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Abstract: Recently, carbon price forecasting has become critical for financial markets and environ-
mental protection. Due to their dynamic, nonlinear, and high noise characteristics, predicting carbon
prices is difficult. Machine learning forecasting often uses stacked ensemble algorithms. As a result,
common stacking has many limitations when applied to time series data, as its cross-validation
process disrupts the temporal sequentiality of the data. Using a double sliding window scheme, we
proposed an improved stacking ensemble algorithm that avoided overfitting risks and maintained
temporal sequentiality. We replaced cross-validation with walk-forward validation. Our empirical
experiment involved the design of two dynamic forecasting frameworks utilizing the improved
algorithm. This incorporated forecasting models from different domains as base learners. We used
three popular machine learning models as the meta-model to integrate the predictions of each base
learner, further narrowing the gap between the final predictions and the observations. The empirical
part of this study used the return of carbon prices from the Shenzhen carbon market in China as the
prediction target. This verified the enhanced accuracy of the modified stacking algorithm through
the use of five statistical metrics and the model confidence set (MCS). Furthermore, we constructed
a portfolio to examine the practical usefulness of the improved stacking algorithm. Empirical re-
sults showed that the improved stacking algorithm could significantly and robustly improve model
prediction accuracy. Support vector machines (SVR) aggregated results better than the other two
meta-models (Random forest and XGBoost) in the aggregation step. In different volatility states,
the modified stacking algorithm performed differently. We also found that aggressive investment
strategies can help investors achieve higher investment returns with carbon option assets.

Keywords: carbon pricing; ensemble learning; carbon return forecasting; improved stacking; investment
guidance

1. Introduction

In recent years, with the aggravation of global warming, the topic of carbon dioxide
emissions has attracted widespread attention. Governments worldwide have implemented
numerous mitigation tools to address this challenge [1]. China, the second largest economy
globally, produces the greatest carbon emissions, which means that it is of great significance
to accurately predict the trend of its carbon return and grasp the fluctuation characteristics
of its carbon markets [2]. More specifically, accurate expected carbon return provides a
scientific basis for investors and regulators in the carbon market, reduces market risks,
and effectively promotes the healthy development of the carbon financial market [3].
Therefore, accurate prediction of carbon returns takes priority in academic research and
practical applications, from the perspectives of both guiding investment and environmental
protection.

Multi-model integration is a technical approach to improve model performance by
integrating the results of multiple models. With the great popularity of machine learning in
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the forecasting field, ensemble learning, as the most frequently used multi-model integra-
tion technique in machine learning applications, has attracted more and more attention.
Bagging, boosting, and stacking are three classic ensemble learning algorithms, which are
the foundation for a series of ensemble algorithms. The core idea of bagging and boosting
is to change the way training data are fed to the model to construct a better model, while
stacking uses cross-validation to collect and integrate the results of different models, which
focuses more on using the diversity of different models in capturing sample information.
However, the common stacking algorithm uses cross-validation, aiming to avoid overfitting,
but, at the same time, this process also disrupts the temporal sequentiality of the samples.
Therefore, some necessary improvements are required to adopt the stacking algorithm for
time series prediction.

1.1. Literature Review

In order to clearly show the progress of the relevant work, the literature review is
partitioned into some sub-sections. The first sub-section provides a detailed overview of
the current work on carbon market prediction and its limitations. The second sub-section
introduces the development of ensemble learning, especially the stacking algorithms.
Finally, we summarize the feasibility of combining carbon price prediction with the stacking
algorithm based on the literature review.

1.1.1. Progress in Carbon Market Prediction

The prediction of carbon return (in this study, carbon return refers to the log return of
carbon prices, and the calculation follows Equation (29)) is complex and challenging work.
Fan et al. [4] enumerated the chaotic characteristics of the carbon market and summarized
that the carbon price is dynamically nonlinear, non-stationary, and abundantly noisy. Many
scholars have made attempts in different ways to obtain more accurate predictions. The first
is to elaborate the predicting model frameworks to boost the predicting performance based
on historical data, which is regarded as the modeling paradigm in carbon market prediction
studies. They must focus on fitting the dynamic characteristics of the carbon price, by
itself, more accurately. According to our survey, the predictive models for carbon market
prediction can be divided into three types of methods, which are traditional statistical or
econometric methods, single-model machine learning methods, and hybrid models based
on decomposition and integration.

Traditional statistical and econometric methods, such as ARIMA [5], GARCH-type
models [6,7], and HAR-RV [8], are simple, effective, and lightweight, but can only reflect
linear changes and have high requirements for data distribution. With the increasing
popularity of artificial intelligence technology in recent years, many scholars have tried to
apply machine learning models to estimate the variability of the carbon market. There is
increasing evidence to show that machine learning methods outperform other models for
nonlinear time series prediction [9]. Compared with the traditional model, the machine
learning-based predictive models, such as Support Vector Machine (SVM) [10], Artificial
Neural Network (ANN) [11], Convolutional Neural Network (CNN), and Long Short-
Term Memory network (LSTM) [12], have greater forecasting accuracy when applied to
carbon market prediction. The shortcomings of these models are embodied in the results
being highly dependent on parameter tuning, which can be blamed for overfitting the
nonlinearity of data. These shortcomings were recognized as inherent and difficult to
overcome until the work of Ji et al. [12], which combined the machine learning method and
traditional econometric method into the same forecasting framework to promote strengths
and palliate weaknesses.

As for the hybrid model, most of them follow three steps, which are time series
decomposition, separate forecast, and result aggregation. In different cases, the choice of
method for the three steps varies, but they all aim to bring a competitive accuracy to carbon
market prediction. Some advanced signal decomposition methods, such as EMD [13],
VMD [14], and CEEMDAN [3], have been introduced to decompose the original time
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series into several independent series of simple patterns, and then different prediction
methods are used to predict the decomposed sequences separately. Some researchers
have contributed to finding a more suitable prediction model for the second step; for
example, Qin et al. [15] innovatively adopted Local Polynomial Prediction (LPP) and Sun
and Duan [16] used the improved Extreme Learning Machine (ELM). Thirdly, the final
result is obtained by integrating the predicted results through different strategies [17,18].
According to current studies, the hybrid model produces the most stable and accurate
predictions. However, using such a hybrid model has the potential risk of losing essential
information or introducing overwhelming noise during the process of decomposition. As
of yet, a perfect solution to solving the overfitting problem has not been proposed.

Additionally, Fan et al. [4] have pointed out that the carbon market is affected by the
market mechanism, climate agreements, climate change, economic situation, and other
factors, showing a trend of instability and fluctuation. Despite this, in most of the current
carbon prediction literature, multi-variable prediction has received little attention, and
the potential predictive power of related variables is ignored [19]. The introduction of
multi-variable techniques into carbon return prediction has great potential and needs to be
explored. Current multivariate prediction of the carbon market is mostly related to energy
commodities [20,21]. A notable exception is Tan et al. [19], who comprehensively assessed
the predictive power of 53 commodity and financial predictors related to European carbon
futures return. These works consider carbon-related variables, but the prediction model
they chose still has room for improvement.

According to previous studies [22,23], the relationship between the return and the
volatility is close. At present, there is a considerable amount of literature focusing on
the volatility of the carbon market. Benz and Trück [24] constructed a stochastic model
using Markov switching and AR-GARCH models, as well as in-sample and out-of-sample
predictive analysis. Their model captures features such as skewness and excessive kurtosis
in carbon price volatility and, in particular, distinguishes different stages of volatility
in returns. Byun and Cho [7] explored the ability of the GARCH-type model, implied
volatility, and K-nearest neighbour method to predict carbon price volatility and proved
that the GARCH-type model has the best effect, based on empirical results. Segnon et al. [6]
reviewed the price volatility models, ranging from simple GARCH-type models to recently
popular volatility models with long-term dependence and state transitions. For investors
in the market, carbon returns can better reflect the profits generated by carbon assets. Thus,
how to use volatility information to ferret out the potential carbon return is an unstudied
but attractive direction.

1.1.2. Development of Ensemble Learning

The core idea of ensemble learning is to aggregate multiple base learners into a strong
learner with superior generalization performance by combining strategies. Dasarathy and
Sheela [25] proposed a composite classifier system consisting of two or more component
classifiers of different types, which is widely recognized as the origin of ensemble learning.
Schapire [26] proposed the boosting algorithm, which converts a weak learner into a strong
learner. The stacking algorithm was proposed by Wolpert [27], in which the core idea is to
aggregate the results of multiple base models through a complex level-2 model. Breiman [28]
proposed the bagging algorithm, which aggregates the results of various models trained
by subsamples. These three classic ensemble algorithms laid a solid foundation for the
development of ensemble learning in the future.

In general, there are three main differences between ensemble algorithms: the process
to feed training data, the ways to generate individual learners, and the combination
strategies. These three aspects also represent the directions in which ensemble learning
researchers can innovate and improve the algorithm. For the stacking algorithm, the main
innovations of the previous studies concentrated on the selection and generation of base
learners, the optimization of combination strategies, and the extension of applications.
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Impressive work on base learners for stacking ensemble algorithms includes the follow-
ing: Ding and Wu [29] used an artificial bee colony algorithm to construct the base learners,
and their improved stacking ensemble algorithm performs well on multiple datasets, which
proves the successful introduction of the bee colony algorithm. Bakurov et al. [30] chose
four predictive models of different types as primary models to maintain the diversity in
order to improve the generalization performance. Agarwal and Chowdary [31] proposed
an improved stacking algorithm called A-stacking. They clustered the training set and
then selected the results of the best base learner in each cluster as the input to the level-2
meta-learner.

Many researchers have introduced different combination strategies to optimize the
common stacking algorithm. Varshini et al. [32] used generalized linear models, decision
trees, Support Vector Machines, and Random Forests as meta-learners for the combination
step. Lacy et al. [33] compared the differences between using linear and nonlinear models
as the meta-learner. Menahem et al. [34] proposed an improved stacking model called
“Troika”, and their main work was to add a third layer to further aggregate the results of the
meta-learner. Pari et al. [35] added a middle layer to combine the results of base learners,
and then used the combined results as input for the meta-learner.

Due to its excellent performance, stacking has been applied in various fields, including
computer science [36], medicine [37], engineering [38], and finance [39]. However, the
application of the stacking algorithm for predicting carbon market changes has not attracted
much attention, even though it has a wide field of application with good prospects.

1.1.3. Literature Review Summary

Firstly, current research on carbon market forecasting is aimed at finding the best
model to measure and predict the dynamic changes in the carbon market. However, as
mentioned above, it is difficult to break through the inherent limitations of a specific forecast
model, whether for machine learning models or statistical models. The hybrid model can,
to some extent, take advantage of multiple models, but its potential risks mentioned above
cannot be ignored. Stacking is a popular ensemble algorithm in machine learning, which
mitigates overfitting while integrating multiple models. Compared to the hybrid model,
the stacking algorithm has no decomposition step in the integration process, so there is
no risk of information leakage or noise introduction. The idea of introducing stacking is a
good attempt to overcome the drawbacks of hybrid models, but considering the problem of
cross-validation failure on time series data prediction, some improvements are necessary.

Secondly, the current innovative work on the common stacking algorithm focuses on
the generation of base learners and the improvement of combination strategies, but there
are few improvements for cross-validation, which is necessary for applying stacking to
time series data prediction and is of great significance for extending its application area.

Finally, the multiple variables related to carbon prices and hidden information in
carbon price volatility have not received much attention in carbon market forecasting,
which would help a lot in building more reliable and systematic forecasts.

1.2. Objectives and Contributions

In this paper, we focus on several core issues, which are reflected in the following
three questions:

• How to modify the common stacking algorithm to maintain the sequentiality of the time series
training data and at the same time improve the predictive power?;

• How to apply the improved stacking ensemble algorithm to carbon return prediction?;
• How to evaluate the improved algorithm’s practical power and provide investment guidance

based on the results?

For the first question, we elaborately designed a double sliding window scheme to
replace the cross-validation scheme of the common stacking algorithm. The improved
stacking ensemble algorithm uses a sliding window scheme in both the base learner training
phase and the meta-learner aggregation phase. This improvement ensures that the time
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series sample are sequential in order and, similar to cross-validation, the dataset is divided
and fed to the base learner, thus effectively avoiding overfitting.

For the second question, we designed two forecasting frameworks based on the
improved stacking algorithm for the empirical experiment. One is a homogeneous ensemble
framework that combines model selection methods based on factor-augmented regression
with Random Forest (RF), Support Vector Regression (SVR), and eXtreme gradient boosting
(XGBoost) in machine learning. The other is a heterogeneous ensemble framework, which
incorporates seven forecasting models as base learners: MMA (Mallows Model Average),
LASSO regression, Ridge regression, E-net regression, Random Forest, Support Vector
Regression, and XGBoost. The three popular aggregation models of machine learning are
used as the meta-learners of the framework. With 34 carbon price-related variables as
features and the return of carbon price as the target variable, we constructed six ensemble
models based on the improved stacking algorithm.

For the final question, we introduced a new perspective to examine the performance
of the improved algorithm by dividing the carbon return series into turmoil and tranquil
states, which made the evaluation more practically valid. To implement this purpose, we
adopted the SWARCH (Markov-switching GARCH) model to divide the carbon market
into “high” and “low” volatility states, and the subsequent assessments were distinguished
into two parts. Five statistical accuracy metrics and the model confidence set (MCS) were
used to evaluate the performance of the improved algorithm in improving accuracy. In
addition, we constructed a systematic portfolio experiment to verify the economic impact
of the improved stacking algorithm on different volatility states. As far as we know, this
study is the first work to apply the carbon return prediction model for practical usage and
examine it under different volatile levels.

The main contributions of this paper can be briefly summarized as follows:

1. This study innovatively improves the common stacking algorithm for better applica-
tion to time series forecasting, and the results show that the modified algorithm can
significantly improve the accuracy and increase the economic gain;

2. The two ensemble forecasting frameworks we constructed are robust and accurate for
predicting carbon price return;

3. We novelly explored the predictability of carbon option returns using the stacking
ensemble algorithm from a statistical and economic perspective, and the characteristics
of carbon assets we obtained are very enlightening to relevant practitioners and
academics;

4. We linked the carbon return forecast with the volatility of the carbon market, opening
up a new perspective to capture the variations of predictability of returns under
different market conditions.

The rest of the paper is organized as follows. Section 2 includes the innovative work
of this study and introduces the algorithm, the forecasting models involved, and the
evaluation criteria. Section 3 provides a brief introduction and exploratory analysis of the
data. Section 4 presents the empirical results, including accuracy metrics results, MCS
analysis, and portfolio results. The research conclusions and future work are discussed in
Section 5.

2. Methodology and Models
2.1. Improvement on the Stacking Ensemble Algorithm
2.1.1. The Common Stacking Algorithm

The core idea of the stacking ensemble algorithm is to divide the training process into
two layers (two levels). First, multiple individual learners (called base learners) are trained
in the first layer (level-1) using the original dataset. Next, the output of the base learners
is used as input features for the learners in the second layer (level-2). The learner called
meta-learner in the second layer is used for aggregation. The stacking algorithm uses a
complex model to aggregate results instead of the simple strategy of averaging or voting
used in most ensemble learning algorithms, thus further reducing the bias and variance
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and improving the generalizability. Figure 1 shows the workflow of the common stacking
ensemble algorithm.

Base learner 1

Meta learner

Level-1:Prediction Level-2:Aggregation

Base learner 2

Base learner N

Training 
Data

Final 
Prediction

Prediction 1

Prediction 2

Prediction N

Figure 1. Workflow of common stacking.

However, there is a high risk of overfitting if all the original datasets are directly used
to train the base learner to generate the input for the meta-learner. Therefore, the common
stacking algorithm includes a step of k-fold cross-validation.

The stacking algorithm with cross-validation first divides the original data into a
training set D and a test set Dtest, then generates the training set of the meta-learner on the
training set D by k-fold ways, and, finally, evaluates the performance of the ensemble model
on the test set Dtest. Figure 2 shows the topological structure of the stacking algorithm with
cross-validation.
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Figure 2. Topological structure of the common stacking with 5-fold cross-validation.

To better understand the stacking algorithm with k-fold cross-validation, the process
of the algorithm is next described in two specific steps. (The pseudocode of the algorithm
is given in Algorithm 1). According to Algorithm 1, it is assumed that the base learners
consist of N different models (η1, η2, . . . , ηN) and the meta-learner is η.

Training with k-fold cross-validation: Divide the original training set D = {(x1, y1),
(x2, y2), . . . , (xm, ym)} into k similarly sized and disjointed sets D1, D2, . . . , Dk, and for any
u 6= v, Du ∩ Dv = ∅. Let Dj and D̄j = D\Dj denote the test set and training set of the j-th
fold, respectively. Next, train the base learners η1, η2, . . . , ηN on D̄j and use the trained base
learners to make predictions on Dj. Assuming that a certain sample of the test set Dj is xi,

a set of N predictions for xi is generated, denoted as x
′
i = (η

(j)
1 (xi), η

(j)
2 (xi), . . . , η

(j)
N (xi)).

When j gradually increases from 1 to k, (i.e., after k iterations) the predictions corresponding
to all samples on the training set D are obtained, and—taking x

′
i as the features’ input to

the meta-learner and yi as the target variable—the new training set D
′
= {(x

′
i , yi)}m

i=1 of
the meta-learner is generated.



Energies 2023, 16, 4520 7 of 39

Prediction on test set: During training, as j increases from 1 to k, each base learner
ηt is trained k times using different D̄j, while each trained base learner makes predictions
on Dj and, at the same time, makes out-of-sample predictions for x on Dtest, generating k

predictions (η(1)
n (x), η

(2)
n (x), . . . , η

(k)
n (x)). Then, take the average of these k results as the

final prediction of the base learner ηn for the sample x on the test set Dtest:

η̄n(x) =
1
k

k

∑
j=1

η
(j)
n (x) (1)

Therefore, for N base learners, N predictions are generated for sample x on Dtest, and
(η̄1(x), η̄2(x), . . . , η̄N(x)) are used as N feature inputs to the trained meta-learner; thus, the
final predictions of the algorithm for samples on Dtest are obtained.

Algorithm 1: Common stacking algorithm with k-fold cross-validation

Input: Training set: D = (x1, y1)(x2, y2), . . . , (xm, ym), Test set Dtest = (x, y)
Base learners: η1, η2, . . . , ηN
Meta-learner: η

Output: H(x) = η
′
(η̄1(x), η̄2(x), . . . , η̄N(x))

1: level-1: Train the base learners with k-fold cross-validation
2: for j = 1, . . . , k do
3: Divide D into Dj and D̄j = D\Dj
4: for n = 1, . . . , N do
5: Train base learner ηn on D̄j =⇒ η

(j)
n (D\Dj)

6: end for
7: end for
8: for xi ∈ Dj do

9: Use the trained base learner to make prediction for xi =⇒ η
(j)
n (xi)

10: end for
11: for x ∈ Dtest do
12: Use the trained base learner to make prediction for x =⇒ η

(j)
n (x)

13: end for
14: level-2: Train the meta-learner
15: for i = 1, 2, . . . , m do
16: Generate D

′
= {(x

′
i , yi)}m

i=1 with x
′
i = (η

(j)
1 (xi), η

(j)
2 (xi), . . . , η

(j)
N (xi)) to

train meta-learner η =⇒ η
′
= η(D

′
)

17: end for
18: Make prediction on test set Dtest
19: for x ∈ Dtest do
20: (1) Generate new features for x with η̄t(x) = 1

k ∑k
j=1 η

(j)
n (x)

21: (2) Input (η̄1(x), η̄2(x), . . . , η̄N(x)) into trained meta-model η
′

to obtain the
final prediction =⇒ η

′
(η̄1(x), η̄2(x), . . . , η̄N(x))

22: end for

2.1.2. Our Improved Stacking Algorithm

Since the cross-validation process uses a k-fold scheme, the common stacking ensemble
algorithm disrupts the temporal sequentiality of the time series data, which leads to
information loss and the failure of many time series-related prediction models. To solve
this problem, this study proposes a double sliding window scheme that maintains the
advantages of the common stacking algorithm against overfitting while ensuring input is
in chronological order.

We call the improved stacking algorithm the “stacking ensemble algorithm with walk-
forward validation”. The improved algorithm still has two layers which are similar to
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the common algorithm, namely, the base learner training layer (level-1) and the meta-
learner aggregation layer (level-2). Figure 3 shows the workflow of the improved stacking
ensemble algorithm.

Base learner 1

Base learner 2

Base learner M

Meta learnerTraining 
Data

Final 
Prediction

Sliding 
window 
scheme

Sliding 
window 
scheme

Obtain  M sets of predictons 
by different base models to 
build M input features for  
Meta model

Prediction 1

Prediction 2

Pred
ict

ion
 M

Train → Find best hyper-parameters
→ Retrain → Predict

Level-1:Prediction

Level-2:Aggregation

…
…

: Base learner m
: Predictons

Feature m:

feature 1

feature 2

feature M

…

…

: Meta learner 
: Final  Predictons

Figure 3. Workflow of the improved stacking.

Training base learner with walk-forward validation: Assume that the whole orig-
inal time series dataset is D = {(x1, y1), . . . , (xt, yt), . . . , (xn, yn)}, the base learner is
composed of M different models (η1, . . . , ηm, . . . , ηM), and the meta-learner is η. First,
determine the size of the sliding window in the first layer as l, and use the first train-
ing set D1 = {(x1, y1), . . . , (xl , yl)} ⊂ D to train M different base learners at the same
time and obtain the next period prediction (ŷ(m)

l+1 = ηm(xl+1)) to form the prediction set

(ŷ(1)l+1, ŷ(2)l+1, . . . , ŷ(M)
l+1 ). Next, slide the training set window forward one period in chrono-

logical order to obtain the second training set D2 = {(x2, y2), . . . , (xl+1, yl+1)} ⊂ D, and
then use the training set D2 to train T base learners and obtain a set of l + 2 period pre-
dictions ŷl+2,. . . , carrying on until the entire dataset D is traversed. In this way, a set
of predictions {ŷt = (ŷ(1)t , ŷ(2)t , . . . , ŷ(M)

t )}n
t=l+1 of the base learner for yt are obtained,

and the vector ŷt corresponds to the observation yt to form a new dataset, denoted as
Y = {(y′t, yt) : t = l + 1, . . . , n}, which is the input to the meta-learner in the next layer.

Training meta-model and making final prediction: Connect the new datasets Y col-
lected in the first layer in chronological order so that the predictions of M base learners
correspond to the M input features of the meta-learner. Next, determine the size of the train-
ing set window (L) and the size of the validation set window (v) in the second layer. Then,
train the meta-learner on the first training set Y1 = {(y′l+1, yl+1), . . . , (y

′
l+L, yl+L)} ⊂ Y.

After the training is complete, evaluate the accuracy of the meta-learner on the interval
of length v (i.e., t = l + L + 1, . . . , l + L + v), and adjust the hyperparameters of the meta-
learner according to the model accuracy for the validation set. Once the optimal parameters
are obtained, the data from the validation set are then incorporated into the training set
to retrain the meta-learner. At this time, with the optimal parameters, the meta-learner
is retrained using Y

′
1 = {(y′l+1, yl+1), . . . , (y

′
l+L+v, yl+L+v)} (the retrained meta-model is

denoted as η
′
) and is used to make the prediction at the next period t = l + L + v + 1

(ŷl+L+v+1 = η
′
(y
′
l+L+v+1)), which is the final prediction of the algorithm. Next, slide the

training set window forward one period in chronological order in the second layer and
repeat the above "training-validation-retraining-prediction" process to obtain the final pre-
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dictions at the next period. After the new dataset Y is traversed, all the final predictions of
the algorithm are collected. Algorithm 2 shows the pseudo-code of the improved stacking
ensemble algorithm.

Algorithm 2: Improved stacking algorithm with walk-forward validation

Input: Dataset: D = {(x1, y1), . . . , (xt, yt), . . . , (xn, yn)}
Base learners: η1, . . . , ηm, . . . , ηM
Meta-learner: η

Output: H(xt) = η
′
(y
′
t), t = l + L + v + 1, . . . , n

1: level-1: Training base learners with walk-forward validation
2: for t = l + 1, . . . , n do
3: for i = 1, . . . , m, . . . , M do
4: ŷ(i)t = ηi(xt)
5: end for
6: end for
7: level-2: Training meta-learner and make the final prediction
8: for t = l + L + 1, . . . , n do
9: Connect ŷ(i)t to obtain y

′
t = (ŷ(1)t , ŷ(2)t , . . . , ŷ(M)

t )

10: Train η using Y1
t = {(y′t−L, yt−L), . . . , (y

′
t−1, yt−1)} to obtain trained

meta-learner
=⇒ η

′
= η(Y1

t )
11: while t ≤ δ ≤ t + v− 1 do
12: H(xδ) = η

′
(y
′
δ)

13: end while
14: Adjust the hyperparameters of η

′
according to H(xδ)

15: if Find the best hyperparameter of η
′

then
16: Retrain η

′
using Y2

t = {(y′t−L, yt−L), . . . , (y
′
t+v−1, yt+v−1)} on

(t− L, t + v− 1)
to obtain retrained meta-learner =⇒ η

′
= η(Y2

t )
17: end if
18: Predict yt+v using the retrained meta-learner η

′
=⇒ H(xt+v) = η

′
(y
′
t+v)

19: end for
20: Isolating the test set on the timeline Dtest
21: Dtest = D\Dl+L+v

2.1.3. Forecasting Framework for Empirical Experiments

Ensemble learning is classified into homogeneous ensemble and heterogeneous ensem-
ble according to the different settings of learners. If the base learners are all composed of
the same type of models, then it is called a homogeneous ensemble, and if the base learners
are composed of different types of models, then it is called a heterogeneous ensemble [40].
Stacking algorithms can be homogeneous or heterogeneous [41]. Therefore, we innova-
tively designed two ensemble frameworks called homogeneous ensemble framework and
heterogeneous ensemble framework for predicting the return of carbon price based on the
improved stacking ensemble algorithm, and the empirical experiment design in this study
follows the setup of the ensemble framework.

The details of the homogeneous ensemble framework are discussed below: First, we
chose factor-augmented regression as the level-1 base learner (called base model) (the type
of all base models is factor-augmented regression, but their input independent variables
are different (recall Section 2.2)) in the homogeneous ensemble framework, because it
has been proven to have good performance in predicting carbon returns in the study of
Tan et al. [19]. Moreover, we further expanded their work by elaborately adding Mallows
model selection in the forecasting framework. The training and prediction of the base
models were performed under a sliding window scheme. The window size was l + 1,
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which means that the prediction on data t was obtained by training the model on data from
time t− l to t− 1. After collecting the predictions of all the base models (a set of candidate
models, recall Section 2.2), instead of directly using all of them as input to the meta-model,
we added a model selection step to filter out the underperforming base models through the
Mallows model selection criteria, and only the best one remained. Since the model selection
criteria are based on the prediction at time t = l + 1 and all fitted values of the previous
period l, we used the prediction of the remaining best base model at time l + 2 as the input
to the meta-model to isolate the training set and the testing set, while the data at time t was
regarded as the validation set. After the above steps are completed, the size-fixed window
slides forward for one day in the time axis and repeats the same "train-predict" process to
obtain the prediction at time l + 3 . . . Finally, when the sliding window slides to the end of
the original dataset, a set of predictions are collected from the best base model. However,
there were still errors between these predictions and the observations.

The next part of the ensemble framework was to use machine learning models as the
level-2 aggregation meta-learner (also called meta-model) to bridge the gap between the
predictions of base models and the observations. The predictions collected from the level-1
layer were concatenated in chronological order and combined with real observations to
form data to train the meta-model. In the level-2 layer, the size of the fixed window was
set to L + v, where L = 550 days was the sample size of the training set and v = 20 days
was the sample size of the validation set. After training the meta-model on the training
set, predicting the carbon return on the validation set and calculating the out-of-sample R-
squared (A represented the validation set period, and ȳ was the prediction of the historical
average model (HA). The historical average model is widely used as the benchmark model—

calculated by ȳt|t−1 = 1
t−1

t−1
∑

T=1
yT), as proposed by Campbell and Thompson [42]—to search

for the best hyperparameter. The out-of-sample R-squared is of the following form:

R2
os = 1−

∑t∈A
(

yt − ŷt|t−1

)2

∑t∈A
(

yt − yt|t−1

)2 (2)

The best hyperparameter settings are those that enable the meta-model to obtain the
highest R2

os on the validation set. Once the parameters of the meta-model were fixed, we
re-trained the meta-model on the new dataset formed by the previous training set and
validation set. The final prediction at time t = l + L + v + 1 comes from the re-trained
meta-model, and then the size-fixed window slides forward for one day in the time axis
and the above process is repeated until all remaining final predictions are collected. The
topological structure diagram of the homogeneous ensemble framework is visualized in
Figure 4.

The benefit of homogeneity is to reduce the risk of additional noise from different
models, but it neglects that different models have their own advantages in capturing
information in different dimensions. As such, we fine-tuned the details of the homogeneous
ensemble framework to construct the heterogeneous ensemble framework, to incorporate
diverse models so as to break through the accuracy limits of a single model.

The core idea of the heterogeneous ensemble framework is still the improved stack-
ing algorithm: First, we chose seven different prevailing predictive models (i.e., LASSO,
Ridge regression, E-net, MMA, SVM, RF, and XGBoost (See Section 2.2 and the Appendix A
for a description of these models)) of penalty regression, model average, and machine learn-
ing as level-1 base learners. These models were used to train all base learners at window
size l = 100 days, and the predicted carbon return at time t = l + 1 was obtained from the
trained base models. To achieve a balance of prediction accuracy among all base models, no
validation process was included to calibrate the base models specifically. This highlights the
final difference between the base model and the ensemble model in accuracy caused by the
improved stacking algorithm. Next in the process, the size-fixed window slides forward for
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one day in the time axis and the “train-predict” process is repeated, and predictions of the
base models at time t = l + 2 are obtained, and so on. . . Finally, when the sliding window
slides to the end of the original dataset, seven sets of predictions are collected, each from a
different base model, which serve as feature inputs for the meta-learner. In the level-2 layer
of the heterogeneous ensemble framework, the partition of datasets, the determination of
hyperparameters, the designed size of the window, and the sliding scheme are basically
the same as those in the homogeneous ensemble framework. The specific details can be
found in the heterogeneous ensemble framework in Figure 5.

Training set Testing setValidation set

FAR fitting

Model selection(MMS) 

Base Model Prediction

．．．

． ． ． ． ． ．

Training set for Meta model Validation set for Meta model

Meta Model 
Prediction

Meta Model 
Prediction

Sliding the window 
forward for 1 day

Sliding the window 
forward for 1 day

Sliding the window 
forward for 1 day

．．．

Time axis  for Base model 

Time axis  for Meta model 

l=100 days 1 day 1 day

L=550 days v=20 days 1 day

Parameter selection for Meta Model

Level 1

Level 2

Base Model Prediction

Base Model Prediction

Figure 4. Homogeneous ensemble framework.
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Time axis  for Meta-model 

1 day
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XGBoost prediction

Lasso prediction

SVR prediction

...
XGBoost prediction

Lasso prediction

SVR prediction

...

Sliding the window 
forward for 1 day

...

． ． ．

New  feature 1

New  feature 2

New  feature 3

... ... ...

． ． ．Train x

Observations Train y

Training set for Meta-Model Validation set for Meta-Model
Meta-Model 
Prediction

Parameter selection for Meta-Model

Meta-Model 
Prediction

Sliding the window 
forward for 1 day

．．．

l=100 days

L=550 days v=20 days

Level 1

Level 2

Base Model Prediction

Figure 5. Heterogeneous ensemble framework.

The purpose of stacking is to improve the final prediction accuracy, not to find the
optimal or best base model. We included a variety of different models so that the base
predictions were versatile. It is possible that there is a better list of base models and meta-
models, but this is not the core issue of this paper. Our choices for meta-model included
SVM, RF, and XGBoost, which are popular machine learning models for performing inte-
gration tasks in industry and academic circles. As mentioned above, the core issue of this
study is the benefits brought by the improved stacking algorithm, and we acknowledge
that more refined tuning of parameters and model selection may lead to better final results.
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2.2. Forecasting Models

Considering the large number of models involved in the ensemble algorithm, we
mainly introduced factor-augmented regression combined with Mallows model selection
theory (FAR+MMS) and Mallows model average (MMA) in this subsection. As for the
rest of the prediction models (LASSO, Ridge regression, E-net, Support Vector Regres-
sion(SVR), Random Forest(RF), and eXtreme gradient boosting(XGBoost)), since they are
widely used, brief introduction to each of them is provided in Appendix A. According to the
experimental design in Section 2.1.3, we summarize the use of models as follows: for the ho-
mogeneous ensemble framework, FAR was chosen as the base model and filtered by MMS
(FAR+MMS); for the heterogeneous ensemble framework, MMA, LASSO, Ridge regression,
E-net, SVR, RF, and XGBoost were chosen as the base model. The selection of these base
models was based on relevant research on carbon market prediction for better comparison
(FAR [19], SVR [43,44], RF [45,46], XGBoost [47,48]). Meanwhile, SVR, RF, and XGBoost are
also used as the meta-model for two ensemble frameworks to form six ensemble models
(homo_svr,homo_rf,homo_xgb;hete_svr,hete_rf,hete_xgb). The hyperparameters of each
model are listed in Table A3 of Appendix B.

Factor-augmented regression (FAR): In the following discussion of factor-augmented
regression, we follow the study of Kim and Swanson [49] and Cheng and Hansen [50].
Factor-augmented regression extracts the common factors through the dimension reduction
techniques of ‘factor decomposition’ and builds a concise and effective model with rich
information.

Let Xit be the observation for t = 1, . . . , T and i = 1, . . . , N, and yt+h be the predicted
target variables. We begin with the following factor model:

Xit = λ
′
iFt + eit, (3)

where Ft is a 1× r vector of common factors, λi is a 1× r vector called the factor loading,
and eit is the idiosyncratic component of Xit. Let X be a T × N dimensional matrix of
observations and F = (F1, . . . , FT) be a T × r dimensional matrix of common factors; then,
Equation (3) can be converted to matrix notation:

X = FΛ
′
+ e, (4)

where Λ = (λ1, . . . , λN) is N × r, and e is a T × N error matrix. Once F is extracted, we
construct the following factor-augmented regression model:

yt+h = α0 + α(L)yt + β(L)
′
Ft + εt+h, (5)

where h ≥ 1 is the forecast horizon, α(L) and β(L) are lag polynomials of order p and q,
respectively, for some 0 ≤ p ≤ pmax and 0 ≤ q ≤ qmax. pmax and qmax are, respectively, the
maximum lag of yt and Ft.

For the empirical experiment, this paper adopts the approximate model structure
proposed by Cheng and Hansen [50], which can be written as follows:

yt+h = z
′
tb + εt+h, (6)

where zt = (1, yt, . . . , yt−pmax , F
′
t , . . . , F

′
t−qmax

), and b includes all coefficients from Equation (5).
Sequentially nested subsets of zt are taken in order from smallest to largest in size

to construct M candidate models. M approximating models are considered, indexed by
m = 1, . . . , M, where each approximating model m specifies a subset zt(m) of the regressors
zt. Thus, the first model sets zt(1) = 1, the second model sets zt(2) = (1, yt), etc., expanding
to a total of M = (1 + pmax)(1 + r̃) sequentially nested models, where r̃ is the number
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of common factors retained. The approximate form of the mth candidate model is thus
written as follows:

yt+h = zt(m)b(m) + εt+h. (7)

Let z̃t(m) denote zt(m), the factors Ft of which are replaced by their estimates F̃t,
leading to Z̃(m) = (z̃1(m), . . . z̃T−h(m))

′
. Consequently, the least squares estimate of

b(m) is b̂(m) = (Z̃(m)
′
Z̃(m))−1Z̃(m)

′
y with residual ε̂t+h(m) = yt+h − z̃t(m)

′
b̂(m). The

prediction of the mth candidate model at time T is expressed as follows:

ŷT+h|T(m) = z̃T(m)
′
b̂(m). (8)

Mallows Model Selection (MMS): When factor-augmented regression is used as the
base model of the homogeneous ensemble algorithm, we need to select the best model
from M candidate models. We refer to the model selection criteria of factor-augmented
regression derived by Cheng and Hansen [50] under the Mallows [51] criterion.

The Mallows criterion is an unbiased estimate of the expected squared fit under
the assumption of independent observations and homoskedastic regression. We directly
present the criteria for model selection below:

ST(m) =
1
T

T

∑
t=1

ε̂t(m)2 +
2σ̂2

T
T

k(m), (9)

where k(m) = dim(zt(m)) denotes the number of regressors in the mth model, and
σ̂2

T = (T − K(M)−1 ∑T
t=1)ε̂t(M)2 denotes the preliminary estimate of σ2.

The best model selected under the Mallows criterion is the model m̂ that satisfies
equation m̂ = argmin1≤m≤MST(m). To sum up, there are three steps: estimating the
parameters of each model m, calculating the ST(m) for each model, and selecting the
prediction of the model with the minimum ST(m).

Mallows Model Averaging (MMA): Cheng and Hansen [50] obtain edthe model average
form suitable for factor-augmented regression by minimizing the Mallows criteria [51], which
was further work after the MMA (Mallows Model Averaging) proposed by Hansen [52]. In
this paper, we follow Cheng and Hansen [50] to use factor-augmented regressions with
nested subsets of regressors as candidate models, and the final forecast combinations of
candidate models are as follows:

ŷT+h|T(w) =
M

∑
m=1

w(m)ŷT+h|T(m) (10)

where ŷT+h|T(m) is the prediction of the mth candidate model, and w(m) represents its
weight, which minimizes the following objective function:

min
w

1
T

T

∑
t=1

(
M

∑
m=1

w(m)ε̂t(m)

)2

+
2σ̂2

T
T

M

∑
m=1

w(m)k(m), (11)

where k(m) = dim(zt(m)) denotes the number of regressors in the mth model, and
σ̂2

T = (T − K(M)−1 ∑T
t=1)ε̂t(M)2 denotes the preliminary estimate of σ2.

2.3. Statistical and Economic Evaluation
2.3.1. Judgment on Different Volatile Intervals

Hamilton and Susmel [53] incorporated Markov switching (MS) and ARCH models to
construct a new model named SWARCH (switching ARCH), which aimed to distinguish
the volatility state between the tranquil and turmoil periods. The SWARCH model has been
proven to be robust in differentiating the volatility states of the time series dynamics in
subsequent empirical studies. Liu and Lee [54] adopted the SWARCH model to reveal the
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pattern of regime-switching in the INE crude oil futures market and explore how external
shock turns the crude oil futures market from stable to volatile. Wang et al. [55] classified
stock market crises based on SWARCH filtering probabilities of the high volatility regime.
Shi et al. [56] used the SWARCH model to measure the significance of firm-specific news
sentiment in quantifying intraday volatility persistence in the calm (low-volatility) state
and the turbulent (high-volatility) state. We needed to figure out whether the proposed
ensemble algorithm could effectively work in different volatility state episodes, and the
typical AR(p)–SWARCH(K,q) model was the optimal choice to divide the carbon return
series into different volatility states:

yt = u + θ1yt−1 + θ2yt−2 + · · ·+ θpyt−p + εt, εt|It−1 ∼ N(0, ht); (12)

h2
t

γst

= α0 + α1
ε2

t−1
γst−1

+ · · ·+ αq
ε2

t−q

γst−q

, st ∈ {1, . . . , K}, (13)

where u is a constant; εt is the residual of a normal distribution with zero mean and variance
of ht; θ1, θ2, . . . , θp and α1, α2, . . . , αq are parameters to be estimated; and γ denotes a set
of scaling parameters related to the latent state variable st, which is a Markov chain with
K regimes. In our study, we uniformly set the lag p and q to be 1, and the input of the
SWARCH model was the actual observations of carbon return.

In this study, R package MSGARCH [57] is applied to calculate the filtering probability
according to the following formulation:

P(st = j|Yt; θt), j = 1, . . . , K (14)

where Yt are historic observations of price log return at time t, and θt denotes the parameter
vector. In the experiment, we set K to 3 to increase the differentiation between high and low
volatility states; thus, st = 3 means that the carbon market is in a state of high volatility,
and the rest of st represents a low volatility state. The criteria are written as follows:

Ct =

{
1, P(st = 3|Yt; θt) ≥ 0.5,
0, otherwise.

(15)

2.3.2. Prediction Accuracy Metrics

In order to evaluate the performance of the ensemble algorithm in prediction accuracy,
we explored five statistical metrics from different perspectives: root mean square error
(RMSE), symmetric mean absolute percentage error (SMAPE), mean absolute error (MAE),
Theil U statistic 1 (U1), and out-of-sample R2 (R2

os) [42]. RMSE reflects the deviation
between the prediction and the true value. SMAPE measures the relative error in the sense
of ratio. MAE intuitively represents the absolute value of error. U1 considers both the
prediction and the observation as the measurement basis, and it evaluates the prediction
power of the model. Lastly, R2

os evaluates the superiority of the model by comparing it with
the historical average benchmark model (HA).

Table 1 lists the details of the above evaluation metrics. For the four measures RMSE,
SMAPE, MAE, and U1, the smaller the value, the higher the prediction accuracy of the
model. R2

os represents the proportion of improvement in forecasting accuracy of the
measured model compared to the historical average benchmark model. Campbell and
Thompson [42] indicated that even very small positive R2

os can signal superior predictive
accuracy relative to the benchmark.
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Table 1. Statistical evaluation indexes.

Evaluation
Index Definition Equation

RMSE Root mean
square error

√
1
n ∑n

t=1(ŷt − yt)
2

SMAPE Symmetric mean absolute
percentage error

1
n ∑n

t=1
|ŷt−yt |

(|ŷt+yt |)/2

MAE Mean
absolute error

1
n ∑n

t=1|ŷt − yt|

U1 Theil U
statistic 1

√
1
n ∑n

t=1(ŷt − yt)
2/
(√

1
n ∑n

t=1 y2
t +

√
1
n ∑n

t=1 ŷ2
t

)
R2

os Out-of-sample
R2 statistic

1− ∑n
t=1(yt−ŷt|t−1)

2

∑n
t=1(yt−ȳt|t−1)

2

2.3.3. Model Confidence Set

Using only the statistical metrics in Table 1 as the criteria for evaluating the model
accuracy, the results are easily influenced by the sample, and such an evaluation is not
robust. A small number of singularities can significantly affect the computation of the
model loss function, leading to an abnormal increase in the loss value and, ultimately,
invalidating the evaluation of the model accuracy. The model confidence set (MCS)
proposed by Hansen et al. [58] is designed to overcome the above problem, so this paper
uses the MCS to verify the usefulness of the improved stacking algorithm in improving the
accuracy of the model from the perspective of hypothesis testing.

The process of the MCS is as follows: Firstly, suppose there are m0 prediction models,
denoted asM0 = {1, 2, 3, . . . , m0}, and there are M real observations yt on the test set. Then,
each prediction model inM0 generates M corresponding predictions ŷt(t = 1, 2, . . . , M).
For each ŷt, the corresponding predicted loss value Lt,j, j = 1, 2, . . . , m0 is calculated
according to the chosen loss function. Next, the difference between the loss values of the
two prediction models u, v(u, v ∈ M0) inM0 is calculated, which is denoted as dt,uv and
is computed as follows:

dt,uv = Lt,u − Lt,v. (16)

Secondly, define the set of best modelsM∗:

M∗ ≡ {u ∈ M0 : E(dt,uv) ≤ 0, for all v ∈ M0}. (17)

The models with poor accuracy in the model setM0 are filtered out by continuous
significance tests, and the model with the best prediction accuracy is left at the end. In each
significance test, the null hypothesis states that the two models have the same prediction
accuracy, expressed as follows:

H0,M : E(dt,uv) = 0, for all u, v ∈ M ⊂M0. (18)

The equivalence test is used to test the null hypothesis, and the elimination rule
is used to filter out the models that reject the null hypothesis. The specific process is
divided into the following three steps: (1) LetM =M0; (2) Test the null hypothesis at
the significance level α using the equivalence test; (3) If the null hypothesis is not rejected,
considerM∗

1−α = M; otherwise, the model for which the null hypothesis is rejected is
filtered out fromM. The testing and filtering continue until the null hypothesis is no longer
rejected, and the final retained models inM∗

1−α are the models with the best accuracy at
the confidence level of 1− α. If the p value of the prediction model is greater than the
given significance level α, it belongs to the highest accuracy model set, and a larger p value
represents higher prediction accuracy.
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In this study, we chose three loss functions for the MCS: Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Huber loss (In this study, we set δ = 1), which are
calculated as follows:

MSE :
1
n

n

∑
t=1

(yt − ŷt)
2, (19)

MAE :
1
n

n

∑
t=1
|yt − ŷt|, (20)

Huber Loss :
{ 1

2 (yt − ŷt)2, |yt − ŷt| ≤ δ

δ|yt − ŷt| − 1
2 δ2, |yt − ŷt| > δ

(21)

The test statistic is as follows:

TR = max
u,v∈M

∣∣d̄uv
∣∣√

ˆvar(d̄uv)
, (22)

TMAX = max
u∈M

d̄u.√
ˆvar(d̄u)

. (23)

where d̄uv = 1
M

M
∑

t=1
dt,uv, and d̄u. =

1
m0

∑
u∈M

d̄uv The null hypothesis is rejected when the

statistic is greater than the critical value. Since the distributions of TR and TMAX are very
complex, this study uses block bootstrap to obtain the p-value of the test (we set the ’block
size’ parameter of bootstrap to 2 and the number of simulations to 10,000, referring to the
study of Hansen et al. [58] for the specific procedure).

2.3.4. Investment Portfolio

Additionally, we measured the gains generated by the developed ensemble framework
using portfolio strategy from the perspective of economic value. More specifically, following
Campbell and Thompson [42], Rapach et al. [59] and Zhao and Cheng [60], we calculated
realized utility gains for a mean-variance investor who allocates his portfolio daily between
carbon emission option and risk-free bills with weights ωt and 1 − ωt, based on the
prediction of carbon return. At time t, the investor determines the amount of funds allocated
to two assets in the next period (t + 1) according to ω. The weight ωt is determined by the
following formula:

ωt =
1
γ
· ŷt+1

σ̂2
t+1

(24)

where σ̂2
t+1 is the sample variance of carbon return with a rolling window of 50 days

(Zhao and Cheng [60] used monthly data in their empirical experiment and estimated
σ̂2

t+1 as the sample variance of quarterly returns within a fixed ten-year rolling-window;
referring to this, we decided to set the window size to 50 for the daily data used in the
portfolio), ŷt+1 is the prediction of carbon return at time t + 1, and γ is a relative risk
aversion parameter which describes the trading style of the investor, to some extent—the
lower the value of γ, the more aggressive the investors. ωt is constrained between −1.5
and 1.5 (if ωt ≤ −1.5, ωt is set to −1.5, and if ωt ≥ 1.5, then ωt is set to 1.5) (According to
Campbell and Thompson [42] and Rapach et al. [59], ωt is set between 0 and 1.5 to preclude
short sales and prevent more than 50% leverage. There are also some studies that add the
option of short selling [61]. Considering the actual trading situation of carbon options, we
chose the latter range of ωt). We explored the average utility level of the ensemble models
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under fixed threshold bounds of ωt with different γ. The realized return is calculated as
shown:

Rt+1 = ωtyt+1 + (1−ωt)rt+1, (25)

in which yt+1 is the observation of carbon return, and rt+1 is a risk-free rate. (We chose
1-year China government bond yield as the risk-free rate.) Then, we calculated the univer-
sally acknowledged certainty equivalent return (CER):

CER = µ̂R −
1
2

γσ̂2
R (26)

where µ̂R and σ̂2
R are the sample mean and variance of series Rt. The difference between

CER calculated by the forecast model and the historical average model (HA) is called utility
gain, which is multiplied by 400 as an annualized percentage return. As such, the following
metrics are obtained:

UGmodel = 400(CERmodel − CERHA). (27)

Utility gain (UGmodel) can be interpreted as the portfolio management fees that in-
vestors are willing to pay to obtain the additional information provided by the forecasting
‘model’ compared to using only a historical average model (HA).

We employed another popular criterion, called Sharpe ratio (SR), to evaluate the
performance of the portfolio above. It is constructed based on the portfolio excess returns:

SR =
µp

σp
(28)

where µp and σp are, respectively, the means and standard deviations of portfolio excess
returns. The Sharpe ratio is the economic indicator that evaluates the portfolio returns
against its corresponding volatile risks.

3. Data Description

In this section, we provide an introduction to our data, including composition and
source of variables, partition time node of dataset, and data cleaning approach. We collected
895 daily settlement prices of carbon emission options in the carbon emission trading
markets of Shenzhen, China, from 27 March 2018 to 6 July 2022. The last 224 samples of
the dataset from 10 May 2021 to 6 July 2022 were used as test sets. The main reason for
choosing Shenzhen’s carbon market is that it is the first carbon market in China, with a
large scale, more complete data, and a strong influence on carbon prices in other markets.
We employed the log return (computed as Equation (29)) of the carbon price (SZA) as the
target for prediction, which is widely used as the continuously compounded return of
carbon.

In terms of the predictors, we followed Tan et al. [19] to consider three categories of
variables:

1. Commodity variables, including energy and non-energy commodity futures, based on
settlement prices and a price index from the Chinese market. For energy commodities,
the selections were as follows: (1) China Liquefied Natural Gas Price Index (LNG);
(2) thermal coal (SPcoa); (3) INE crude oil (SPcru). For non-energy commodities,
the variables were subdivided into non-ferrous metals and agricultural products.
Non-ferrous metals were (1) aluminum (SPalu); (2) zinc (SPzin); (3) lead (SPlea);
(4) nickel (SPnic); (5) tin (SPtin); (6) silver (SPsil); (7) gold (SPgol); and (8) cathode
copper (SPcop). Agricultural products were (1) yellow corn (SPcor); (2) egg (SPegg);
(3) cotton (SPcot); and (4) high-quality strong gluten wheat (SPwhe) (except for LNG,
other variables were option settlement price (active contract));
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2. Stock and bond market variables, including some composite indexes and rate vari-
ables. For the stock market, the predictors were (1) SSE: Average P/E ratio (SSEPE); (2)
SSE Composite Index (SSECI); (3) CSI 300 Index (CSI300); (4) SSE 180 Index (SSE180);
(5) SZSE Composite Index (SZSECI); (6) CSI 100 Index (CSI100); and (7) CSI 500
Index (CSI500). For the bond market, the predictors were (1) SSE Government Bond
(SSEGBI); (2) SSE Corporate Bond Index (SSECBI); (3) SSE Enterprise Bond Index
(SSEEBI); (4) CCDC government bond yield: 3-months (Gb3M); (5) CCDC govern-
ment bond yield: 10-years (Gb10Y); (6) CCDC corporate bond yield (AAA): 3-months
(Cb3M); (7) CCDC corporate bond yield (AAA): 10-years (Cb10M); (8) CCDC coal
industry bond yield (AAA): 3-months (coalb3M); and (9) CCDC coal industry bond
yield (AAA): 5-years (coalb5Y);

3. Economic and industry composite variables, including (1) Financial Conditions Index
(FCI); (2) China Securities Industry Index: energy (CSIIene); and (3) Wind Industry
Index: energy (Windene). These three indexes were used to depict the financial sector
and the energy sector as a whole, sectors which are closely related to the carbon option
return.

We transformed the original data into two forms as follows: (i) Logarithmic difference
method (LD) (according to Equation (29)); (ii) First-order difference method (FD) (according
to Equation (30)). The transformation alleviates the heteroscedasticity of time series data
and makes the data stable.

yt = lnPt − lnPt−1 (29)

yt = Pt − Pt−1 (30)

Table A1 summarizes the statistical descriptions of all variables. From the results
of the ADF test (Augmented Dickey–Fuller test) and Jarque–Bera test, the transformed
data are stationary and show the characteristics of non-normal distribution. Table A2 (see
Appendix B) provides an explanation of all variables involved. All variables are available
from the WIND (WIND is a popular financial database in mainland China, which contains
both micro- and macro-economic variable data for researchers and practitioners) database.
Since there are some missing data in the original samples at different time points, we
adopted an approach to fill in the missing data with the mean value of the previous and
the next points to deal with this problem. In addition, we calculated the correlation of each
variable and drew a heat map (shown in Figure A2 in Appendix B).

4. Empirical Results

In this section, we compare the performance difference of the forecasting model before
and after using the improved stacking algorithm from the perspective of accuracy through
statistical metrics and model confidence set, and evaluate the increase in economic gains
brought by the improved algorithms through a portfolio. Also, we systematically explore
the performance of the ensemble algorithm in high and low volatility states so that potential
investors can make more rational use of the improved stacking ensemble algorithm to
invest in carbon assets profitably.

4.1. Out-of-Sample Accuracy Performance

As mentioned in the data description section, the test data to compare model perfor-
mance covered 224 samples from 10 May 2021 to 6 July 2022. The accuracy of the forecasting
model was measured by five statistical metrics, and the models included base models be-
fore the ensemble process and six ensemble models using different frameworks. More
specifically, we explored in detail the positive effect of our improved stacking algorithm on
carbon return prediction from two dimensions: the whole mixing interval and the intervals
with high or low volatility. In addition, to further analyze the robustness of the ensemble
algorithm, we compare the performance of different ensemble models at different sliding
window sizes in the third part of this section.
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4.1.1. Accuracy for the Whole Test Set

The accuracy performance of the ensemble models on the whole test set covering
224 samples is presented in Table 2, according to the different ensemble frameworks applied.
For homogeneous ensemble, it can be clearly seen from the table that, after adding the
model selection process, compared with only using factor-augmented regression, the model
achieved better performance in the five accuracy evaluation metrics.

We introduced an index PI to quantitatively measure the percentage of improvement
in the evaluation index. For homogeneous ensemble, ‘base_model’ indicates FAR, while it
indicates ‘base model with the best performance’ for the heterogeneous ensemble; ‘index’
represents one of the five precision evaluation indexes.

PIensemble_model
Index =

∣∣∣∣ Indexbase_model − Indexensemble_model
Indexbase_model

∣∣∣∣× 100%, (31)

where ‘PIensemble_model
Index ’ is interpreted as the rate of improvement generated by the ’ensemble

model’ in terms of ‘index’.

Table 2. Comparison of model accuracy for the whole test data.

RMSE SMAPE MAE U1 R2
os

Homogeneous ensemble

Base Model

FAR 0.4701 0.2774 0.2959 0.1738 0.1828
FAR+MMS 0.4513 0.2706 0.2872 0.1671 0.2469

Ensemble Model

homo_rf 0.4317 0.2544 0.2698 0.1530 0.3107
homo_svr 0.4229 0.2458 0.2605 0.1475 0.3386
homo_xgb 0.4270 0.2510 0.2660 0.1512 0.3257

Heterogeneous ensemble

Base Model

MMA 0.4616 0.2733 0.2910 0.1712 0.2120
E-net 0.4832 0.2616 0.2827 0.1679 0.1364
lasso 0.4868 0.2683 0.2895 0.1662 0.1238
ridge 0.4825 0.2647 0.2855 0.1677 0.1390
SVR 0.4668 0.2542 0.2734 0.1602 0.1943
XGBoost 0.5022 0.2863 0.3087 0.1713 0.0671
RF 0.4992 0.2708 0.2936 0.1629 0.0783

Ensemble Model

hete_rf 0.4387 0.2541 0.2702 0.1544 0.2884
hete_svr 0.4340 0.2445 0.2602 0.1535 0.3034
hete_xgb 0.4393 0.2446 0.2611 0.1536 0.2862

Note: Explanation of ensemble model name abbreviations: ‘homo’ stands for homogeneous and the suffix
connecting ‘homo’ represents the name of the meta-model used in the stacking algorithm. For example, ‘homo_rf’
denotes the ensemble model using homogeneous ensemble framework and random forest as the meta-model.
‘hete’ stands for heterogeneous, and its rules for abbreviation are similar to ‘homo’.FAR+MMS denotes the best
factor-augmented regression selected by Mallows model selection criteria.

Among the three ensemble models under the homogeneous ensemble framework,
homo_svr achieved the best performance in five statistical error indicators, with
PIhomo_svr

RMSE = 10.04%, PIhomo_svr
SMAPE = 11.41%, PIhomo_svr

MAE = 11.95%, PIhomo_svr
U1 = 15.13%, and

PIhomo_svr
R2

os
= 84.52%. For heterogeneous ensemble, more forecasting models joined the

comparison; however, even the best performers of the base models could not beat the
ensemble model in the accuracy metrics. The best PI was still obtained by ‘hete_svr’, with
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values of PIhete_svr
RMSE = 5.98%, PIhete_svr

SMAPE = 3.85%, PIhete_svr
MAE = 4.85%, PIhete_svr

U1 = 4.19%, and
PIhete_svr

R2
os

= 42.80%.
In addition, the positive PI indicates that, compared with the base model, the accuracy

of each of the three ensemble models was improved after the integration process. Con-
sidering the results of homogeneous ensemble and heterogeneous ensemble, as a level-2
model for performing aggregation tasks, the advantage of SVR in improving accuracy is
outstanding, and all the ensemble models play a positive role in improving prediction
accuracy. Figure 6 provides more intuitive support for this view. The accuracy error in the
ensemble models shrinks to the minimum range compared to the base model. (In order
to unify the measurement criteria and more intuitively represent the comparison of the
accuracy of the integrated model, R2

os was converted to 1− R2
os, which means that the

smaller the 1− R2
os shown in Figure 6, the higher the accuracy).

(a) homogeneous ensemble (b) heterogeneous ensemble

Figure 6. Radar chart of accuracy performance on the whole test data.

4.1.2. Accuracy for the Different Volatility Intervals

In order to validate the effectiveness of the improved stacking algorithm in improving
the prediction accuracy in more detail, we used the MSGARCH model to divide the timeline
of the entire dataset into ‘high volatility state’ and ‘low volatility state’, which, respectively,
represent whether the current state is high volatility or low volatility. The volatility state
of the whole time series is shown in Figure 7. According to the division results, the first
112 samples of the test set, from 10 May 2021 to 22 November 2021, were in a high volatility
state, and the remaining half were in a low volatility state. The carbon return curves
predicted by the six ensemble models are shown in Figure 8. Visually, from Figure 8, these
ensemble models achieved good results in predicting the trend of carbon return, but the
precision differences between the models under different volatility states, as well as before
and after the ensemble process, need to be verified by quantitative calculation.
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Figure 7. Division of high and low volatility states.

Figure 8. Predicted carbon return curve on the out-of-sample test set.

Tables 3 and 4 show the calculation results of five statistical accuracy metrics of models
when adopting two different ensemble frameworks under high and low volatility states.
Compared to the results for the whole test data, a similar conclusion can be drawn, that
the stacking algorithm always improves the precision of the model, whether in the high or
low volatility state. However, with different ensemble frameworks and different level-2
meta-models, the ensemble models show some specific patterns in periods with different
volatility.

Table 3. Comparison of model accuracy for the period with different volatility using homogeneous
ensemble.

RMSE SMAPE MAE U1 R2
os

High Low High Low High Low High Low High Low

Base Model

FAR 0.6041 0.2775 0.3691 0.1858 0.4020 0.1897 0.2757 0.0945 0.2330 −0.1846
FAR+MMS 0.5864 0.2518 0.3657 0.1755 0.3960 0.1784 0.2732 0.0862 0.2773 0.0251

Ensemble Model

homo_rf 0.5617 0.2392 0.3408 0.1680 0.3692 0.1704 0.2451 0.0797 0.3368 0.1199
homo_svr 0.5482 0.2390 0.3285 0.1630 0.3554 0.1656 0.2311 0.0790 0.3683 0.1213
homo_xgb 0.5542 0.2399 0.3373 0.1648 0.3646 0.1673 0.2416 0.0799 0.3545 0.1148

Percentage of improvement(%)

8.1735 13.7447 9.0900 11.0440 9.6952 11.5317 13.2126 15.8577 - -
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Table 4. Comparison of model accuracy for the period with different volatility using heterogeneous
ensemble.

RMSE SMAPE MAE U1 R2
os

High Low High Low High Low High Low High Low

Base Model

MMA 0.6056 0.2437 0.3753 0.1713 0.4081 0.1740 0.2815 0.0855 0.2292 0.0863
E-net 0.6376 0.2460 0.3654 0.1579 0.4045 0.1609 0.2750 0.0807 0.1456 0.0688
lasso 0.6384 0.2575 0.3683 0.1683 0.4075 0.1715 0.2685 0.0857 0.1434 −0.0197
ridge 0.6345 0.2511 0.3642 0.1652 0.4026 0.1683 0.2737 0.0845 0.1539 0.0298
SVR 0.6154 0.2388 0.3530 0.1555 0.3887 0.1581 0.2592 0.0758 0.2040 0.1231
XGBoost 0.6573 0.2692 0.3900 0.1827 0.4313 0.1860 0.2724 0.0910 0.0919 −0.1143
RF 0.6643 0.2390 0.3775 0.1642 0.4207 0.1666 0.2605 0.0800 0.0724 0.1214

Ensemble Model

hete_rf 0.5769 0.2283 0.3458 0.1625 0.3759 0.1646 0.2470 0.0772 0.3006 0.1986
hete_svr 0.5686 0.2311 0.3362 0.1527 0.3652 0.1551 0.2418 0.0776 0.3205 0.1784
hete_xgb 0.5765 0.2318 0.3323 0.1569 0.3628 0.1593 0.2430 0.0786 0.3016 0.1734

Percentage of improvement(%)

9.7761 7.5941 8.7461 5.4426 10.0423 5.7167 9.7016 6.6027 - -

As shown in Table 3, homo_svr is still the most competitive model in both high and
low volatility states compared to the other two. However, based on the results in Table 4,
hete_r f achieves the best performance for three indicators (RMSE, U1, R2

os) in low volatility
state, while in high volatility state, hete_svr is superior in these three indicators while
hete_xgb is optimal in the other two (SMAPE, MAE). These results illustrate that ‘RF’ and
‘XGBoost’ can also be taken into consideration to be the level-2 model, depending on the
ensemble mode and the volatility state. Moreover, we calculated the percentage of precision
improvement on average for RMSE, SMAPE, MAE, and U1, (For homogeneous ensemble
[shown in Table 3], the result was based on the mean of the three ensemble models over the
value of ‘FAR’; for heterogeneous ensemble [shown in Table 4], the result was based on the
mean of the three ensemble models over the mean of all base models; we did not calculate
the percentage increase in R2

os, because R2
os can be negative), which are listed at the bottom

of Tables 3 and 4. An interesting generalization is observed that, for the homogeneous
ensemble, the ensemble process can improve the precision more significantly in the period
with low volatility than that in the period with high volatility, while it is the opposite for the
heterogeneous ensemble. The above results indicate that, in order to improve the accuracy
of the forecasting model, it is more advantageous to choose the homogeneous ensemble
framework when the carbon return is in the low volatility period, while the heterogeneous
ensemble framework is a better choice when the carbon price is in the high volatility period.

In addition, to verify the effectiveness and advancement of the ensemble models, other
popular methods related to carbon market prediction, especially deep learning models
(LSTM [62], GRU [63], EMD+LSTM [48]), were considered. Table 5 shows the accuracy
comparison between the ensemble models and other prediction models. It can be seen from
the results that our proposed ensemble models outperform the other models.

Table 5. Comparison of accuracy between integrated models and deep learning models.

RMSE SMAPE MAE U1 R2
os

Whole High Low Whole High Low Whole High Low Whole High Low Whole High Low

Ensemble Model

homo_rf 0.4317 0.5617 0.2392 0.2544 0.3408 0.1680 0.2698 0.3692 0.1704 0.1530 0.2451 0.0797 0.3107 0.3368 0.1199
homo_svr 0.4229 0.5482 0.2390 0.2458 0.3285 0.1630 0.2605 0.3554 0.1656 0.1475 0.2311 0.0790 0.3386 0.3683 0.1213
homo_xgb 0.4270 0.5542 0.2399 0.2510 0.3373 0.1648 0.2660 0.3646 0.1673 0.1512 0.2416 0.0799 0.3257 0.3545 0.1148
hete_rf 0.4387 0.5769 0.2283 0.2541 0.3458 0.1625 0.2702 0.3759 0.1646 0.1544 0.2470 0.0772 0.2884 0.3006 0.1986
hete_svr 0.4340 0.5686 0.2311 0.2445 0.3362 0.1527 0.2602 0.3652 0.1551 0.1535 0.2418 0.0776 0.3034 0.3205 0.1784
hete_xgb 0.4393 0.5765 0.2318 0.2446 0.3323 0.1569 0.2611 0.3628 0.1593 0.1536 0.2430 0.0786 0.2862 0.3016 0.1734

Deep Learning Model

LSTM 0.4415 0.5280 0.3334 0.2943 0.3373 0.2513 0.3086 0.3607 0.2566 0.1972 0.2155 0.1861 0.2790 0.4141 −0.7100
GRU 0.4696 0.5471 0.3763 0.3401 0.3765 0.3038 0.3552 0.4000 0.3104 0.2059 0.2218 0.1964 0.1846 0.3709 −1.1785
EMD+LSTM 0.4560 0.5358 0.3588 0.3123 0.3436 0.2809 0.3270 0.3672 0.2868 0.1631 0.1879 0.1467 0.2311 0.3966 −0.9798
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4.1.3. Robustness Analysis for Different Rolling Window Sizes

Arbitrary choices of window sizes have consequences on how the sample is split into
in-sample and out-of-sample portions, which may lead to different empirical results in
practice [64]. The results of the above two sections were obtained under the condition
that the window size was 100; we also expanded the window size to 200 and 300 to check
the robustness of the experimental results. Table A4 (see Appendix B) lists the accuracy
performance of models using two different ensemble frameworks at different window sizes.
As seen in Table A4, the forecasting accuracy of the ensemble models is still better than
that of the base models after the expansion of window size, which further confirms the
most important conclusion, that the ensemble algorithm we developed can improve the
predictive power of forecasting models to an impressive extent with regard to robustness.
We also notice that, with the expansion of window size, the forecasting accuracy of the
ensemble models decreases and the range of improvement in precision brought by the
ensemble algorithm also decreases. Thus, setting the window size to 100 is a good choice
to let the ensemble algorithm unleash its full power. Of course, the selection of window
size is not the focus of this paper; accordingly, the following portfolio research was also
carried out on the results with a window size of 100.

4.2. Analysis of MCS

The p-values of the ensemble model constructed by the improved stacking algorithm
with regard to the MCS are shown in Table 6. The significance level α was set to 0.05.
According to the results in Table 6, there was a significant boost in the accuracy of the model
after using the improved stacking algorithm (seen in the larger p-values), which means
that the improved stacking ensemble algorithm passes the hypothesis test for improving
the accuracy; the improvement is proven to be robust. Moreover, homosvr and hetesvr,
respectively, achieved the highest p-values in homogeneous ensemble and heterogeneous
ensemble, which indicates the significant advantage of support vector regression (SVR) as
an aggregation meta-model for the ensemble algorithm.

Table 6. The p-value of MCS.

MSE MAE Huber Loss

TR TMAX TR TMAX TR TMAX

Homogeneous ensemble

FAR 0.1075 0.0969 0.0416 0.0801 0.0862 0.0541
FAR+MMS 0.2132 0.2082 0.0752 0.0801 0.2302 0.1569
homo_rf 0.6814 0.6707 0.2739 0.163 0.8326 0.8531
homo_xgb 0.6814 0.6707 0.3961 0.3961 0.8326 0.8531
homo_svr 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Heterogeneous ensemble

MMA 0.3683 0.3922 0.0876 0.3015 0.2629 0.3739
E-net 0.3683 0.3922 0.2946 0.3015 0.2629 0.3739
lasso 0.3683 0.3776 0.1881 0.3015 0.2509 0.2619
ridge 0.3683 0.3776 0.2921 0.3015 0.2629 0.3158
SVR 0.3244 0.3922 0.3658 0.3676 0.2509 0.3739
XGBoost 0.0778 0.0536 0.0104 0.0184 0.0443 0.0316
RF 0.3683 0.3550 0.0926 0.3015 0.1578 0.2619
hete_rf 0.8630 0.7634 0.2921 0.3676 0.8959 0.7860
hete_xgb 0.8630 0.6902 0.8846 0.8846 0.8959 0.7514
hete_svr 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: The value in bold indicates that the corresponding model has the best prediction accuracy.

4.3. Investment Gains from a Portfolio Perspective

Thus far, the advantages of the improved stacking ensemble algorithms in improving
the accuracy of prediction have been comprehensively proven. However, translating
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such advantages into investment gains in practical business scenarios is a direction of
more concern for market participants. We calculated the annualized utility gain (recall
Equation (27)) generated by the mean-variance investor who constructs a portfolio strategy
between carbon option and risk-free asset based on the predictions of the ensemble models.
Inspired by Tan et al. [19] and Zhao and Cheng [60], we chose the 1-year China government
bond as the alternative allocation asset, meaning that the 1-year China government bond
yield was substituted into Equation (25) to represent the risk-free rate.

4.3.1. Influence of Risk Preference on Portfolio Construction

As mentioned in the section about economic evaluation (see Section 4.2), the risk
aversion parameter γ measures the extent of the investor’s aversion to risky assets and
aggressive investment. The lower the value of γ, the greater the tolerance of investors to
risk. It can be inferred from the calculation formula of weight ω (recall Equation (24)) that
a lower γ value leads to a higher weight assigned to the carbon option in the portfolio.
As such, we conducted the robustness test on the annualized utility gain generated by
investors with different risk preferences. The results were calculated by the predictions
over three periods: the whole test set interval, high volatility interval, and low-volatility
interval, which are shown in Figures 9 and 10.

Figure 9. Impact of risk aversion parameter γ on the annualized utility gain over the whole test set
period.

(a) high volatility (b) low volatility

Figure 10. Impact of risk aversion parameter γ on the annualized utility gain in the periods with
different volatility states.
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Figure 9 reveals a phenomenon that, when γ is extremely small, hete_r f is the model
to obtain the maximum utility gain, but when γ increases to more than 0.5, homo_svr begins
to take the lead, and when it exceeds 0.9, the annualized utility gain (UG) of all ensemble
models gradually turns negative. Moreover, it is obvious that the annualized utility gain in
all ensemble models over the whole prediction interval with mixed volatility state decreases
with the increase in investor risk aversion parameter γ.

Figure 10a depicts how the various ensemble models perform in terms of utility gain
in the high volatility interval. Under this condition, the dominance of the ensemble models
based on the homogeneous ensemble framework is very clear. In the high volatility interval,
with extremely small γ (e.g., γ = 0.1), homo_xgb produces the largest annualized utility
gain. Then, when γ = 0.2 ∼ 0.4, homo_r f slightly leads the others. Finally, when γ exceeds
0.4, homo_svr always performs the best.

As for Figure 10b, the excellence of hete_r f in the low volatility interval is outstanding,
which can be demonstrated from two aspects. Firstly, within the range of γ plotted in
(b), the annualized utility gain obtained by hete_r f is much higher than that obtained by
other ensemble models. Secondly, with the increase in γ, the annualized utility gain of
other ensemble models rapidly drops below 0, while that of hete_r f stays positive until γ is
greater than 1.9 (specific values can be found in Tables A5 and A6 of Appendix B). homo_r f
has significantly better performance and better robustness in terms of economic returns in
the low volatility interval of the test set.

To summarize, for the carbon option, investors with risk-preferred attitudes are more
likely to obtain high economic gains, and under the portfolio strategy in this paper, using
the homogeneous ensemble is more conducive to achieving high economic returns when the
market is in a high volatility state. Also, ‘hete_r f ’ compared to the other ensemble models
has significant advantages in the portfolio during the low volatility period. Considering
the difference in magnitude of the annualized utility gain between high and low volatility
states, we find that the improved stacking algorithm exerts significantly greater advantage
in the high volatility state.

4.3.2. Functionality of Ensemble Strategy in Improving Economic Gains

In the previous subsection, the performance of the ensemble models is shown through
portfolios constructed by investors with different risk appetites. In this section, we further
explore the function of the stacking algorithms we proposed in improving the economic
gains of the model quantitatively. We report the comparison of annualized utility gain and
Sharpe ratio with γ = 0.3 between the base models and the ensemble models, in Table 7, to
show the impact of ‘ensemble’.

As detailed in Table 7, hete_r f achieves the best results for annualized utility gain and
Sharpe ratio over both the whole test set and low volatility interval. In the high volatility
interval, homo_r f is the best ensemble model, with UG = 88.2185 and Sharpe ratio = 0.3774.
Moreover, whether the stacking ensemble algorithm is homogeneous or heterogeneous,
the ensemble process can always improve the portfolio return, based on the comparison of
the performance of ensemble models with that of base models. In other words, ensemble
strategy plays a positive role in improving the economic gains of prediction.

We use PI (Equation (31)) to show the extent of improvement brought by ensemble
strategy on the two indicators, the best of which are PIhete_r f

UG = 16% and PIhomo_r f
SR = 9.96%

for the whole test set, PIhomo_r f
UG = 14.33% and PIhomo_r f

SR = 9.55% for the high volatility

interval, and PIhomo_xgb
UG = 58.70% and PIhomo_xgb

SR = 23.99% for the low volatility interval.
In terms of the absolute value of annualized utility gain and Sharpe ratio (SR), the hetero-
geneous ensemble framework performs better, and the homogeneous ensemble framework
is superior for the improvement degree compared to the base model. An extra finding is
that, compared to FAR, FAR+MMS in the homogeneous ensemble makes a significant im-
provement in obtaining economic gains, which means that our innovation in adding model
selection to the homogeneous ensemble is successful. As well, to confirm the usefulness
of the modified stacking algorithms, it is also necessary to show the performance of the
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buy&hold strategy (buy on the first day and sell on the last) in the comparison in terms
of Sharpe ratio. Table 7 lists the obtained Sharpe ratio using the buy&hold strategy at the
bottom. The Sharpe ratio of using the buy&hold strategy to invest in carbon option assets is
much lower than that of using other prediction models in the table, which means that the
additional information provided by the model is very valuable.

Table 7. Annualized utility gains and Sharpe ratio at γ = 0.3.

UG SR

Whole High Low Whole High Low

Base Model

FAR 40.0720 77.1260 5.1235 0.2445 0.3445 0.0876
FAR+MMS 45.7422 88.4737 5.6559 0.2650 0.3759 0.0899
MMA 42.4660 79.2613 7.9127 0.2526 0.3485 0.1066
E-net 42.3854 80.5625 6.3027 0.2551 0.3581 0.0947
lasso 41.8589 80.7737 4.9107 0.2572 0.3668 0.0837
ridge 40.2578 81.0734 1.8021 0.2466 0.3582 0.0615
svr 41.7817 71.9543 13.1367 0.2549 0.3344 0.1537
XGBoost 9.6912 19.3971 0.3235 0.1320 0.1810 0.0520
rf 27.1812 41.1122 13.6153 0.2007 0.2448 0.1538

Ensemble Model

homo_rf 46.4293 88.2185 7.1480 0.2689 0.3774 0.1010
homo_svr 44.2339 85.6709 5.2682 0.2608 0.3702 0.0867
homo_xgb 46.4102 87.1185 8.1578 0.2681 0.3730 0.1086
hete_rf 49.2886 83.8264 16.5444 0.2810 0.3678 0.1690
hete_svr 44.8457 86.4316 5.6646 0.2638 0.3742 0.0899
hete_xgb 45.1008 85.9962 6.6055 0.2649 0.3725 0.0968

buy&hold - - - 0.0119 0.0050 0.0187
Note: The values in bold represent the best model for the corresponding metric.

A counter-intuitive phenomenon occurs, in that homo_svr and hete_svr outperform
other ensemble models in accuracy but homo_r f and hete_r f make more economic gains
in the portfolio. Considering the portfolio strategy we have adopted, this problem is not
difficult to explain. First, the premise of our portfolio is that the investors are mean-variance
types, and from the whole calculation process of certainty equivalent return (CER), we can
infer that a more fluctuant prediction of carbon return will result in a realized return with
higher volatility, which means that CER will be penalized more by variance in Equation (26).
We list the sample variance of the real carbon return and predictions made by each ensemble
model in Table 8. As can be seen from Table 8, real carbon return has a relatively greater
variance, which makes the prediction of hete_svr tend to have high fluctuation since hete_svr
has higher accuracy. (In fact, according to the values, the prediction of hete_svr does have
a relatively larger variance compared to other integrated models.) The variance in the
prediction made by hete_r f is the smallest in all intervals, which is beneficial to achieve a
more robust certainty equivalent return (CER) in the portfolio. This reasonable inference of
the result indicates that, for investors of mean-variance type, the forecast model with stable
prediction is more conducive to obtaining high returns when investing in carbon assets.

Since the historical average (HA) model reflects historical information from the av-
erage, we added another baseline for comparison from recent information. We took the
carbon return at day t as the prediction of the next day (day t + 1), and calculated the
annualized utility gains based on this strategy (i.e., calculate the CER based on this strategy,
and replace CERHA in Equation (27) with it to obtain the corresponding annualized utility
gains), as shown in Table 9. The results show that, even if this strategy is used as a bench-
mark, the improvement brought by the modified stacking algorithm is still significant, and
for assets with sharp price fluctuations such as carbon options, using only the information
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from the previous day is risky (it can be seen that the UG in Table 9 is much greater than
that in Table 7).

Table 8. Variance in real observation and predicted value by ensemble models.

homo_rf homo_svr homo_xgb hete_rf hete_svr hete_xgb Observation

Whole 0.0715 0.0656 0.0775 0.0547 0.0884 0.0624 0.2715
High 0.1166 0.1041 0.1264 0.0970 0.1508 0.1048 0.4800
Low 0.0258 0.0256 0.0278 0.0108 0.0246 0.0171 0.0655

Table 9. Annualized utility gains using another baseline.

UG

Whole High Low

Base Model

FAR 144.9971 263.4732 25.9002
FAR+MMS 150.6673 268.8209 26.4326
MMA 147.3911 265.6085 28.6894
E-net 147.3105 266.9096 27.0794
lasso 146.7839 267.1209 25.6873
ridge 145.1829 267.4206 22.5788
svr 146.7068 258.3015 33.9134
XGBoost 114.6163 205.7443 21.1002
rf 132.1063 227.4593 34.3919

Ensemble Model

homo_rf 151.3544 274.5656 27.9247
homo_svr 149.1590 272.0181 26.0448
homo_xgb 151.3353 273.4657 28.9345
hete_rf 154.2137 270.1735 37.3211
hete_svr 149.7708 272.7787 26.4413
hete_xgb 150.0259 272.3434 27.3822

5. Conclusions and Future Works

Through implementing comprehensive empirical experiments, we proved that the
improved stacking ensemble algorithm can effectively improve the accuracy of models
in predicting carbon returns. Support vector regression has advantages in improving
prediction accuracy as meta-models for the improved stacking ensemble algorithm. When
the carbon market is in a low volatility state, the improvement in homogeneous ensemble is
greater, while in a high volatility state, heterogeneous integration is a better choice. Based
on the results of detailed portfolio experiments, we find interesting generalizations about
forecasts using stacking algorithms and characteristics of carbon assets. Not only did we
provide supportive evidence for the existing research on carbon return prediction, but
they we also explored supplementary research discussing the predictive model’s practical
significance in investment. Firstly, the improved stacking ensemble algorithm significantly
improves the economic benefits of carbon asset in portfolios. Secondly, if investing in
carbon assets, a risk-prone investor is more likely to receive higher returns. Meanwhile,
the empirical results demonstrate that different stacking ensemble frameworks perform
diversely during turmoil and tranquil periods. We recommend the ensemble technique in
practice since it brings stable forecasting performance and attractive investing gains, even
when the volatility situation varies from low to high. Last but not least, the details of our
innovation on stacking algorithm provide a valuable reference for researchers who study
time series prediction.

However, there are still some limitations requiring further discussion in future work.
We do not attempt to construct the optimal portfolio strategy in this study since the main
focus, as mentioned, is the economic impact of ensemble strategy on the forecasting model
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and the optimal ensemble models in different market situations. In future works, we plan
to test whether the improved stacking algorithm can continue to play a constructive role as
investment portfolios vary across multiple financial assets. Additionally, we intend to set
our sights on the broader carbon market to test the robustness of this ensemble algorithm.
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Appendix A. Supplementary Introduction of Models

Appendix A.1. Support Vector Regression (SVR)

Support Vector Regression (SVR), proposed by Drucker et al. [65], is an important
branch of Support Vector Machine (SVM). The basic idea of the SVR algorithm is to find a
regression plane that makes the data in the whole set have the shortest distance from it,
which can be described as follows.

Given a set of observations{xi, yi}T
i=1, where xi is an n-dimensional input vector,

xi ∈ Rn, yi is the corresponding target output, yi ∈ R, and T is the sample size. The
regression function used to formulate the nonlinear relationship between input and output
is called the SVR function, which is expressed as follows:

f (x; ω, b) = ωTφ(x) + b, (A1)

where φ is the nonlinear transfer function that maps the input vector to high-dimensional
feature space, ω denotes a set of weights, and b is the coefficient of the threshold. ω and b
are estimated by minimizing the following regularized risk function [66]:

R(C) = C
T

∑
i=1

Lε(yi, f (xi)) +
1
2
||ω||2, (A2)

where Lε(yi, f (xi)) is called the ε-insensitive loss function, which is defined as shown:

Lε(yi, f (x)) =

{
|y− f (x)| − ε, |y− f (x)|) ≥ ε

0, otherwise.
(A3)

C and ε are the prescribed parameters that are chosen beforehand by the user. Then, SVR is
transformed into an optimization problem with an objective function as follows:

min

{
1
2
‖ω‖2 + C

T

∑
i=1

(ξi + ξ∗i )

}
, (A4)

which is subject to the constraints:

ωφ(x) + b− yi ≤ ε + ξi,

yi −ωφ(x)− b ≤ ε + ξ∗i ,

ξi, ξ∗i ≥ 0.

(A5)
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In Equation (A4), ξi and ξ∗i are positive slack variables that denote the distance from
actual values to the corresponding boundary values of ε-tube. We obtain the SVR regression
function by solving the optimization problem:

f (x) =
T

∑
i=1

(αi − α∗i )K
(
xi, xj

)
+ b, (A6)

where αi and α∗i are Lagrange multipliers and K
(
xi, xj

)
is called the kernel function, which

yields the inner products in the feature space φ(xi) and φ(xj). In this study, we used the
Gaussian radial basis function (RBF) as the kernel function, which is not only easy to
implement, but also has advantages in dealing with nonlinear problems [67]. Its expression
is given by the following:

K
(

xi, xj
)
= exp

(
−
∥∥xi − xj

∥∥2

2σ2

)
. (A7)

Appendix A.2. Random Forest(RF)

Random Forest (RF), which combines bootstrapping and random feature selection,
is an ensemble machine learning algorithm based on evaluations of classification and
regression trees (CART). Ho [68] proposed the original random decision forest algorithm
and Breiman [69] further extended and developed the random forest algorithm. The core
idea of RF is to combine the predicted values from multiple decision trees to achieve more
diverse and robust results.

More specifically, the first step is to extract multiple samples by the bootstrap resam-
pling method from the original sample, which improves generalization capacity and avoids
overfitting. Then, several decision trees are constructed for the extracted samples. The tree
nodes continue to split until the tree reaches its maximum depth, and these trees will not
be pruned. The prediction results of the decision trees are collected, and the simple average
strategy is adopted to calculate the final predicted value. The process of the random forest
algorithm is shown in Figure A1.

Appendix A.3. eXtreme Gradient Boosting(XGBoost)

XGBoost (eXtreme Gradient Boosting) is an efficient decision tree algorithm, which
is based on the original gradient boosting decision tree (GBDT) and greatly improves the
model performance. As a forward-additive model, its core idea is to combine several
weak learners into a strong one by integration, more specifically, by boosting. XGBoost is
composed of multiple Classification And Regression Trees (CART), so it can be used for
both regression and classification.

The formula and derivation of the XGBoost algorithm are briefly introduced as follows.
Firstly, the additive model takes the following form:

ŷi = ϕ(xi) =
K

∑
k=1

fk(xi), (A8)

where fk(xi) represents the prediction of a weak learner and K is the number of candidate
weak learners. The subsequent direction of the algorithm is to find the optimal parameters
by minimizing the objective function, as shown in Equation (A9):

L(ϕ) =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk), (A9)

where Ω( fk) = γT + 1
2 λ‖ω‖2 denotes the complexity of the kth model, γ and λ are

configurable parameters used for controlling the degree of penalty and regularization, T
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represents the number of leaf nodes of the decision trees, and l(·) is the original convex
loss function to measure the difference between the observation and the predicted value.

To reduce the difficulty of this optimization problem, an additive manner is used,
which adds ft(xi) and uses a second-order Taylor expansion to further approach the exact
solution. The transformed objective function is shown in Equations (A10) and (A11):

Lt =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft), (A10)

Lt =
n

∑
i=1

[
l
(

yi, ŷ(t−1)
i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft), (A11)

where gi and hi, respectively, represent the first- and second-order derivatives of the loss
function.

Bootstrap 

tree-1 tree-2 tree-n

Original training 
data

subsample-1 subsample-n

su
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Averaging

y

Figure A1. Flowchart of the random forest method.

Appendix A.4. Three Penalty Regression

Ridge regression: Ridge regression is a well-known modified linear regression pro-
posed by Hoerl and Kennard [70], which aims to address overfitting of ordinary least
squares by imposing a penalty on the size of the coefficients. Mathematically, the ordinary
least squares solve a problem of the form:

min
w
‖Xw− y‖2

2, (A12)

while the ridge coefficients minimize a penalized residual sum of squares:

min
w
‖Xw− y‖2

2 + α‖w‖2
2 (A13)

In our model, we assigned α the default value (α = 1) given by sklearn (sklearn
(scikit-learn) is a famous and powerful machine learning library in Python, which covers
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almost all fields of machine learning, such as data preprocessing, model validation, feature
selection, classification, regression, clustering, and dimensionality reduction).

Lasso regression: Tibshirani [71] proposed the famous Lasso, which sweeps the whole
high-dimensional field. Lasso is very useful in some contexts for effectively reducing the
number of features. Lasso regression adds a regularization term to the linear regression in
its objective function:

min
w

1
2n
‖Xw− y‖2

2 + α‖w‖1, (A14)

where n is the sample size, α is a constant, and ‖w‖1 is the L1-norm of the coefficient vector
w. We used the cross-validation function lassocv provided by sklearn to determine the
parameter α.

E-net regression: E-net (Elastic-net) regression, proposed by Zou and Hastie [72], is
regarded as a combination of Ridge regression and Lasso regression, maintaining some
advantages of both. The objective function of E-net regression is to minimize the following:

min
w

1
2n
‖Xw− y‖2

2 + αρ‖w‖1 +
α(1− ρ)

2
‖w‖2

2 (A15)

where ‖w‖1 and ‖w‖2 represent the L1-norm and L2-norm of the coefficient vector, re-
spectively. In determining constants α and ρ, we used the cross-validation function
ElasticNetCV from sklearn.

Appendix B

Table A1. Descriptive statistics.

Variables Mean Std. Dev. Skew. kurt. ADF Test Jarque–Bera

SZA 0.00034 0.18722 0.28 11.27 −18.85 *** 4857.24 ***
LNG 0.00068 0.00047 0.34 33.09 −9.76 *** 41764.82 ***
SPcoa 0.00042 0.00050 −2.14 24.06 −8.86 *** 22770.72 ***
SPcru 0.00044 0.00052 −0.33 10.50 −25.58 *** 4217.38 ***
SPcor 0.00046 0.00005 0.68 4.42 −26.42 *** 815.51 ***
SPegg 0.00020 0.00045 4.68 63.46 −8.15 *** 156892.57 ***
SPcot −0.00013 0.00018 0.06 8.94 −25.61 *** 3045.48 ***
SPwhe 0.00031 0.00015 3.16 43.93 −8.06 *** 75088.17 ***
SPalu 0.00032 0.00013 −0.58 17.67 −7.01 *** 11956.52 ***
SPzin −0.00001 0.00017 0.60 9.79 −26.96 *** 3712.28 ***
SPlea −0.00021 0.00010 −0.31 4.56 −16.78 *** 806.90 ***
SPnic 0.00063 0.00028 0.14 5.36 −12.91 *** 1096.74 ***
SPtin 0.00035 0.00020 0.16 12.29 −6.73 *** 5760.94 ***
SPsil 0.00020 0.00023 −0.98 11.20 −15.31 *** 4924.58 ***
SPgol 0.00038 0.00006 −0.82 10.13 −9.97 *** 4013.54 ***
SPcop 0.00020 0.00013 2.12 49.51 −27.06 *** 94123.69 ***
SSEPE −0.00032 0.00024 −4.40 49.17 −9.80 *** 95125.33 ***
SSECI 0.00003 0.00015 −0.39 3.76 −30.72 *** 563.26 ***
CSI300 0.00008 0.00018 −0.41 3.33 −11.46 *** 448.50 ***
SSE180 0.00005 0.00017 −0.25 3.18 −11.65 *** 394.53 ***
SZSECI 0.00021 0.00023 −0.62 3.52 −10.88 *** 532.07 ***
CSI100 0.00003 0.00018 −0.35 2.87 −10.28 *** 331.63 ***
CSI500 0.00007 0.00022 −0.59 3.79 −29.92 *** 599.16 ***
SSEGBI 0.00021 0.00000 4.96 57.39 −5.88 *** 129320.39 ***
SSECBI 0.00023 0.00000 3.96 27.77 −5.29 *** 31781.76 ***
SSEEBI 0.00021 0.00000 2.68 20.55 −5.10 *** 17187.30 ***
Gb3M −0.00081 0.00075 −1.71 17.74 −10.91 *** 12447.21 ***
Gb10Y −0.00034 0.00008 −1.76 18.40 −7.98 *** 13377.39 ***
Cb3M −0.00108 0.00031 −1.36 16.33 −15.98 *** 10454.93 ***
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Table A1. Cont.

Variables Mean Std. Dev. Skew. kurt. ADF Test Jarque-Bera

Cb10M −0.00044 0.00002 −2.11 27.65 −6.90 *** 29825.27 ***
coalb3M −0.00108 0.00033 −1.17 15.50 −16.51 *** 9368.78 ***
coalb5Y −0.00060 0.00006 −0.81 10.93 −8.55 *** 4653.14 ***
FCI −0.00450 0.01904 −0.81 17.78 −8.76 *** 12151.94 ***
CSIIene 0.00018 0.00034 0.20 5.04 −31.51 *** 974.00 ***
Windene 0.00025 0.00032 0.05 4.83 −31.17 *** 888.71 ***

Note: ADF test tests the null hypothesis that the series has the unit root, which means that the series is non-
stationary. Jarque-Bera test tests the null hypothesis that the series follows a normal distribution. *** indicates that
the null hypothesis is rejected at the statistical significance of 1%.

Table A2. Explanation of variables.

Label Variable Transform.

SZA Option Settlement Price: Carbon Emission Right (Shenzhen) LD

Panel A: Energy and non-energy commodities

LNG China Liquified Natural Gas Price Index LD
SPcoa Futures settlement price (active contract): Coal LD
SPcru Futures settlement price (active contract): Crude oil LD
SPcor Futures settlement price (active contract): Corn LD
SPegg Futures settlement price (active contract): Egg LD
SPcot Futures settlement price (active contract): Cotton LD
SPwhe Futures settlement price (active contract): Wheat LD
SPalu Futures settlement price (active contract): Aluminium LD
SPzin Futures settlement price (active contract): Zinc LD
SPlea Futures settlement price (active contract): Lead LD
SPnic Futures settlement price (active contract): Nickel LD
SPtin Futures settlement price (active contract): Tin LD
SPsil Futures settlement price (active contract): Silver LD
SPgol Futures settlement price (active contract): Gold LD
SPcop Futures settlement price (active contract): Copper LD

Panel B: Financial variables

SSEPE SSE Average P/E ratio LD
SSECI SSE Composite Index LD
CSI300 CSI 300 Index LD
SSE180 SSE 180 Index LD
SZSECI SZSE Composite Index LD
CSI100 CSI 100 Index LD
CSI500 CSI 500 Index LD
SSEGBI SSE Government Bond Index LD
SSECBI SSE Corporate Bond Index LD
SSEEBI SSE Enterprise Bond Index LD
Gb3M CCDC government bond yield: 3-months LD
Gb10Y CCDC government bond yield: 10-years LD
Cb3M CCDC corporate bond yield (AAA): 3-months LD
Cb10M CCDC corporate bond yield (AAA): 10-years LD
coalb3M CCDC coal industry bond yield (AAA): 3-months LD
coalb5Y CCDC coal industry bond yield (AAA): 5-years LD

Panel C: Economic and industry index

FCI Financial Conditions Index FD
CSIIene China Securities Industry Index: Energy LD
Windene WIND Industry Index: Energy LD

Note: 1. Shanghai Stock Exchange; 2. China Securities Index; 3. Shenzhen Stock Exchange; 4. China Central
Depository & Clearing Co., Ltd., Beijing, China.
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Table A3. List of hyperparameters.

Model Name Explanations Hyperparameters

Base Model

FAR Factor-augmented regression pmax = qmax = 4, r = 7
FAR+MMS Mallows Model Selection -
MMA Mallows Model Averaging -
E-net Elastic-net α = 0.168, l1 ratio = 0.1
lasso Lasso regression -
ridge Ridge regression -

svr Support Vector Regression
kernel:rbf,
gamma:auto,
C:[0.5,1]

XGBoost eXtreme Gradient Boosting

max_depth:3,
learning_rate:0.04,
subsample:0.3,
colsample_bytree:0.8,
reg_alpha:0.05,
reg_lambda:0.05,
n_estimators:50

rf Random Forest

n_estimators:50,
max_features:sqrt,
max_depth:4,
min_samples_split:2,
min_samples_leaf:4

Ensemble Model

homo_rf RF as meta-model for homogeneous
ensemble

n_estimators:180,
max_features:sqrt,
max_depth:2,
min_samples_split:2,
min_samples_leaf:4

homo_svr SVR as meta-model for homogeneous
ensemble c = 0.5

homo_xgb XGBoost as meta-model for
homogeneous ensemble

max_depth:2,
learning_rate:0.1,
subsample:0.95,
colsample_bytree:0.7,
reg_alpha:0.2,
reg_lambda:0.05,
n_estimators:50

hete_rf RF as meta-model for heterogeneous
ensemble

n_estimators:70,
max_features:sqrt,
max_depth:3,
min_samples_split:2,
min_samples_leaf:2

hete_svr SVR as meta-model for heterogeneous
ensemble c = 8

hete_xgb XGBoost as meta-model heterogeneous
ensemble

max_depth:2,
learning_rate:0.06,
subsample:0.6,
colsample_bytree:0.6,
reg_alpha:0.2,
reg_lambda:0.06,
n_estimators:80
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Table A4. Comparison of model accuracy at different window sizes.

w = 200

RMSE SMAPE MAE U1 R2
os

Whole High Low Whole High Low Whole High Low Whole High Low Whole High Low

Base Model

FAR 0.4369 0.5620 0.2568 0.2595 0.3481 0.1708 0.2749 0.3758 0.1740 0.1630 0.2569 0.0935 0.2942 0.3363 −0.0142
FAR+MMS 0.4362 0.5604 0.2578 0.2704 0.3601 0.1807 0.2851 0.3866 0.1836 0.1632 0.2595 0.0942 0.2965 0.3400 −0.0222
MMA 0.4378 0.5641 0.2549 0.2713 0.3634 0.1792 0.2862 0.3903 0.1821 0.1631 0.2601 0.0926 0.2913 0.3311 0.0003
E-net 0.4658 0.6127 0.2419 0.2552 0.3551 0.1553 0.2742 0.3903 0.1582 0.1641 0.2681 0.0793 0.1977 0.2111 0.0996
lasso 0.4756 0.6280 0.2410 0.2573 0.3578 0.1569 0.2776 0.3956 0.1596 0.1690 0.2767 0.0784 0.1634 0.1711 0.1067
ridge 0.4692 0.6157 0.2473 0.2598 0.3571 0.1626 0.2791 0.3926 0.1656 0.1662 0.2704 0.0843 0.1859 0.2032 0.0590
SVR 0.4507 0.5916 0.2372 0.2477 0.3430 0.1524 0.2652 0.3754 0.1551 0.1564 0.2523 0.0771 0.2488 0.2643 0.1346
XGBoost 0.4759 0.6242 0.2518 0.2763 0.3786 0.1740 0.2955 0.4144 0.1767 0.1647 0.2611 0.0916 0.1623 0.1811 0.0248
RF 0.4884 0.6469 0.2420 0.2645 0.3670 0.1621 0.2861 0.4075 0.1647 0.1620 0.2615 0.0795 0.1180 0.1206 0.0990

Ensemble Model

homo_rf 0.4268 0.5528 0.2426 0.2608 0.3509 0.1707 0.2751 0.3770 0.1732 0.1530 0.2433 0.0841 0.3262 0.3578 0.0950
homo_svr 0.4059 0.5231 0.2365 0.2402 0.3188 0.1616 0.2533 0.3426 0.1640 0.1372 0.2109 0.0802 0.3906 0.4250 0.1394
homo_xgb 0.4210 0.5472 0.2347 0.2508 0.3395 0.1622 0.2650 0.3654 0.1646 0.1456 0.2316 0.0788 0.3445 0.3707 0.1529
hete_rf 0.4311 0.5668 0.2248 0.2540 0.3468 0.1613 0.2693 0.3752 0.1633 0.1536 0.2449 0.0778 0.3126 0.3249 0.2227
hete_svr 0.4169 0.5422 0.2317 0.2413 0.3260 0.1565 0.2555 0.3520 0.1590 0.1442 0.2267 0.0788 0.3572 0.3821 0.1744
hete_xgb 0.4196 0.5500 0.2226 0.2511 0.3446 0.1576 0.2653 0.3708 0.1597 0.1477 0.2333 0.0788 0.3489 0.3641 0.2375

Percentage of improvement(%)

homogeneous 4.3389 3.7271 7.3429 3.4248 3.3781 3.5201 3.7968 3.7642 3.8672 10.8676 11.0036 13.2982 - - -
heterogeneous 9.3613 9.6233 7.6670 4.9431 5.8698 2.8976 6.1368 7.3688 3.2041 9.2448 11.1046 5.7464 - - -
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Table A4. Cont.

w = 300

RMSE SMAPE MAE U1 R2
os

Whole High Low Whole High Low Whole High Low Whole High Low Whole High Low

Base Model

FAR 0.4432 0.5723 0.2555 0.2631 0.3554 0.1708 0.2792 0.3844 0.1740 0.1614 0.2574 0.0900 0.2737 0.3117 −0.0043
FAR+MMS 0.4363 0.5592 0.2609 0.2723 0.3573 0.1872 0.2870 0.3837 0.1902 0.1636 0.2572 0.0964 0.2959 0.3428 −0.0473
MMA 0.4378 0.5609 0.2620 0.2721 0.3557 0.1884 0.2869 0.3825 0.1914 0.1637 0.2568 0.0958 0.2912 0.3387 −0.0561
E-net 0.4657 0.6120 0.2431 0.2549 0.3537 0.1561 0.2740 0.3889 0.1591 0.1645 0.2671 0.0804 0.1981 0.2127 0.0907
lasso 0.4681 0.6163 0.2415 0.2544 0.3531 0.1557 0.2737 0.3890 0.1585 0.1654 0.2695 0.0792 0.1898 0.2016 0.1031
ridge 0.4685 0.6158 0.2447 0.2573 0.3553 0.1592 0.2766 0.3909 0.1622 0.1661 0.2696 0.0825 0.1881 0.2031 0.0788
SVR 0.4473 0.5868 0.2363 0.2471 0.3420 0.1523 0.2643 0.3737 0.1549 0.1559 0.2514 0.0774 0.2601 0.2764 0.1410
XGBoost 0.4838 0.6417 0.2376 0.2681 0.3808 0.1554 0.2886 0.4193 0.1580 0.1715 0.2752 0.0837 0.1343 0.1346 0.1316
RF 0.4916 0.6485 0.2504 0.2742 0.3710 0.1775 0.2960 0.4119 0.1802 0.1791 0.2781 0.0967 0.1064 0.1161 0.0355

Ensemble Model

homo_rf 0.4299 0.5564 0.2450 0.2588 0.3432 0.1744 0.2736 0.3702 0.1769 0.1527 0.2381 0.0867 0.3166 0.3494 0.0766
homo_svr 0.4234 0.5492 0.2387 0.2464 0.3278 0.1651 0.2612 0.3547 0.1676 0.1445 0.2230 0.0813 0.3369 0.3660 0.1235
homo_xgb 0.4255 0.5496 0.2448 0.2543 0.3393 0.1694 0.2688 0.3656 0.1721 0.1477 0.2316 0.0831 0.3305 0.3650 0.0780
hete_rf 0.4343 0.5667 0.2367 0.2569 0.3381 0.1757 0.2725 0.3670 0.1779 0.1546 0.2377 0.0860 0.3026 0.3250 0.1384
hete_svr 0.4169 0.5417 0.2328 0.2408 0.3262 0.1553 0.2549 0.3521 0.1578 0.1440 0.2221 0.0786 0.3572 0.3833 0.1664
hete_xgb 0.4276 0.5586 0.2319 0.2526 0.3439 0.1614 0.2675 0.3713 0.1637 0.1494 0.2334 0.0813 0.3237 0.3443 0.1731

Percentage of improvement(%)

homogeneous 3.8109 3.5846 4.9584 3.7821 5.2603 0.7060 4.0542 5.4235 1.0293 8.1069 10.2943 6.9572 - - -
heterogeneous 8.5464 9.1647 4.6173 4.2287 6.3325 −0.3874 5.3811 7.6877 −0.0795 10.3723 13.3881 3.6899 - - -
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Table A5. The annualized utility gain in the high volatility state with different γ values.

γ homo_rf homo_svr homo_xgb hete_rf hete_svr hete_xgb

0.1 127.7197 123.8112 130.1952 124.2137 125.9954 123.8034
0.2 106.8630 101.8535 105.7327 103.7007 105.0748 105.3883
0.3 88.2185 85.6709 87.1185 83.8264 86.4316 85.9962
0.4 70.2675 68.8990 70.2145 65.6354 68.6525 67.9815
0.5 52.7011 59.8317 54.7938 47.4687 49.0159 50.8217
0.6 38.3261 49.1146 45.4186 33.7303 30.2269 37.5260
0.7 29.1157 37.5849 34.7880 23.8302 20.6855 28.0542
0.8 19.5876 26.3511 24.5970 14.0808 11.0149 18.0043
0.9 10.2042 15.6767 14.6974 3.9732 1.5389 7.7412
1.0 0.8623 5.4678 4.9580 −6.3192 −7.4124 −1.6894
1.1 −8.2981 −4.2715 −4.6567 −15.5063 −16.6081 −10.8347
1.2 −17.4042 −13.3336 −14.0189 −24.3991 −25.6488 −19.2512
1.3 −26.3873 −22.1643 −23.2896 −33.1668 −34.0418 −27.5019
1.4 −35.2305 −30.8520 −32.3527 −41.2748 −42.2087 −35.9446
1.5 −43.9335 −39.4210 −41.2813 −48.5382 −49.5585 −44.2988
1.6 −52.3764 −47.8206 −49.8819 −55.5433 −56.5896 −52.5452
1.7 −59.5221 −56.0732 −57.9944 −62.5579 −63.4440 −60.4958
1.8 −66.6184 −63.7761 −65.4391 −62.2680 −67.9305 −68.0212
1.9 −67.0725 −71.0538 −70.1967 −61.9225 −72.4949 −71.0244
2.0 −66.7368 −78.2603 −74.9988 −61.8104 −77.0745 −67.9159

Table A6. The annualized utility gain in the low volatility state with different γ values.

γ homo_rf homo_svr homo_xgb hete_rf hete_svr hete_xgb

0.1 10.5833 11.0648 9.6583 21.7402 14.0093 6.2470
0.2 9.2922 8.0546 9.5888 19.7474 9.3324 6.7526
0.3 7.1480 5.2682 8.1578 16.5444 5.6646 6.6055
0.4 4.1519 3.3513 5.8763 12.7961 2.8451 5.2168
0.5 1.6063 2.2058 3.1016 9.3113 1.1212 3.6444
0.6 −0.2334 1.1163 0.3678 7.7594 −0.2119 2.3696
0.7 −0.2521 −0.1230 −1.8165 7.5543 −1.7435 1.4899
0.8 −0.2480 −1.4857 −2.2543 7.3756 −3.3473 0.5143
0.9 −0.2202 −2.8608 −2.3471 6.8545 −3.4884 −0.1160
1.0 −0.4539 −4.2558 −2.5065 6.2759 −3.6066 −0.6956
1.1 −0.8144 −5.6323 −2.5351 5.6874 −3.4685 −0.8434
1.2 −1.2150 −6.6567 −2.6040 5.0897 −3.4482 −0.9459
1.3 −1.6539 −6.5332 −2.9180 4.4465 −3.5440 −1.1259
1.4 −2.1931 −6.5012 −3.3178 3.7551 −3.7335 −1.3668
1.5 −2.6683 −6.5235 −3.7421 3.0814 −3.9281 −1.6564
1.6 −3.1688 −6.6074 −4.2389 2.4251 −4.1701 −1.9855
1.7 −3.7310 −6.7433 −4.7852 1.7832 −4.4465 −2.3472
1.8 −4.2997 −6.9287 −5.3504 1.1336 −4.7509 −2.7454
1.9 −4.8519 −7.1635 −5.8327 0.4947 −5.0776 −3.1775
2.0 −5.3919 −7.4461 −6.3234 −0.0607 −5.3202 −3.6242
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Figure A2. Correlation heat map.
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