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Abstract: Green innovation has been identified as a viable strategy to mitigate the tension between
industrial change and pollutant emissions. Relevant research should focus more on the impact of
eco-friendly innovations on carbon emissions. Consequently, using a panel data set that covers
30 Chinese provinces from 2005 to 2020, we examine whether there is a carbon-abatement effect of
green innovation in the construction sector. According to the findings of a two-way fixed-effects
model, green innovation substantially positively influences reduction in dioxide emissions in the
Chinese construction industry. The results of a panel threshold model show a significant non-linear
relationship between green innovation and carbon emissions when the environmental regulation
intensity is used as the threshold variable. Furthermore, we discovered that green innovation cuts
carbon emissions considerably through environmental regulation. Finally, the impact of abatement
varies significantly between regions, innovation elements, and types of development.
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1. Introduction

Global warming has been a major study issue worldwide [1], and carbon emissions
have considerably contributed to climate change [2]. According to the Sixth IPCC As-
sessment Report, global warming is anticipated to approach or surpass 1.5 ◦C in the next
20 years, based on projections of average temperature increases. Carbon emissions have
recovered primarily to pre-Newcastle pneumonia epidemic levels, reversing the tempo-
rary drop caused by the pandemic in 2020, according to BP’s World Energy Statistics
Yearbook (2022). This growth is primarily driven by emerging economies, with China
accounting for 76.9% of the increase. As a result, China’s environmental regulations face
the complex and urgent challenge of reducing CO2 emissions. Achieving China’s goal of a
sustainable low-carbon economy is contingent on cutting carbon dioxide emissions [3,4].

In response to local and United Nations climate-discussion criticism, the Chinese
government is reducing its carbon dioxide emissions. It has committed to cutting carbon
emissions in a variety of bold ways. For instance, within the framework of the Paris
Agreement, China pledged to achieve carbon peaking by 2030 and carbon neutrality
by 2060. As the world’s largest developing nation, China will swiftly transition from carbon
peaking to carbon neutrality and become a world leader in carbon abatement.

It is crucial to determine the binding influence of technological progress on carbon
dioxide emissions in the construction sector [5]. As a major pillar sector in the country’s
growing urbanization, the construction industry has contributed tremendously to the na-
tion’s economic growth. However, there are issues of excessive energy use and emissions [6].
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The building industry accounts for around 40% of worldwide carbon emissions. The Chi-
nese construction industry is the largest in the world. According to the China Building
Energy Consumption and Carbon Emissions Study (2022), the total energy consumption
of the entire building process in 2020 was 2.27 billion tons, accounting for 45.5% of the
country’s total energy consumption; the total carbon emissions of the building process as a
whole in 2020 was 5.08 billion tons of carbon dioxide, accounting for 50.9% of the country’s
carbon emissions. Using toxic fuels, primary energy consumption, and antiquated tech-
nology have increased hazardous emissions and environmental damage [7], resulting in
severe emission problems [8]. However, as in all other industries, when new technologies
and equipment are generated and put into the construction process, high-value-added,
low-energy-consuming products are produced. Energy consumption is more efficient, and
construction costs are reduced with lower carbon emissions [9]. New technology-based
tools and equipment imply the development of technological innovations [10–12]. As a re-
sult, green innovation is a viable path for the construction industry to realize energy-saving
and low-carbon development [13]. This has a positive impact on economic, social, and
ecological benefits.

Scholars have researched whether green innovation can cut carbon emissions exten-
sively, but a consensus has yet to be reached. Most academics believe that green innovation
may reduce carbon emissions while improving environmental quality [14,15]. According to
empirical research, green innovation is an effective strategy for achieving a “win-win” situ-
ation with respect to high-quality economic growth and environmental conservation [16].
The correlation between green innovation and carbon abatement has also been demon-
strated [17,18]. For instance, Du et al. (2019) [19] found that a single threshold effect
regulated the impact of environmental innovation on the performance of carbon dioxide
emissions. Conversely, other researchers contend that green technology cannot reduce
emissions [20–22]. According to Weina et al. (2016) [23], Italy’s green innovations may have
enhanced environmental output but have not appreciably reduced carbon emissions.

Furthermore, the correlation between green technologies and greenhouse-gas emis-
sions must be better studied, especially in developing countries [24,25]. Other studies
have found a trend of increasing carbon pollution across economies, particularly in de-
veloping countries undergoing rapid economic growth and industrialization [26,27]. The
effect of green technology on CO2 reduction has been found to differ dramatically between
economies [28]. For instance, Dauda et al. (2019) [29] found that innovation has reduced
CO2 emissions in the G6 while increasing them in the Middle East, North Africa, and the
BRICS. Chen et al. (2020) [30] found that technological innovation in high-income, high-
tech, and high-CO2-emitting countries can significantly reduce emissions in neighboring
countries, while R&D intensity in other countries can even increase CO2 emissions. Many
European countries are also facing economic transformation [31]. It should be mentioned
that analogous research relies on a worldwide sample and does not include China. Nev-
ertheless, research in this area is necessary for adopting and improving decarbonization
measures in the world’s largest rising economy.

The bulk of studies have concentrated on the effect of environmentally friendly inno-
vation on environmental quality. Consequently, further research is necessary to directly
demonstrate the carbon-abatement benefits of green technology innovations in the construc-
tion industry. Numerous studies have investigated the factors that influence CO2 emissions
in the building sector. However, most of the literature focuses on energy consumption [32],
urbanization [33], economic growth [34], environmental regulation [35,36], and carbon
rights [37]. Fewer studies consider green innovation as a central explanatory factor. Most
domestic and international experts and scholars [6,8] have concluded that technological
innovation and industrial carbon emissions are closely linked through different empirical
studies. Green technologies are critical to attaining sustainable development goals while
having the least detrimental impact on the natural environment [38–41].

Based on current research, we pose two questions: (1) Can green innovation cut
carbon emissions effectively? (2) Does green innovation have a non-linear or linear re-
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lationship with dioxide emissions? To address the above topics, using panel data from
30 provinces, the impact of green innovation on CO2 emissions in the construction sector
between 2005 and 2020 is empirically explored. The results of green innovations above
and below the threshold are validated using a two-way fixed-effects model followed by a
double-threshold model. This study establishes a link between carbon dioxide emissions
and ecologically friendly innovation. According to the two-way fixed-effects model find-
ings, green innovation has a substantial positive influence on CO2 emissions reduction
in the Chinese construction industry. The panel threshold-effects model results suggest
a double threshold effect of green innovation and carbon emissions when the intensity
of environmental regulation is used as the threshold variable. Furthermore, we discov-
ered that green innovation cuts carbon emissions considerably through environmental
regulation. Finally, the abatement impact varies significantly between regions, innovation
elements, and types of development. Although this article found a significant impact of
green technology innovation on the total carbon emissions reduction in the construction
industry, we did not reach a significant conclusion regarding the proportion of emissions
reduction. This could guide regions in China to realize the carbon-reduction effects of
green innovation.

The following are four major contributions: First, using a unified statistical analysis
method, we investigate the correlations between carbon dioxide emissions and green
innovation, both linearly and non-linearly. The global effect of environmentally friendly
innovation on environmental quality, notably carbon emissions, is questionable. In this
paper, we study the influence of green innovation on CO2 emissions using a two-way
fixed-effects model followed by a double-threshold model. Environmental regulations
are included in the study framework for the role of green technology in reducing carbon
dioxide emissions. This may contribute to the advancement of research in linked domains.
Second, this essay expands the study of green innovation in carbon emissions based
on statistics from the Chinese construction sector. We aim to determine whether green
technologies provide the building sector with viable ways to combat climate change. A
comprehensive evaluation of the role of green innovation in abating emissions in China’s
construction sector facilitates the creation of decarbonization strategies. In addition, it may
serve as a guide for other developing nations as they transition to low-carbon economies.
We have discovered a probable mechanism. Numerous studies have yet to examine
the indirect impact mechanisms of green innovation in reducing CO2 emissions in the
construction industry. Using a mediation-effect model based on environmental regulation,
the mechanism of influence of green innovation on dioxide emissions is examined. Finally,
we investigate the varying effects of green innovation on CO2 emissions in different regions,
innovation variables, and province types. Due to the potential diversity of green innovation
and dioxide emissions in the building sector, only some studies have assessed whether
the spatial relationship varies. This facilitates the formulation of green development plans
tailored to local circumstances.

The remaining sections of the paper are organized as follows. Section 2 describes the
theoretical analysis and research hypotheses. Technical and research data are presented
in Section 3. Section 4 shows the estimated benchmark regression findings, the mediation
effect, and heterogeneity analysis results. The results of the study are discussed further in
Section 5. The Section 6 summarizes the findings and provides policy suggestions.

2. Theoretical Analysis and Basic Assumptions
2.1. Green Innovation and Carbon Emissions

According to modern economic growth theory, technological progress is one of the
major factors in economic growth. Innovation is a requirement for technology development
which can reduce the harmful effects of economic growth on the environment [42]. The re-
search and application of green innovations can drive technological progress and industrial
transformation, thereby achieving the goal of reducing carbon emissions. This has been
well documented internationally. For example, the United Nations Framework Convention
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on Climate Change (UNFCCC) has embraced “green technology transfer” as a key tool
in the fight against climate change. Specifically, green innovations in energy, transport,
and buildings can significantly curtail CO2 emissions by improving energy efficiency and
promoting new energy sources.

The relationship between green innovation and CO2 emissions will vary between the
initial and subsequent phases. At the initial stage, green innovation has a relatively small
effect on CO2 emissions abatement. This is because it takes time for a new technology or
product to become widespread and diffused. In the subsequent stages, however, the effect
of CO2 emissions abatement will gradually increase as green innovation is widely used
and its market share increases. The diffusion of green innovations should therefore be a
long-term and gradual process. Innovations and technological developments may result in
hazardous waste [43] but may also pave the way for eco-friendly technologies with lighter
emission rates. Thus, the relationship can be either positive or negative.

There may be a complex non-linear relationship between green innovation and carbon
abatement, with the intensity of environmental regulation being a significant threshold vari-
able. Innovation asymmetry theory suggests that the degree of environmental regulation
can create innovation differentiation in the marketplace. When environmental regulations
are less stringent, firms may adopt more traditional technologies and experiences to meet
environmental requirements. Only adopting more advanced and cutting-edge technolo-
gies and innovative solutions can give firms a comparative advantage in the competitive
marketplace when the environmental regulation intensity increases. This advantage is
more difficult to replicate. Therefore, the higher the environmental regulation intensity,
the greater the differentiation of the innovation. The following research hypotheses were
generated based on the above analysis:

Hypothesis 1. Green innovation can significantly reduce carbon emissions in the construction industry.

Hypothesis 2. There is a non-linear relationship between green innovation and carbon reduction.

2.2. The Mediating Role of Environmental Regulation

Innovation theory suggests that firms tend to invest more in eco-friendly technological
innovations under the influence of environmental regulatory intensity. When environmen-
tal policies and regulations are strengthened, the cost to companies of implementing carbon
reductions and reducing their environmental impact increases. As a result, companies tend
to adopt more optimal and cost-effective methods to reduce carbon emissions through
innovation. Through extensive and in-depth research into environmental regulatory over-
sight, scholars have found that it can significantly affect technological innovation [44]. The
higher the environmental regulation intensity, the tighter the environmental constraints on
companies. Companies will have to face stricter emissions standards and environmental
responsibilities, which will lead to innovations in technology and processes to improve
energy efficiency and cut CO2 emissions.

The “Porter Hypothesis” posits that environmental regulation may force firms to
innovate and enhance their competitive advantage in the marketplace [45]. Adequate
environmental regulation has a significant impact on green innovation. In a competitive
market environment, firms transform elements of environmental regulation into regional
factors of green innovation, enhancing the disincentives to waste emissions. According to
the Porter Hypothesis, the relationship between environmental regulation, eco-friendly
technologies, and environmental pollution has been explained more scientifically and
clearly. In addition, studies have revealed an inverted U-shaped relationship between
environmental regulation and environmental pollution [46]. Therefore, environmental
regulation plays a mediating role when studying the CO2 abatement effects of technological
innovation. Therefore, we propose the following research hypothesis:
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Hypothesis 3. Green innovation reduces carbon emissions by promoting the intensity of environ-
mental regulation.

3. Materials and Methods
3.1. Model Specification
3.1.1. Carbon-Emissions Measurement

Numerous research studies have investigated the quantification of CO2 emissions
from the building industry. Generally, these studies can be categorized into three groups:
the IPCC approach, the input–output analysis technique, and the life-cycle assessment
method. First, carbon emissions are evaluated using energy consumption and carbon diox-
ide emission factors [47,48]. Furthermore, carbon emissions are estimated by assembling
input–output tables and building related mathematical models describing the link between
initial input, intermediate input, intermediate output, total input and total output, and final
output for each economic system sector [49]. Finally, bottom-up emissions of a product
or process are evaluated throughout its life cycle by circling carbon emissions, accounting
limits, and collecting carbon emissions data [50,51]. In recent years, the amount of academic
research using IPCC methods to study the carbon emissions from the building sector has
increased significantly. The primary reasons include the IPCC method’s more flexible data
selection, straightforward accounting methods, and more reliable computation outcomes.
Consequently, the IPCC approach was adopted to estimate carbon emissions in this article.

Based on the CEADS database and regarding Shan et al. (2016) [52], following the IPCC
approach, the province-specific dioxide emissions from the energy used by the building
sector were calculated.

CEij = ADij × NCVi × CCi × Oij (1)

where CEij are the CO2 emissions from burning fossil fuel i in the sector j; ADij represents
the fossil-fuel usage for the particular fossil-fuel type and industry; NCVi is the net calorific
value generated per physical unit of fossil-fuel burning; CCi (carbon content) is the dioxide
emissions per net calorific value produced by fossil fuel i; and Oij is the oxidation rate,
which is the oxidation ratio during the burning of fossil fuels.

3.1.2. STIRPAT Model

The IPAT model was originally proposed by Ehrlich and Holdren (1971) [53] and
extended into the STIRPAT model by Dietz and Rosa (2003) [54]. The model can explain or
evaluate the different influences, sources, and magnitudes of environmental stress. The
IPAT model can be written as I = PAT, where I, P, A, and T denote environmental impact,
population, wealth per capita, and technology, respectively.

Ii = aPb
i × Ac

i × Td
i × ei (2)

where a is a constant term; b, c, and d are the elastic coefficients of the three variables P,
A, and T, respectively; and e is an error term and represents random variables, indicating
uncontrollable or unobservable random variables. The model can be taken logarithmically
on both sides and transformed into a linear equation.

We can use the STIRPAT model [55,56] to understand the main factors that influence
carbon emissions from buildings.

CEit = αPβ1
it × Aβ2

it × Tβ3
it × eµit (3)

where α and β are model parameters and µ is a random disturbance parameter.
In the STIRPAT model, both the coefficients can be estimated as parameters and the

effects can be appropriately decomposed [57].
The factors affecting carbon emissions are not only population increase, economic

growth, and technological progress. Explanatory variables, core explanatory variables, and
control variables can be added to the model above.
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3.1.3. Two-Way Fixed-Effects Model

The following regression equation was developed to test the CO2 abatement effect of
green innovation in the construction sector. To control for time and area effects, a two-way
fixed-effects model was chosen in this paper.

CEit = β0 + β1Techit + β2Xit + αi + γt + εit (4)

where i and t, respectively, represent the province and year; CEit denotes the dioxide
emissions from the building sector in the province i in period t; Techit is the number of
patents for green inventions in the province i in the period t, denoting the level of green
innovation; Xit is a collection of factors that impact carbon dioxide emissions; αi denotes
the province fixed effects, controlling for all province-level factors that do not vary over the
region; γt denotes the year fixed effects, controlling for time-level factors that do not vary
by time; and εit is the residual term. In the above equation, β1 is this paper’s estimated
coefficient of interest. If negative and significant, β1 indicates that green innovation may
significantly cut CO2 emissions from the inter-provincial construction sector.

3.1.4. Panel Threshold Model

The economic rationale for the non-linear impact may be that while an area is in its
early phases of development, its major development aim is economic expansion. Currently,
technical advancement is more likely to enhance production. Although it has a slight
damping impact on carbon emissions [58], the outcome is mediocre. When an area achieves
a certain degree of economic development and prioritizes green and sustainable develop-
ment, technological innovation becomes more focused on green technological innovation,
as green innovation supports economic development and improves environmental quality
and CO2 abatement intensity. This study employed the Hansen threshold model [59] to
investigate whether there is a non-linear link between green innovation and carbon dioxide
emissions. As a threshold variable, we used the intensity of environmental regulation. The
single-threshold panel model presented in this study is described below.

CEit = β0 + β1Techit × I(Envrit ≤ θ)+ β2Techit × I(Envrit > θ)+ β3Xit + αi +γt + εit (5)

We extended the single-threshold model to a multi-threshold model, considering the
possibility of multiple thresholds.

CEit = β0+ β1Techit × I(Envrit ≤ θ1) + β2Techit × I(θ1 < Envrit ≤ θ2) + · · ·
+βnTechit × I(θn−1 < Envrit ≤ θn)
+βn+1Techit × I(Envrit > θn) + βn+2Xit + αi + γt + εit

(6)

where Envrit represents the severity of environmental regulation and serves as the threshold
variable in year t and province i; θ is the specific threshold value, when Envrit ≤ θ, I(·) = 0
and when Envrit > θ,I(·) = 1; and I(·) is an indicator function whose value relies on the
link between the threshold variable (Envrit) and the threshold value (θ). In model (6), Techit
is the explanatory variable affected by Envrit and β1~βn+1 are the coefficients of the effect
of Techit on CEit when Envrit is in different intervals.

3.2. Variable Definitions
3.2.1. Explained Variable

This study used the construction industry’s carbon emissions (CEs) as the explanatory
variable. Due to the non-uniformity of physical energy categories consumed in different
provinces, all energy consumed in each province was selected for data completeness,
excluding energy sources outside the CEADS emission factor table. Secondary energy
sources, such as electricity and heat, were omitted to avoid double-counting electricity and
heat emissions. This article focuses on absolute carbon reduction, so continuous total data
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were used. We also tried to use the logarithmic of carbon reduction for the robustness tests,
and although doing so is controversial, the results are robust.

3.2.2. Core Explanatory Variable

Green innovation (Tech) [60] was taken as the fundamental explanatory variable.
Three variables can be used to quantify green innovation: patents, R&D expenditure, and
total factor productivity. These metrics indicate the innovation’s inputs, outputs, and
performance. Patents are a reasonably accurate predictor of environmental innovation [61].
Therefore, the number of patents for green innovation was utilized as a measuring stick.
This article focuses on the impact of increasing the number of green patents on carbon
reduction, that is, how much carbon emissions can be reduced by adding a green patent.

3.2.3. Threshold Variable and Mechanism Variable

Environmental regulation intensity (Envr/lnEnvr) was used as both a threshold and a
mechanism variable. Existing research needs to have defined criteria for quantifying the
rigorousness of environmental regulation, which is a policy variable. Some scholars [62]
utilize the ratio of regional GDP to regional total energy consumption as a measurement.
The bigger the ratio, the more pronounced the environmental regulation’s effect on energy
conservation and emissions abatement at a given GDP level. Therefore, we used the ratio
of GDP to energy consumption in the construction sector for measurement.

3.2.4. Control Variables

Complex variables influence carbon emissions in the building business. To control the
potential impact of other factors and mitigate the endogenous problems caused by omitted
variable bias, with reference to the established literature, construction GDP (lnCongdp), the
number of employees in the construction industry (lnConjo) [11], the level of urbanization
(Town) [63], the degree of openness to the outside world (Open) [64], the R&D intensity
(Rede) [65], the industrial structure (lndus) [66], the economic development level (Pgdp) [2],
and the efficiency of science and technology innovation (Pate/Scit/Expe/Budge) [67] were
selected as control variables. Table 1 contains a listing of all factors considered for this study.

Table 1. Variable Definitions.

Variable Name Variable Measure Data Sources

Dependent variable
CE Carbon emissions from construction [48] IPCC A

Independent variable
Tech Green innovation [60] Number of patents for green inventions B

Threshold variable
Envr Environmental regulation intensity [62] Construction GDP/energy consumption C and A

Mediating variable
lnEnvr Environmental regulation intensity [62] Ln (construction GDP/energy consumption) C and A

Control variables
lnCongdp Construction GDP Ln (construction GDP) C

lnConjo Number of people employed in the
construction industry [11]

Ln (number of employees in construction
companies) C

Town Urbanization level [63] Urbanization rate D
Open Degree of openness to the outside world [64] FDI/total GDP D

Rede R&D intensity [65] R&D expenditure of industrial
enterprises/total GDP D

lndus Industrial structure [66] Construction GDP/total GDP D
Pgdp Economic development level [2] Ln (per capita GDP) D
Pate STI efficiency [67] General budget expenditure D
Scit STI efficiency [67] Domestic patent applications granted D
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Table 1. Cont.

Variable Name Variable Measure Data Sources

Expe STI efficiency [67] Science and technology D

Budge STI efficiency [67] Science and technology expenditure/general
public budget expenditure D

Notes: In the data sources column, “A” indicates the China Energy Statistical Yearbook, the China Environmental
Statistical Yearbook, and the CEADS database; “B” indicates the China Research Data Service Platform (CNRDS)
and the statistical reports of the State Intellectual Property Office; “C” indicates the China Statistical Yearbook of
the Construction Industry; “D” indicates the China Statistical Yearbook.

Due to the unavailability and scarcity of data, four regions—Tibet, Hong Kong, Macau,
and Taiwan—were excluded from this paper. The data from the final panel for thirty
Chinese provinces from 2005 to 2020 were selected and interpolated to fill in the missing
data for specific provinces. Descriptive statistics for all variables are presented in Table 2.

Table 2. Descriptive Statistics of Variables.

Variable Obs. Mean Std. Dev. Min. Max.

CE 480 802.149 765.214 13.008 4059.920
Tech 480 725.144 1303.389 0 10,010
Envr 480 18.197 43.817 2.209 489.816

lnEnvr 480 2361.909 819.364 792.690 6194.031
lnCongdp 480 6.774 0.924 3.954 8.784
lnConjo 480 13.640 1.117 10.912 15.962

Town 480 0.552 0.140 0.269 0.896
Open 480 0.022 0.018 0.000 0.082
Rede 480 94.037 52.366 5.833 231.865
lndus 480 0.071 0.023 0.019 0.147
Pgdp 480 10.501 0.658 8.528 12.013
Budg 480 3666.702 2926.775 0.201 17,430.790
Pate 480 41,179.920 75,230.880 79 709,725
Scit 480 90.485 137.640 0.48 1168.793

Expe 480 5055.355 33,142.230 2.237 72.019
Notes: “Std. Dev.” denotes the standard deviation.

4. Results
4.1. Two-Way Fixed-Effects Regression Analysis

To test the CO2 abatement effect of green innovation in the building industry, a
two-way fixed-effects model was used as the baseline regression model. In addition, in
order to see more clearly whether other factors also influenced the two, we divided the
regression model into one that did not include control variables and one that did. To
strengthen the credibility of the two-way fixed-effects model, we present the regression
results with bootstrap standard errors and control for province–year interaction fixed
effects in Table 3. The regression results are shown in Table 3. Column (1) does not contain
control variables, column (2) displays results for fixed effects with conventional robust
standard errors, column (3) displays regression results with bootstrap standard errors, and
column (4) displays regression results controlling for province–year interaction fixed effects.
The carbon-reduction effect of green innovation is significant, regardless of the total or
proportion of carbon emissions (Appendix B).

The regression coefficients for Tech are 0.024, −0.184, and −0.184, as shown in columns (1)
and (3), with columns (2) and (3) passing the 1%-significance-level test. For example,
column (1) illustrates that the green-innovation regression coefficient is positive and in-
significant before including control variables. Upon addition of the control variables, the
estimated coefficient of Tech is −0.184, which is statistically significant at the 1% level. This
indicates that additional variables obscure the results of the baseline regression. Accord-
ing to the regression findings in column (2), a rise in green innovation decreases dioxide
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emissions in the construction sector across all provinces. From the results for the control
variables, the coefficient of Open is significantly negative, indicating that the degree of
openness to the outside world contributes to the reduction in carbon emissions in the
construction industry. Due to economic globalization, trade between countries has become
more frequent. The introduction of advanced foreign experience and technology in en-
vironmental protection, increased awareness of environmental protection, and increased
demand for high quality of life have reduced carbon emissions in the industry.

Table 3. Results of the Two-Way Fixed-Effects Regression Analysis.

Dependent Variable: CE

(1) (2) (3) (4)
FE FE_r FE_bootstrap FE_dt

Tech
0.024 −0.184 ** −0.184 *** −0.076 *

(0.083) (0.073) (0.049) (0.046)

lnCongdp 387.472 387.472 292.618 *
(377.136) (251.326) (163.222)

lnConjo −35.282 −35.282 89.532
(216.077) (97.173) (73.198)

Town
493.041 493.041 1140.732

(1832.267) (1151.909) (1480.447)

Open −6933.200 ** −6933.200 *** −2984.050 **
(3112.535) (1741.324) (1318.868)

Rede
−0.790 −0.790 0.832
(3.663) (1.838) (1.165)

lndus
−5426.363 −5426.363 * 333.546
(4097.149) (3141.189) (1868.609)

Pgdp −78.562 −78.562 184.983
(462.698) (288.796) (181.879)

Pate
−0.000 −0.000 −0.002 **
(0.001) (0.001) (0.001)

Scit
1.123 1.123 −1.318 **

(1.321) (0.794) (0.519)

Expe 0.002 0.002 ** 0.000
(0.002) (0.001) (0.001)

Budge 0.134 0.134 *** −0.024
(0.123) (0.046) (0.046)

Constant
454 *** −251 −251 −4672 ***

(88) (4837) (2262) (1739)
Year FE Yes Yes Yes Yes

Province FE Yes Yes Yes Yes
R2 0.231 0.354 0.354
N 480 480 480 480

Notes: (1) Robust standard errors are in parentheses; (2) “***”, “**”, and “*” denote statistical significance at the
1%, 5%, and 10% levels, respectively.

4.2. Panel Threshold Regression Analysis

According to model (6), whether the threshold-effect test is passed or failed determines
whether the panel threshold model can be further manipulated. This threshold effect tests
for a non-linear association between the variables. There may be a lagging effect on the
impact of Tech on CE. The model was re-estimated using Tech’s first-order lag term for
accounting for endogeneity and for validating the non-linear relationship further. Based
on Hansen’s hypothesis, the threshold-effect test for Tech and the first-order lag term of
Tech were used. Repeating the sample 300 times, the bootstrap technique determined the
asymptotic distribution of F-values and the accompanying p-values and critical values.
The results of the threshold tests indicated that single and double thresholds passed the
hypothesis test at the 1% significance level (Table 4). In contrast, the three-threshold effect
was insignificant, so the two-threshold model was chosen for analysis.
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Table 4. Threshold-Effects Tests for the Existence.

Independent
Variable

Number of
Thresholds

Threshold
Value F-Statistics p-Value BS Times 95% Confidence

Interval

Tech Single
threshold 4.381 132.11 *** 0.000 300 [4.261, 4.413]

Tech Double
threshold 7.658 75.60 *** 0.000 300 [7.624, 7.671]

Tech Three-fold
threshold 3.499 43.41 0.700 300 [3.461, 4.447]

L.Tech Single
threshold 3.917 103.96 *** 0.000 300 [3.671, 3.921]

L.Tech Double
threshold 7.658 53.10 ** 0.020 300 [7.643, 7.671]

L.Tech Three-fold
threshold 3.549 53.47 0.603 300 [3.501, 3.606]

Notes: “***” and “**” denote statistical significance at the 1% and 5% levels, respectively.

According to Table 4, the F-statistic is statistically significant at the level of significance
of 1% in the double-threshold model. There are two thresholds, with Tech thresholds of
4.381 and 7.658 and L.Tech thresholds of 3.917 and 7.658, respectively. Figures 1 and 2 show
the likelihood statistics. As shown, the above threshold values are valid.
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Figure 1. Threshold Likelihood Statistics of Tech.

Based on the threshold test, we chose environmental regulation as the threshold
variable and performed a two-threshold-model regression analysis. In column (1) of
Table 5, the results for Tech are displayed. When Envr is below the threshold value of 4.381,
the regression coefficient of Tech on CE is 1.025, and the result is significantly positive; when
Envr is between the threshold value of 4.381 and 7.658, the coefficient of Tech is 0.194, and
the result is significantly positive; when Envr is above the threshold value of 7.658, the
coefficient of Tech is −0.152, and the effect is significantly negative. This shows that when
environmental regulations are weak, green innovation has a negligible influence on CO2
abatement in the construction sector. However, as environmental regulation grows more
stringent, the coefficient of Tech decreases. Eventually, it becomes negative and plays a
larger role in lowering CO2 emissions. In addition, the same outcomes are realized (see
column (2) of Table 5). Therefore, the double-threshold model results suggest a non-linear
relationship between green innovation and CO2 emissions.
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Table 5. Results of the Panel Threshold Regression Analysis.

Dependent Variable: CE

(1) (2)
Tech L.Tech

Tech (Envr ≤ threshold1)
1.025 ***
(0.099)

Tech (threshold1 < Envr ≤ threshold2)
0.194 ***
(0.056)

Tech (Envr > threshold2)
−0.152 ***

(0.032)

(Tech)−1 (Envr ≤ threshold1) 1.225 ***
(0.135)

(Tech)−1 (threshold1 < Envr ≤ threshold2) 0.195 ***
(0.066)

(Tech)−1 (Envr > threshold2) −0.195 ***
(0.039)

Constant
577 1831

(1658) (1771)
Control variables Yes Yes

Year FE Yes Yes
Province FE Yes Yes

R2 0.531 0.487
N 480 450

Notes: (1) Robust standard errors are in parentheses; (2) “***” denotes statistical significance at the 1% level; (3) the
number of bootstrapping iterations for the likelihood ratio test was 300.

4.3. Endogenous Discussion

An inverse causal link between green innovation and construction-related carbon
emissions may exist. In other words, higher construction carbon emissions may push
the construction industry into green innovation, or there may be measurement errors or
omitted variables. The existence of an endogenous problem means that the estimation
results of model (4) are biased. As a result, we estimated our model (4) using the generalized
two-step method-of-moments (GMM) estimator developed by Arellano and Bond (1991),
which allowed us to correct endogeneity using instruments. This included constructing
instrumental variables (IVs) using historical data on green innovation.

Green innovation’s first-order and second-order lag terms were used as IVs in the
two-step GMM regression. In Table 6, “first” and “second” indicate the results of the first-
and second-stage regressions, respectively. As expected, each IV mentioned above had
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a substantial favorable impact on Tech. Furthermore, the IVs were plausible because the
F-statistics in Table 6 exceed 10. This demonstrates that the IV selection is logical. The
findings indicate that Tech considerably decreases CE, validating the dependability of the
baseline estimate results. At the bottom of Table 6, you will see the validation test results
for the IVs. The findings imply that concerns over inadequate variable identification and
IVs can be ruled out. Therefore, the estimations for GMM2s are reliable.

Table 6. Instrumental-Variable Regression Results.

Dependent Variable: Tech CE Tech CE

Instrumental Variable: L.Tech L2.Tech

(1) (2) (1) (2)
First Second First Second

Tech
−0.187 *** −0.177 ***

(0.047) (0.050)

L.Tech
1.025 ***
(0.080)

L2.Tech
0.987 ***
(0.115)

F-test 164.760 74.000
p-value 0.000 0.000

Under-identification test
Kleibergen–Paap rk LM-statistic 35.207 *** 36.411 ***
Weak instrumental variable test

Cragg-Donald Wald F-statistic 1627.022 753.154
Stock–Yogo weak ID test critical values 16.380 (10%) 16.380 (10%)

Control variables Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Province FE Yes Yes Yes Yes
R2 0.327 0.290
N 480 450 420 420

Notes: (1) Robust standard errors are in parentheses; (2) “***” denotes statistical significance at the 1% level;
(3) the main function of the under-identification test is to check whether the instrumental variables are sufficiently
valid to avoid unreliable estimation results due to inadequate instrumental variables. Under-identification
of instrumental variables may result in imprecise, statistically insignificant, or biased estimates of regression
coefficients; (4) the main function of the weak instrumental variable test is to test whether the instrumental variable
is sufficiently strong to avoid unreliable estimation results due to the instrumental variable being underpowered.
If the instrumental variable is strong, it may lead to accurate estimates of the regression coefficients, large standard
errors, or biased estimation effects.

4.4. Robustness Check

We executed a set of robustness assessments to further validate our findings’ depend-
ability. Table 7 displays the results of the regression.

(1) The time window was extended. This paper extended the time examination window
by treating the explained variable CE in a period ahead and two periods ahead.
Table 7’s columns (1) and (2) suggest that both estimated coefficients for Tech were
notably negative. This suggests that the study findings remained unchanged after
extending the time window.

(2) The control variables were indented. To exclude outliers in the control variables, all
control variables were bilaterally shrunk by 1% at the top and bottom. In column (3)
of Table 7 are shown the regression findings for the independent-variable tailoring,
with a significantly negative regression coefficient for Tech.

(3) We evaluated the lagging terms of the Tech and the extreme values of the CE. Given
the possible non-randomness, outliers, and time specificity of the study sample,
all of which may impact the study results, the robustness of the study results was
examined using two approaches, lagged terms and outliers, to further enhance the
scientific validity of the analysis results. It may take years for green innovation to
reach its full potential, so green innovation variables with a one-period lag were
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selected to examine the possible time-lag effect. To explore possible variability in
the CO2 abatement process in the construction industry, the highest carbon emission
value of 1% was eliminated. Table 7 contains the regression findings in columns (4)
and (5). The Tech regression coefficient is significantly negative, and there is a temporal
lag between Tech and the CE process in the building business. The Tech regression
coefficient remains notably negative when eliminating extreme values.

(4) The impact of other environmental policies was considered. China implemented its
first pilot policies for low-carbon provinces and cities in July 2010 and for carbon
emissions trading in 2013 and a pilot policy for energy-use-rights trading in 2016.
These measures have contributed to decreased energy use in the construction industry
and increased green innovation. They may encourage communities to construct
an industrial system with a smaller carbon footprint and to promote green and
low-carbon lifestyles and consumption patterns. This may skew the appraisal of
environmentally friendly innovations toward carbon reduction. To accurately identify
the environmental effects of green innovation, interference from other similar policies
must be excluded. This article includes interaction variables in the baseline regression
for provinces participating in the pilot project between 2005 and 2020. Considering
the first batch of low-carbon provincial and municipal pilot policies, carbon-emissions
trading policies, and energy-use-rights trading pilot policies in turn, columns (6) to (8)
of Table 7 reflect the impact of Tech on CE. The results show that the conclusions
remain robust after excluding other policy disturbances.

(5) The impact of the COVID-19 pandemic was also considered. This paper excluded
data for 2019 and 2020 from the COVID-19 period and generated dummy variables
for 2019 and 2020 for separate two-way fixed-effects model regressions. Table A1 in
Appendix A reports the results. The results were still significantly negative. This
indicates that the results of this paper were not influenced by COVID-19.

Table 7. Robustness-Check Results.

Dependent Variable:

F.CE F2.CE CE CE CE CE CE CE

(1) (2) (3) (4) (5) (6) (7) (8)

L.Tech
−0.191 **

(0.078)

Tech
−0.187 *** −0.171 *** −0.226 ** −0.182 ** −0.168 ** −0.185 ** −0.186 **

(0.067) (0.060) (0.082) (0.072) (0.073) (0.070) (0.072)
D_T_1 349.458

(222.789)
D_T_2 152.979

(165.617)
D_T_3 519.620 *

(299.110)

Constant
−1252 −2653 68 −87 −295 68.042 40.484 423.074
(4644) (4514) (4948) (4935) (4851) (4717.596) (4853.225) (4444.671)

Control variables Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.301 0.267 0.356 0.324 0.356 0.381 0.357 0.387
N 450 420 480 450 476 480 480 480

Notes: (1) Robust standard errors are in parentheses; (2) “***”, “**”, and “*” denote statistical significance at
the 1%, 5%, and 10% levels, respectively. (3) “D_T_1”, “D_T_2”, and “D_T_3” denote the regression results of
joining the first batch of low-carbon provincial and municipal pilot policies, carbon-emissions trading policies,
and energy-use-rights trading pilot policies, respectively.

4.5. Intermediary Effect

The effect of Tech on the CE of the construction sector was examined. The bootstrap
test and the recursive equation can be used to conduct tests for mediating effects. In
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pursuit of the robustness of results, using the bootstrap test and the recursive equation, the
panel data were fitted to validate the mediating function of environmental regulation in
its transmission process. The first three columns of Table 8 show the stepwise regression
method’s results. In contrast, the regression results of the Sobel and bootstrap method are
displayed in column (4).

Table 8. Results of Mediation-Effect Analysis.

Dependent Variable:

CE lnEnvr CE CE

(1) (2) (3) (4)

Tech
−0.184 ** 0.233 *** −0.026 −0.026

(0.073) (0.048) (0.057) (0.031)

lnEnvr
−0.674 *** −0.674 ***

(0.242) (0.036)

ACME
−0.157 ***

[−0.206, −0.108]

ADE
−0.026

[−0.078, 0.025]

TOTAL
−0.184 ***

[−0.258, −0.109]
Percentage mediated (%) 85.669

Constant
−251 −116 −329 193
(4837) (4101) (2947) (1698)

Control variables Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Province FE Yes Yes Yes Yes
R2 0.354 0.474 0.648 0.895
N 480 480 480 480

Notes: (1) Robust standard errors are in parentheses; (2) “***” and “**” denote statistical significance at the 1%
and 5% levels, respectively; (3) “ACME”, “ADE”, and “TOTAL” denote average causal mediation effect, average
direct effect, and total effect, respectively. The estimation results (standard-deviation effects) and 95% confidence
intervals (in square brackets) were obtained based on Imai et al. (2010) [68] and Tingley et al. (2015) [69]; the
number of simulations was 1000.

Table 8 shows the test results of the mediating effect of environmental regulations. At
the 5% significance level, the technology in column (1) was considered negative, showing
that Tech has a major impact on CE. The Tech value in column (2) is very positive, indicating
that green innovation is integrally tied to environmental legislation. Including environmen-
tal regulation in column (3) resulted in a coefficient of -0.026 for Tech. However, the data
for lnEnvr passed the 1% significance test. This indicated that environmental regulation
can reduce carbon emissions and act as a mediator in Tech and CE’s influence mechanism.
In column 4, the effect of Tech on CE is statistically distinguishable from zero. In addition,
the ACME of environmental regulation decreases carbon emissions by 0.157 standard
deviations, which is empirically significant (see confidence intervals for 95%) and rep-
resents 85.669% of the overall impact, making the overall effect greater than the ADE.
Despite this, the direct effect of Tech on CE is statistically insignificant (see 95% confidence
ranges). Consistent with earlier regression findings, Tech can only provide carbon reduction
benefits via lnEnvr. This facilitates the enhancement of carbon abatement. According to
Porter’s premise, green innovation further reduces carbon emissions in the building sector
through environmental legislation. The fully mediated role of lnEnvr suggests that the
more stringent the environmental regulation intensity, the greater the carbon-reduction
effect of green innovation.
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4.6. Heterogeneity
4.6.1. Regional Heterogeneity

Depending on economic growth, population size, and other macroeconomic factors,
the effect of Tech on CE in the building industry may also be varied. Therefore, it was also
necessary to perform a heterogeneity analysis for these differences.

Referring to standard practices in the existing literature, we divided the study sample
into three regions, East, Central, and West, denoted as region1, region2, and region3. Table 9
presents the results of the regression.

Table 9. Regional Heterogeneity Regression Results.

Dependent Variable: CE

(1) (2) (3)
Eastern Central Western

Tech
−0.121 *** 0.194 * 0.311

(0.035) (0.087) (0.198)

Constant
−3380 −4097 13,175 ***
(3829) (4231) (2124)

Control variables Yes Yes Yes
Year FE Yes Yes Yes

Province FE Yes Yes Yes
R2 0.400 0.878 0.876
N 192 144 144

Notes: (1) Robust standard errors are in parentheses; (2) “***” and “*” denote statistical significance at the 1% and
10% levels, respectively.

The regression findings of Table 9 suggested that Tech was substantially negative at
the 1% level and highly positive at the 10% level in the Eastern and Central areas. In the
Eastern area, carbon emissions fell by 12.1 units for every 1 unit rise in the Tech factor. Every
1-unit rise in the Tech factor in the Central region increased CO2 emissions by 19.4 units.
The Eastern region is more economically developed and has a better potential to absorb
R&D funding than the Central and Western regions. It also has a huge influx of research
expertise, making it easier for technical innovation to play a big role in carbon reduction in
the building industry.

4.6.2. Heterogeneity of Innovation Factors

Financial input in science and technology (FIST) and human capital support green
innovation and are important factors driving the industry to achieve carbon-emissions
reduction. We investigated whether the CO2 abatement effect of green innovation is
characteristically varied between different levels of FIST and human capital. The number
of survey and design institutions and personnel in the construction industry were used
to represent human capital. The proportion of the public budget allocated to science and
technology expenditures shows the financial investment in research and technology. Based
on the medians, provinces were divided into high and low phases.

Table 10’s columns (1) and (2) show the regression findings for financial input to
research and technology. Table 10’s columns (3), (4), (5), and (6) detail the human-capital
regression findings. The findings indicate that an increase in Tech considerably decreases
CE in provinces with high-tech financial inputs and human resources.

4.6.3. Heterogeneity of Development Types

The economic growth of resource-based provinces is primarily based on factor inputs,
such as labor and mineral resources, and industries are mostly heavy-chemical industries.
There are low levels of technological innovation in these provinces. Specifically, the growth
of green innovation needs to be improved in resource-rich regions, which resources con-
tribute to their high carbon emissions. So, then, have green solutions significantly decreased
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carbon emissions in the building sector in areas with abundant natural resources? The re-
gression results for developmental-type heterogeneity are presented in the last two columns
of Table 10. The estimated coefficients for Tech are significantly negative in columns (7)
and (8). This means that the increase in eco-friendly technologies may significantly cut CO2
emissions from the construction industry in resource-poor areas. Still, the impact will be
greater in natural-resource-rich provinces.

Table 10. Heterogeneity of Innovation Factors and Heterogeneity of Development-Type Regression Results.

Dependent Variable: CE

(1) (2) (3) (4) (5) (6) (7) (8)
Type1 Type2 Type3 Type4 Type5 Type6 Prov1 Prov2

Tech
−0.139 ** 0.584 ** −0.217 * −0.000 −0.184 * −0.438 −0.108 ** −0.781 *

(0.060) (0.273) (0.125) (0.299) (0.094) (0.348) (0.048) (0.353)

Constant
−7825 2688 −7230 7288 −14,212 * 5213 −363 2718
(9873) (5589) (5633) (5012) (7797) (3391) (5933) (6203)

Control variables Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.364 0.510 0.411 0.436 0.446 0.507 0.511 0.563
N 240 240 240 240 240 240 320 160

Notes: (1) Robust standard errors in parentheses; (2) “**” and “*” denote statistical significance at the 5% and 10%
levels, respectively; (3) “Type1” denotes high-tech financial inputs, “Type2” denotes low-tech financial inputs,
“Type3” denotes high human capital-I, “Type4” denotes low human capital-I, “Type5” denotes high human
capital-II, “Type6” denotes low human capital-II, “Prov1” denotes non-resource-based, and “Prov2” denotes
resource-based, respectively; (4) “I” and “II” denote the number of survey and design institutions and personnel
in the construction industry in human capital, respectively.

5. Discussion

Based on this study, we have made some new findings.

(1) The growth in green innovation has successfully decreased CO2 emissions in the inter-
provincial building sector. CO2 emissions come largely from fossil-fuel combustion
in industries with high carbon emissions. The production benefits of higher levels
of technological innovation may compensate for the investment costs of combating
emissions [70]. Aware of the global warming challenge caused by “fast growth, high
energy usage, and high carbon dioxide emissions”, the Chinese government has
rapidly applied technological advances to improve industrial efficiency and curb
CO2 emissions. Through technology development, the application of low-carbon
products, expanded green productive capacity, multiple different spillover effects, cost
reductions, and specialized labor division, green innovation can reduce the amount
of energy consumed in the construction sector and the CO2 emissions caused by
low productivity, high energy consumption, and high input. Therefore, green techni-
cal innovation can optimize the industrial structure, eliminate polluting industries,
improve energy-consumption efficiency, and meet the objective of attaining energy
conservation, which will influence the industry’s carbon emissions ineluctably. In
short, the carbon emissions of the building industry can be drastically reduced by
increasing the degree of green innovation.

(2) A certain amount of environmental control facilitates enhancing the potential of green
technologies to reduce dioxide emissions. This may have varying effects depending
on the extent of environmental control. (1) As the amount of environmental regula-
tion increases, so does the demand for punitive measures, the attractiveness of the
incentives, and the motivation to cut carbon emissions. Therefore, more construction
firms will reduce some of their production-expansion funds for research and devel-
opment, while also tending to use new technologies to improve the cleanliness of
construction production, thereby achieving CO2 emissions reduction and meeting gov-
ernmental environmental regulatory requirements. (2) In places where environmental
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regulations are lax, construction companies are more willing to invest in expand-
ing production. Since the earnings from such growth may more than balance the
costs of environmental regulation, construction companies are less likely to research
and implement technical solutions to minimize carbon emissions in the building
sector. China’s strong environmental policies have helped to reduce carbon emissions
globally. However, environmental management is a long process that should not be
achieved by regulatory policies alone, and the link between technological innovation
and environmental regulations should be emphasized [71].

(3) Green innovation exploits environmental regulations to provide additional incentives
for carbon emissions in the building sector. With a high degree of environmental
regulation, construction businesses think that the penalties for polluting emissions
are too severe, causing the costs of emissions to far outweigh the costs of lowering
emissions. Consequently, businesses are more ready to invest in research and devel-
opment or adopt new eco-friendly technologies to increase the cleanliness of building
production, thus lowering CO2 emissions and internalizing external expenses.

(4) Research reveals that (1) green innovation substantially influences dioxide reduction
in the eastern building sector. In Eastern China, the economy is more developed,
the awareness of the environment is greater, technology is more sophisticated, and
technical research and development facilities are well-established. Establishing strin-
gent environmental legislation and green innovation might amplify the impact of
CO2 reduction in the building sector. For the Central and Western regions, which are
primarily focused on the development of heavy industries and have long relied on a
high-energy-consumption economic growth model, the effect of technological innova-
tion guidance needs to be strong. (2) Increased levels of green innovation significantly
reduce carbon emissions in high-tech financial investment and high-human-capital
provinces. Following China’s regulations regarding subsidies for energy conservation
and dioxide-abatement projects, the fourteenth 5-year plan has continued to increase
expenditures in research, technology, and human capital. Through autonomous re-
search and development of cleaner production technologies and the absorption of
energy-saving technologies, the “double-high” companies will create suitable energy-
saving technologies and cleaner production models. (3) Resource-based provinces
have greater potential to reduce emissions than non-resource-based provinces. In
other words, both forms of carbon emissions have been reduced, but the decline in
the former is much more pronounced. With economic growth and regional mobility,
the degree of eco-friendly technologies in the construction sector in resource-based
provinces has progressively grown, as has the expansion of technological applications.
Regarding national policy and transitional development, their industries are pro-
gressively moving from a resource-intensive, highly polluting, and energy-intensive
kind to a technology-intensive one. They are continually overcoming the “resource
curse” challenge, and the degree to which eco-friendly technologies are integrated
into the growth of these firms is increasing. However, the increasing investment
in scientific and technical expertise and funding for R&D in the building industry
of these provinces has increased their growth in terms of green innovation. The
energy-consumption structure has moved from using fossil fuels to using clean and
renewable energy. Due to these characteristics, green innovation may majorly impact
carbon reduction.

This article comprehensively reviews the Chinese provincial building industry’s efforts
to reduce dioxide emissions. It helps important ministries, governments, and enterprises
comprehend technological techniques for lowering dioxide emissions. Based on the view-
point of emissions-reduction pathways, the findings may serve as a policy reference for the
future direction of CO2 emissions abatement in China’s building sector. This paper’s study
framework and technique apply to examination of the construction industry in China and
other sectors and nations.
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6. Conclusions and Implications
6.1. Conclusions

In the context of carbon peaking and neutrality, green innovation is essential for
lowering carbon emissions in the context of carbon peaking and neutrality. This study
investigated the linear and non-linear relationships between green innovation and CO2
emissions in the construction sector using panel data from 2005 to 2020 for 30 Chinese re-
gions. Meanwhile, we investigated the moderating influence that environmental regulation
has on green innovation. In addition, we empirically examined the potential heterogeneity
of green innovation in terms of CO2 emissions by reference to geography, innovation factors,
and types of development. The following are the primary findings and policy suggestions.

We obtained four results:

(1) There is a negative association between green innovation and dioxide emissions in
China’s construction business. This study found a significant impact on the total
amount but did not find a significant impact on the proportion of emissions reduction.
Further research is needed.

(2) The greater the severity of environmental regulation above the second barrier, the
greater the abatement effect of green innovation.

(3) Environmental regulation substantially and beneficially moderates the influence of
green innovation on CO2 emissions.

(4) Only in the East can technology substantially negatively affect regional-construction-
related dioxide emissions. In contrast, the degree of green innovation in high-tech
financial investment and high-human-capital regions can cut carbon emissions by a
substantial amount. Increased green innovation can significantly cut carbon emis-
sions in resource-poor provinces but has a greater abatement impact in resource-
rich provinces.

6.2. Implications

The above conclusions have some policy implications:

(1) Policy guidance should be considered to strongly support the introduction, research,
and development of green technologies.

(2) We should rationalize environmental regulation policies and improve environmental
regulations. Accelerating the implementation of environmental tax policies and
establishing a strict technology and industry access mechanism is important.

(3) We should enhance the technical content of emissions abatement and produce a “win-
win” scenario for regional growth and technological advancement in CO2 emissions
abatement in the construction industry.

The limitations of this article may indicate future research topics. First, this study
only covered provincial research scales. Selecting smaller scales, such as the city, would
have made the results more comprehensive. Carbon emissions at the microscopic level
might be a topic of future study. Second, all the energy each province’s building sector
utilized was taken for the computation of direct carbon emissions. However, secondary
energy carbon emissions, such as electricity consumption and thermal energy, were not
considered. Specific indirect consumption and emissions were also excluded. This research
only proves that total growth in green innovation can bring about carbon-reduction effects
and does not show the impact of proportional changes in green innovation. One possible
reason is that the patterns discovered in this article are typical non-linear relationships.
Considering regional differences, the impact of a 1% increase in green patent levels may
exhibit significant differences. It is necessary to investigate further why this pattern only
appears at the total level of green patent data and not proportionally. Future research
should expand the scope of carbon-emissions measurement and consider indirect energy-
consumption and emissions data.
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Appendix A

Table A1 indicates the results of other robustness tests, i.e., considering the impact
during the COVID-19 pandemic.

Table A1. Regression Results after Excluding Time and Adding Dummy Variables.

Dependent Variable: CE

(1) (2)
FE1 FE2

Tech
−0.244 *** −0.184 **

(0.076) (0.073)

D_T
−742.877
(623.941)

Constant 2844.587 −251.175
(4243.115) (4837.315)

Control variables Yes Yes
Year FE Yes Yes

Province FE Yes Yes
R2 0.384 0.354
N 420 480

Notes: (1) Robust standard errors in parentheses; (2) “***” and “**” denote statistical significance at the 1% and 5%
levels, respectively; (3) column (1) indicates the exclusion of 2019 and 2020, and column (2) indicates the inclusion
of year dummy variables in the two-way fixed-effects model.

Appendix B

Table A2. Results obtained when CE is taken logarithmically.

Dependent Variable: lnCE

(1) (2) (3) (4)
FE FE_r FE_bootstrap FE_dt

Tech
−0.085 −0.230 *** −0.230 *** −0.151 ***
(0.065) (0.047) (0.039) (0.037)

lnCongdp 305.583 305.583 398.635
(426.283) (308.064) (345.537)

lnConjo −26.506 −26.506 78.488
(141.476) (106.645) (96.908)

Town
1821.976 1821.976 2353.374 **

(2265.191) (1292.519) (1194.637)

Open −5635.558 * −5635.558 *** −3399.564 **
(3097.572) (1707.662) (1534.225)
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Table A2. Cont.

Dependent Variable: lnCE

(1) (2) (3) (4)
FE FE_r FE_bootstrap FE_dt

Rede
−3.094 −3.094 ** −3.778 **
(2.901) (1.514) (1.542)

lndus
−4404.762 −4404.762 −2381.910
(4607.237) (3862.105) (4069.888)

Pgdp 201.442 201.442 −29.259
(550.116) (334.086) (340.673)

Pate
0.001 0.001 0.001

(0.001) (0.001) (0.001)

Scit
1.218 1.218 * 0.501

(0.973) (0.632) (0.574)

Expe −0.000 −0.000 0.001
(0.001) (0.001) (0.001)

Budge 0.041 0.041 −0.005
(0.085) (0.038) (0.043)

Constant
5629.692 *** 2122.339 2122.339 2100.004

(92.867) (4272.404) (2085.192) (2520.357)
Year FE Yes Yes Yes Yes

Province FE Yes Yes Yes Yes
R2 0.434 0.503 0.503
N 480 480 480 480

Notes: (1) Robust standard errors are in parentheses; (2) “***”, “**”, and “*” denote statistical significance at the
1%, 5%, and 10% levels, respectively.
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