GH. Some examples of e-fuels include E-methanol, E-methane, and
E-ammonium [7–9]. Chile is a country with a tremendous potential for renewable energy,
particularly in solar, tidal, and wind power [10,11]. As such, the country has established a
goal of attaining carbon neutrality by 2050 [12]. The production of green hydrogen is seen
as a key element to accomplish this target [12,13]. Figure 1 shows a visual representation
of the main energy projects currently in progress [14]. Comprehensive information about
these initiatives is available in Table S1 in the supporting information. In addition, the
country is also aiming to reduce its reliance on fossil fuels, especially in the mining and
transportation sectors.
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Figure 1. A list of projects currently declared under construction in 2021. The colorbar illustrates the
distribution of solar plants across various regions in Chile, representing the respective percentages.

In addition to its abundant renewable energy sources, Chile is well positioned to
development a green hydrogen industry, including its advantages for accessing export
markets, including those in Asia and Europe [15,16], and its strategic location as a hub for
energy trade between the Americas and the Pacific [10]. In 2020, the Chilean Government
released the national GH strategy, which is a long-term plan to establish a competitive
hydrogen industry based on renewable resources, with the goal of becoming the world’s
most cost-effective GH producer by 2030, together with positioning Chile as one of the
leading exporters of hydrogen by 2040 [13]. The strategy entails a three-stage plan to
accelerate the deployment of GH-based technologies in multiple economic sectors and
critical applications within the country [17]. The first stage of the strategy focuses on
tapping the domestic market and proposes the implementation of GH in six primary
applications: (i) refineries, (ii) ammonia, (iii) mining haul trucks, (iv) long-range buses,
(v) heavy-duty trucks, and (vi) blending GH into the gas network [12,13]. The second stage
involves the expansion of green ammonia production on a larger scale, promoting the
entry of the country into international markets through the establishment of commercial
agreements. This strategic approach aims to enhance the economic viability of the green
hydrogen market. In the third and final stage, Chile seeks to become a leading global
supplier of clean energy by expanding and diversifying green ammonia exports into
new applications, such as maritime transport, as well as synthetic fuels for the aviation
industry [18].

Notably, three of the six applications of the first stage are directly associated with
mining activities, namely, mining haul trucks, long-range buses, and heavy-duty trucks.
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The mining industry is a significant contributor to the country’s economy and plays a
crucial role in promoting the use of GH. Copper, being a well-known commodity, is a key
driver of this growth.

Figure 2 shows the approximate location of GH projects across various regions of the
country, organized by their corresponding application sectors. Further details of these
projects are listed in Table 1. It is worth noting that a significant portion of these projects are
concentrated in the Antofagasta region, which is located at the central part of the Atacama
Desert. This location has been chosen strategically due to two primary reasons: firstly,
the significant availability of renewable resources in the area (especially sunlight), and,
secondly, the well-established and thriving mining industry in the region. As a result, the
Antofagasta region offers a highly favorable location for the successful implementation of
GH projects [19].

Table 1. List of H2 projects along of Chile showed in Figure 2.

Hydrogen Projects in Antofagasta Region

1 Amer H2 (Methanol) 11 Hydra (H2: LD)
2 Cerro Pabellón (H2: LD *) 12 Tren a hidrogeno (H2: LD)
3 Planta Movil H2V (H2: LD) 13 HyEx (NH3: LD Ex)
4 Pauna Greener Future (H2, HN3: LD, Ex †) 14 Tango (NH3: Ex)
5 San Pedro de Atacama (H2: LD) 15 Proyecto H2V GNA (H2: LD)
6 Power to ammonia AES Andes (NH3: Ex) 16 Proyecto H2V Inversiones Farias (H2)
7 HOASIS (NH3: LD, Ex) 17 Genesis (H2: LD)
8 Faraday (NH3: Ex) 18 Paracelsus (H2: LD)
9 H2 solar projects (H2: LD) 19 METH2 Atacama (E-Methanol: LD, Ex)
10 Cerro Dominador (H2: LD)

Hydrogen projects in other Regions

(B) Coquimbo Region (LD):

- H2GN (H2)

(F) Aysen Region (LD)

- Mowl (H2)
- Renewsatable Koste Alke (H2)

(C) Valparaiso Region (LD):

- San Antonio Port (H2)
- HyPro Aconcagua (H2)
- Bahía Quinteros (H2)

(G) Magellan Region (Ex)

- Llaquedona (NH3)
- Pionero (NH3)
- H2 Magallanes (H2 and NH3)
- Proyecto HIF and Haru Oni (E-Methanol and e-gas)
- Vientos Magallanicos (NH3)
- H1 Magallanes (NH3)
- HNH (NH3)
- Cabeza de Mar (NH3)

Gente Grande (NH3)

(D) Metropolitan Region (LD):

- Gruas Horquillas FC (H2)
- Estación hidrogeno Aeropuerto (H2)
- Hydrogen Generator Unit (H2)
- Proyecto Minera San Pedro (H2)

(E) Biobio Region (LD)

- Green Steel project (H2)
- Zorzal (H2)
- HVallesur (H2)
- Kallsaya (H2)

Proyecto USCS (H2)

* LD: Local demand, † Ex: Export.
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Figure 2. Map of undergoing H2 projects along of Chile and zoom around Antofagasta region. The
black dots represent the capital city of each region.

This work provides a comprehensive and brief overview of the potential for hydrogen
generation in the diverse locations of the Antofagasta region by synthesizing relevant data
from several reports. Moreover, the study introduces a novel Green Hydrogen Mobile
Pilot Plant dedicated to mapping the real GH generation potential across the Atacama
Desert. The mobile facility traversed the region, using sunlight to produce hydrogen,
and simultaneously measuring efficiency and other crucial factors under realistic field
conditions. The results of this approach reinforce the potential of the Antofagasta region
for hydrogen generation. Furthermore, the paper reports on a forthcoming measuring
campaign, which aims to offer policymakers and industry stakeholders valuable field data.
This data will be vital for promoting the development of the hydrogen industry in the
region, and, consequently, aid in meeting global climate targets.
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2. Antofagasta as a HUB of Green Hydrogen

The National Energy Commission of Chile (Comisión nacional de Energía de Chile,
CNE) has recently released the preliminary demand report for the period of 2021–2041
in the country, which projects a progressive rise of energy demand for the production
of GH during that period. The report indicates that the energy demand is expected to
increase from 199 GWh in 2023 to 40,636 GWh in 2041 in order to achieve global carbon
neutrality [20]. To meet this demand, a gradual integration of operational projects is
necessary. In this scenario, the Atacama Desert becomes a key location for the development
of large-scale PV and CSP systems, owing to its status as one of the regions with the highest
levels of solar radiation worldwide (see Figure 3).

Energies 2023, 16, x FOR PEER REVIEW 5 of 13 
 

 

Mobile Pilot Plant dedicated to mapping the real GH generation potential across the Ata-
cama Desert. The mobile facility traversed the region, using sunlight to produce hydro-
gen, and simultaneously measuring efficiency and other crucial factors under realistic 
field conditions. The results of this approach reinforce the potential of the Antofagasta 
region for hydrogen generation. Furthermore, the paper reports on a forthcoming meas-
uring campaign, which aims to offer policymakers and industry stakeholders valuable 
field data. This data will be vital for promoting the development of the hydrogen industry 
in the region, and, consequently, aid in meeting global climate targets. 

 

2. Antofagasta as a HUB of Green Hydrogen 
The National Energy Commission of Chile (Comisión nacional de Energía de Chile, 

CNE) has recently released the preliminary demand report for the period of 2021–2041 in 
the country, which projects a progressive rise of energy demand for the production of GH 
during that period. The report indicates that the energy demand is expected to increase 
from 199 GWh in 2023 to 40,636 GWh in 2041 in order to achieve global carbon neutrality 
[20]. To meet this demand, a gradual integration of operational projects is necessary. In 
this scenario, the Atacama Desert becomes a key location for the development of large-
scale PV and CSP systems, owing to its status as one of the regions with the highest levels 
of solar radiation worldwide (see Figure 3). 

 
Figure 3. Long term average solar potential of part of Chile between 1999–2018: (a) direct normal 
radiation, (b) Global horizontal radiation and (c) photovoltaic power[21]. 

The project map released by the Chilean association of renewable energies and stor-
age (ACERA, Asociación Chilena de Energías Renovables y Almacenamiento) reveals that 
the Antofagasta region will witness a significant influx of 123 photovoltaic solar projects 
in the near future. A detailed breakdown of the number of projects and their correspond-
ing power output for each stage is provided in Table 2. Furthermore, the geographical 
locations (approximately) of the solar photovoltaic projects are displayed in Figure 4. 

  

Figure 3. Long term average solar potential of part of Chile between 1999–2018: (a) direct normal
radiation, (b) Global horizontal radiation and (c) photovoltaic power [21].

The project map released by the Chilean association of renewable energies and storage
(ACERA, Asociación Chilena de Energías Renovables y Almacenamiento) reveals that the
Antofagasta region will witness a significant influx of 123 photovoltaic solar projects in
the near future. A detailed breakdown of the number of projects and their corresponding
power output for each stage is provided in Table 2. Furthermore, the geographical locations
(approximately) of the solar photovoltaic projects are displayed in Figure 4.

Table 2. List of energy projects under development in Antofagasta and total power (MW).

Technology

Status of the Project

TotalApproved Under
Construction

Under
Classification Testing Operational

# † MW # MW # MW # MW # MW # MW

Solar photovoltaic 56 8120 21 1366 7 2802 9 755 30 1669 123 15,012

Solar photovoltaic
+ BESS * 2 235 3 259 1 85 0 0 0 0 6 579

Thermosolar 7 1687 0 0 1 300 0 0 1 108 9 2045

Geothermal 0 0 0 0 0 0 1 33 1 39 2 72

Eolic 10 2645 3 280 4 2055 1 12 6 793 24 5785

BESS 2 168 1 2 1 57 0 0 3 52 7 279

Carnot battery 0 0 0 0 1 560 0 0 0 0 1 560

Biomass 1 322 0 0 0 0 0 0 0 0 1 322

* BESS: Battery Energy Storage Systems; † #: number of projects.
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Having an understanding of the solar spectrum is critical in designing and studying
numerous technologies [22]. It is important to investigate the performance of photovoltaic
modules after their manufacture. According to the literature, it is mentioned that there
are two methods to evaluate the performance of PV modules: power analysis and energy
analysis [23]. Generally, the power is measured under standard test conditions (STC), that
is, spectral distribution with AM 1.5 air mass at a temperature of 25 ◦C and an intensity of
1000 Wm−2. This approach makes necessary to assume that the modules are installed in
places where STC conditions are unlikely to occur. Therefore, evaluating the performance
of PV modules by power may not be a suitable option if the STC conditions are not met.
On the other hand, the energy rating of the module plays a fundamental role to measure
the performance in field conditions [24]. In the latter, the energy rating of the module is
determined by measuring its characteristics along with the corresponding data on environ-
mental conditions. In this regard, the in situ measurement of PV modules is imperative
to accurately evaluate their operational performance under realistic environments. The
adoption of such a measurement process has become a prerequisite for ensuring the reliable
assessment of PV modules.

Green Hydrogen Mobile Pilot Plant

Numerous research centers are dedicated to exploring the potential applications of
green hydrogen in Chile. Among these institutions, the “Centro de Investigación Científica
y Tecnológica de la Minería” (CICITEM) focuses on developing innovative solutions and
technologies for the mining industry. CICITEM has recently undertaken a project named the
“Green Hydrogen Mobile Pilot Plant (Planta Piloto Portable de Hidrógeno Verde, P3H2V)”.
The aim of this project is to assess and delineate the efficiencies of the production and
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use of hydrogen within the context of the Atacama Desert, particularly in proximity to
mining operations located in the region. These mining activities represent a significant
potential market for hydrogen as an energy carrier or renewable fuel. This mobile pilot
plant employs an electrolysis process to divide water into hydrogen and oxygen, storing the
hydrogen in high-pressure tanks for later use. The P3H2V plant is designed to evaluate the
feasibility and effectiveness of green hydrogen production under different environmental
conditions and scenarios. It boasts a production capacity of up to 0.5 Nm3 of hydrogen per
hour. The main objective of this initiative is to demonstrate the viability of producing green
hydrogen using renewable energy sources in a variety of settings, with a specific focus on
its potential application in the mining sector. This pilot plant is part of a broader effort
by CICITEM to promote the use of green hydrogen as a sustainable and clean alternative
to fossil fuels. The lack of empirical investigations related to hydrogen production in the
Antofagasta region has generated considerable uncertainty regarding the development of
this nascent industry. To address this knowledge gap, the P3H2V plant will facilitate a
comprehensive investigation into the feasibility and sustainability of hydrogen production
in this region.

Figure 5 displays a schematic representation (Figure 5a) and a corresponding pho-
tograph (Figure 5b) of the P3H2V during its initial measurements conducted within the
Atacama Desert. The sequence of elements showed in a, arranged from left to right,
comprises photovoltaic panels, a hydrogen storage tank, a fire wall to mitigate potential
flammability hazards associated with hydrogen, a rack containing three fuel cells, a water
purification system, and a reverse osmosis system. Additionally, the facility also includes
two racks with four electrolyzers and a hydrogen purification unit each. Auxiliary systems
such as a water storage tank and a battery bank will be located outside of the container to
complement the P3H2V plant.
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The production of GH with the P3HV plant is expected to yield a daily output ranging
from 2.0 to 2.5 kg H2. The operation of the P3HV system is composed by three primary sub-
systems, illustrated in the flowchart shown in Figure 6. Firstly, the photovoltaic panels, with
a total installed power of 31.8 kW, are set at the beginning of each measurement “campaign”
for photovoltaic energy generation. 27.2 kW of them are allocated for the electrolyzers in
the hydrogen production system, and 5.4 kW are used for the auxiliary equipment of the
plant. The production of H2 by electrolyzers is the second subsystem, which uses water
fed from the WTM-01 tank. The water in the tank has been conditioned beforehand in the
reverse osmosis and deionization units, to decrease its electrical conductivity to 20 mS/cm
or less (tolerance accepted by electrolyzers). The production system comprises eight anion
exchange membrane (AEM) electrolyzers with a total installed capacity of 20 kW, marked
EZ-01 to EZ-08. In them, the water is dissociated into hydrogen and oxygen inside of
two separate chambers. While sunlight is available, the electrolyzers are powered by the
photovoltaic panels. The H2 produced contains a small fraction of water vapor, so that, it is
sent to H2 dryer-type purifiers, HPS-01 and HPS-02. This achieves a purity level of 99.999%
because water is the main impurity the outcome from the electrolyzers of the facility. The
H2 is then stored in a type IV tank at 35 bar pf pressure or used directly in the fuel cell
bank. The O2 produced in the process is vented out of the container. Lastly, the H2 fuel cells
for power generation constitute the third subsystem. It is composed of proton exchange
membrane (PEM) fuel cell bank, FC-01, FC-02, and FC-03, totalizing a maximum capacity
of 3.3 kWp. The fuel cells are fed by H2 coming from either the production system or from
H2 storage area, through compressors integrated inside the fuel cells. The subsystems
enable a catalytic electrochemical reaction that generates useful electricity, which can be
either stored in a battery bank or used as backup power to power the electrolyzers with
electricity when solar radiation is intermittent, as well as for the plant’s utilities such as
lighting, screen, and computers, among others.
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Figure 6. Simplified Flowsheet of Green Hydrogen Mobile Pilot Plant (Planta Piloto Portable de
Hidrógeno Verde, P3H2V).

The P3H2V facility operates by supplying solar electric power and desalinated water
to the electrolyzers during daylight hours, resulting in the production of H2, which is then
stored in a type IV gaseous storage tank. During periods of limited solar resources, such as
in the afternoons and nights, or when the performance of the electrolyzers drops signifi-
cantly, the fuel cells are activated to generate electricity. This innovative approach enables
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the P3H2V facility to leverage the surplus of solar energy for the generation of electrical
power, thereby achieving sustainable and efficient energy production and management.

The sampling campaign will consist of a minimum of 16 selected points (See
Figure 7), which will be chosen based on their scientific and technological interest, utilizing
the methodological criteria described below. Table 3 provides a detailed outline of the
experimental design and georeferencing of the sites. The sampling campaign was designed
based on several criteria, including:

1. Distance between points: A maximum of 100 km between consecutive points has
been set.

2. Altitude variation: The campaign will prioritize validation at different altitudes up
to those relevant to the mining industry (~4000 m above sea level) in order to obtain
data of the sensitivity of the PEM Fuel Cell to altitude.

3. Solar irradiation: The Antofagasta Region has favorable irradiation conditions, but
local topography may affect the performance of photovoltaic panels. Thus, this factor
has been considered as well.

4. Logistics: Diverse factors, including proximity to roads, terrain inclination, topo-
graphical flatness of the terrain, availability of municipal permits, access for transport
trucks, and the public or private nature of the domain.
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Table 3. Georeferencing of the initial proposal for the P3H2V sampling campaign showed in Figure 7.

Location Latitude Longitude

1 Ollagüe 21◦13′2.40” S 68◦14′28.82” W

2 Quillagua 21◦42′17.49” S 69◦32′0.05” W

3 Barriles 22◦9′58.77” S 70◦1′7.65” W

4 Calama 22◦26′3.76” S 68◦51′31.52” W

5 Pass Jama/ALMA
Observatory 23◦13′38.25” S 67◦5′50.34” W

6 San Pedro de Atacama 22◦54′48.35” S 68◦10′59.52” W

7 Sierra Gorda 22◦53′3.16” S 69◦18′44.53” W

8 Michilla 22◦42′6.80” S 70◦16′25.29” W

9 Peine 23◦39′53.88” S 68◦4′19.07” W

10 Mine Gabriela Mistral 23◦29′24.76” S 68◦48′55.43” W

11 Baquedano 23◦33′53.08” S 70◦14′34.97” W

12 Mine Zaldívar/Escondida 24◦13′57.79” S 69◦0′6.23” W

13 PSDA Antofagasta 24◦5′24.14” S 69◦55′44.29” W

14 Pan American Highway
North, Route 5 24◦29′48.43” S 69◦50′31.43” W

15 Paranal Observatory 24◦43′46.03” S 70◦21′49.35” W

16 Taltal 25◦34′7.19” S 70◦21′51.00” W

By taking these factors into account for the design of the sampling campaign, it is
expected to collect data that will contribute significant scientific and technical value.

3. Future and Perspectives

Data from the preliminary analysis (five-day campaign) shows that a generation of
the theoretical total of 2.8 kg/day-H2 is achievable, but in the first point of campaign, only
an average of 1.8 kg has been achieved of H2 generated. The reduction in daily energy
generation can be attributed to the soiling of the photovoltaic and the high temperature
of the panels, which negatively impacts overall efficiency. Calculations indicate that the
peak capacity is attained for five hours of the day, with a notable decline in power output
observed during the afternoon. These findings highlight the relevance of addressing
panel soiling to optimize energy production and guarantee consistent and reliable electrical
output. Further research and development in this area may result in solutions for improving
the performance and longevity of photovoltaic systems.

Assessing parameters such as: Electrolyzers efficiency, hydrogen storage issues, and
fuel cell utilization hold significant importance within the field of hydrogen generation, as
the accurate measurement of these parameters is crucial in determining the overall efficiency
of the process. In addition, the impact of seasons and day/night on photovoltaic power will
be considered when generating this map. Therefore, a rigorous analysis of the measured
parameters will be conducted to exclude any potential errors and establish potential of
hydrogen generation in the Antofagasta region in an empirical basis and realistic conditions.
The comprehensive mapping campaigns and the data obtained will be useful to develop a
simulation-based regional map. The map will enable the identification of strategic points
within the region that has the highest production efficiency. The simulation-based approach
provides a more advanced and precise depiction of the hydrogen generation system, which
enables the identification of potential bottlenecks and opportunities for optimization.

This project aims to provide a comprehensive understanding of the key factors influ-
encing the efficiency of hydrogen production, storage, and utilization. The forthcoming
publication of the full map of GH production under realistic field conditions by the end
of this year is anticipated to significantly contribute to this endeavour. The growth of
the GH energy industry presents various challenges that necessitate careful attention and
proactive measures. These challenges include the requirement for large-scale technological
industrialization, substantial investments, and coordinated efforts to meet the increasing
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demand for GH. Furthermore, there is an urgent need to cultivate a skilled talent pool
proficient in electrolysis, hydrogen storage, fuel cell technology, and system integration.
Overcoming these challenges calls for continuous research and development initiatives
to drive innovation and surmount technical limitations. Collaborative actions involving
governments, industry stakeholders, and research institutions are essential for overcoming
these challenges and fostering a resilient and sustainable hydrogen economy.

The insights derived from this study hold immense value for policymakers and
stakeholders in the energy sector and industry, offering essential information to guide
decision-making processes and strategic planning. While economic considerations are not
the primary focus of this project, the findings and knowledge generated will contribute to
a more comprehensive understanding of the technical aspects and potential applications
of hydrogen in the region. This understanding can inform future economic assessments
and decision-making processes, enabling a more informed and strategic approach to the
development of hydrogen-related projects in the area. With the anticipated publication
of the full map of GH production under realistic field conditions by the end of this year,
stakeholders will have access to comprehensive data and analysis that can inform and
support their efforts in advancing the hydrogen economy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en16114509/s1, Table S1: With a list of projects currently declared
under construction in 2021all Under going energy projects in Chile 2021. This list was used to plot
the Figure 1.
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