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Abstract: This paper presents a comparative analysis of the effects of short-range and long-range
electric vehicles charging on transformer life. Long-range vehicles are expected to become more
common in the future. They have higher battery capacity and charge at higher power levels, mod-
ifying demand profile. A probabilistic analysis is performed using the Monte Carlo Simulation,
evaluating the transformer hottest-spot temperature and the aging acceleration factor. Residential
demand is modeled based on real electricity measurements, and EVs’ demand is modeled based on
real data collected from a trial project developed in the United Kingdom. Simulations are conducted
considering the influence of ambient temperature analyzing summer and winter seasons and several
EV penetration levels. Results show the impacts caused by long-range vehicles are more severe
because they charge at higher power levels, especially during winter, when residential demand is
higher. For penetration level of 50% during summer, the use of long-range EVs brings a minimum
equivalent aging factor of 5.2, which means the transformer aged 124.8 h in a cycle of only 24 h,
decreasing its lifetime.

Keywords: distribution transformer; electric vehicles; hottest-spot temperature; Monte Carlo Simulation;
transformer loss-of-life

1. Introduction

Global warming and climate change have been driving a global decarbonization
movement, seeking to reduce the use of fossil fuel and greenhouse gas emissions. The
transport sector accounts for a huge part of total gas emissions, achieving 8 Gt. of CO2
emissions in 2022 [1]. The use of electric vehicles (EVs) is essential to decarbonize this
segment. Thus, governments in several countries have been promoting public politics with
subsidies and incentives for the use of EVs. For example, Norway adopted a national goal
that all new cars sold by 2025 should be zero-emission [2]. Germany agrees to ban internal
combustion engines by 2030, and France and Great Britain plan to end the sales of fossil
fuel-powered cars by 2040 [2].

Electric vehicles market sales have grown rapidly in the last years. The main barrier
to widespread adoption of EVs is the battery, which still must overcome the high costs
and low charging speed and range to dominate the market. To address the consumers’
concern, the EV industry has been launching vehicle models with higher battery capacity
that charge at higher power levels, increasing vehicle range and reducing the charging
time [3]. EV models from 2014 have short-range batteries with capacity around 24 kWh.
However, the latest EV models such as Tesla 3 have long-range batteries of 75 kWh and
charge at 7–11 kW.

The increased use of EVs can have negative impacts on electrical energy distribution
systems. EVs need to be frequently charged and consume a large amount of energy, causing
excessive and undesirable peaks in energy demand. This can lead distribution transformers,
which were sized before EVs’ integration, to overload [4]. When transformers are exposed
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to high ambient temperatures and loading above the nominal value, transformers’ windings
may overheat, leading to deterioration and loss-of-life, incurring extra costs. Moreover, EV
demand has uncertainties and randomness associated with user’s behavior and battery
specification, which brings extra challenge to this problem.

Numerous studies have been conducted analyzing EVs’ impact on transformer loss-
of-life. In [5], authors propose a reactive power compensation strategy during EV charging
for transformer overloading mitigation in a residential feeder. In [6], authors analyze
the impact of reactive power from public EV charging stations on transformer aging and
active power losses. Simulations considered vehicles with battery capacity from 40 kWh to
80 kWh, charging at 3.4 kW and 7.2 kW.

Authors in [7] analyze the effects of EVs’ charging demand on distribution transformer
attending residential customers and propose demand side management with time-of-use
(ToU) tariffs to minimize transformer aging. Vehicles with 16 kWh and 24 kWh charging
at 3.7 kW are considered, and several EVs’ penetration levels are analyzed. Authors
in [8] propose a smart charging strategy to minimize electricity consumption costs and
avoid transformer overloading by considering a charging station in a commercial building
integrated with photovoltaic generation and a battery energy storage system. They adopt
vehicles of 16 kWh and 24 kWh charging at 3.3 kW and 6.6 kW. Reference [9] proposes
a smart charging algorithm with variable-rate to mitigate transformer overloading and
loss-of-life. The method is compared with other strategies, such as uncontrolled charging
and fixed-rate controlled charging, with promising results. EV demand is modeled based
on a Bureau of Transportation Statistics survey, and simulations consider eight different
types of EVs charging at different power levels varying from 1.9 kW to 11.5 kW.

In [10], authors evaluate the damaging impact of several EVs on distribution trans-
formers life considering different penetration levels. Simulations consider EVs with 11 kWh
battery capacity charging at 4 kW. Results show the loss-of-life rate during evening peak
is 12.21 for a scenario with 40% EV penetration level. In [11], authors propose a risk
assessment to quantify the severity and likelihood of transformer overload conditions
due to high levels of EVs’ demand coupled with rooftop solar generation. Probabilistic
analysis is performed, and multiple EV penetration scenarios are analyzed. In [12], au-
thors propose a fuzzy system to estimate distribution transformer aging and mitigation
strategies combining battery energy storage systems and photovoltaic generation. Authors
in [13] evaluate distribution transformer overload and aging in a residential feeder using
probabilistic analysis. Simulations considered fast chargers with vehicles with 100 kWh
charging at 50 kW, and vehicles with 16 kWh and 32 kWh charging at 3.7 kW and 6.6 kW.
In [14], authors propose an approach to support EV charging that allows the transformer to
operate beyond nameplate rating without compromising its life based on the knowledge
of thermal inertia. Results show transformers can operate above the nameplate rating for
periods without exceeding any relevant IEEE or IEC standards. In [15], authors propose a
framework to assess distribution transformer aging using Time Series Decomposition and
the Hidden Markov Model as forecasting tools. However, EV demand is modeled based on
travel surveys and several assumptions instead of real data. In [16], authors analyze the
potential impact of EV charging on transformer lifetime using a real distribution system
from USA. Although a probabilistic analysis is adopted, EV demand is modeled based on
projections, assumptions and travel surveys instead of real data.

Most studies mentioned above model EVs’ demand based on national surveys or
projection scenarios, instead of using real data collected from trial projects, which directly
impacts the estimation of transformer life. Another important aspect is that these studies
do not capture stochasticity in transformer life due to EV charging demand, because only
EVs’ profile is generated probabilistically. Moreover, despite some studies adopting long-
range EV models, to the best of the author’s knowledge, no study has been reported in
the literature comparing the effects of long-range and short-range EVs on transformer life.
Table 1 provides an overview of the most recent studies in this area.
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Table 1. Literature review of recent papers analyzing the impacts of EVs on transformer life.

Reference Probabilistic
Analysis

Real EVs’
Database from

Trial Project

Diverse EVs’
Penetration

Levels

Comparative Analysis
(Long × Short-Range)

[5] - - - -
[6] - - X -
[7] - - X -
[8] - - - -
[9] - - - -
[10] X X X -
[11] - - - -
[12] X - X -
[13] X - - -
[14] - - - -
[15] X - X -
[16] X - X -

This paper X X X X

This paper addresses this knowledge gap in the literature, comparing the effects of
long-range and short-range EVs’ charging on transformer life. A probabilistic analysis is
employed using the Monte Carlo (MC) Simulation considering uncertainties from residen-
tial and EV demand. Residential demand is modeled based on real data from the UK Data
Service [17], and EVs’ charging demand is modeled based on real data from the Electric
Nation Project developed in the United Kingdom [18]. The deterioration of the transformer
is investigated through the analysis of transformer hottest-spot winding temperature and
equivalent aging factor, according to the thermal model presented in IEEE Guide [19].
Simulations are conducted considering seasonal variations, adopting winter and summer
profiles for residential demand, EVs’ demand and ambient temperature. Besides, several
EV penetration levels are analyzed. The key contributions of this work are as follows:

• Models EVs’ demand based on real data collected from trial projects;
• Employs a probabilistic analysis on transformer life due to EV charging demand under

different EVs’ penetration levels;
• Compares long-range and short-range EVs’ charging impact on transformer life.

This work is organized as follows. Section 2 presents the proposed methodology
and the probabilistic models adopted for residential and EVs’ demand. The results are
presented in Section 3, followed by main conclusions in Section 4.

2. Proposed Methodology

Figure 1 shows the proposed method to quantify the impacts that long-range and
short-range EVs’ charging demand cause on transformer life. The Monte Carlo Simulation
is used to consider model uncertainties [20]. First, residential and EVs’ demand are sampled
according to probabilistic models developed based on real data. Then, the transformer load
is computed for summer and winter, accounting for residential load and EVs’ charging
demand. Based on transformer demand and ambient temperature, transformer indices are
evaluated for summer and winter to estimate its loss of life.

To guarantee simulation’s reproducibility, Mersenne Twister pseudorandom number
generator with a seed equal to 3000 was used, as suggested in [21], to perform 1000 simula-
tions and achieve convergence, using Random Number Generation toolbox of MATLAB
2021. Simulation period of 24 h is considered with sampling interval of 10 min.
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Figure 1. Flowchart of the proposed impact assessment methodology using probabilistic analysis.

2.1. Residential Demand

The database used to generate residential load profiles comprehends real electricity
measurements from 22 residences in the East Midlands, United Kingdom, from 2008 to
2009 [17]. This data is divided into 2 sets according to the season: summer (June to
September) and winter (December to March). Since no parametric distribution function
fits the original data, a non-parametric Gaussian kernel with 0.01 bandwidth is considered
for each 10-min interval. The Kolmogorov-Smirnov statistic test (KS-test) is applied to the
data generated with the obtained probabilistic models. Figure 2 shows the results which
indicate a good fit.
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2.2. Electric Vehicles Demand

EVs’ demand is modeled based on a real database from Electric Nation Project, which
collected data from 673 smart chargers installed at participants’ homes in United Kingdom
from January 2017 to July 2018 [18]. The database contains information, such as participant
identification, day of the week, start charging time, battery capacity (kWh) and energy
consumed (kWh).

First, data was pre-processed, filtered and separated to consider only measurements
taken in two seasons: summer (June to September) and winter (December to March). Based
on this data, the initial state-of-charge (SOC) is evaluated according to (1) [8].

SOCi(%) =

(
1 − E

Bc

)
× 100 (1)

where SOCi is the initial state-of-charge, E is the energy consumed while charging the
vehicle (kWh) and Bc is the battery capacity (kWh).

Then, the start charging time and SOCi collected from the database were fitted to
a non-parametric distribution function, with Gaussian kernel and 0.01 of bandwidth, to
obtain their corresponding probabilistic distribution function (PDF). The goodness-of-fit is
evaluated employing the KS-test and results indicate a good fit as shown in Figures 3 and 4.

Based on these probabilistic models, random samples of the SOCi and start charging
time are generated, and the charging duration is evaluated as shown in (2) [8].

∆Tcharge =

(SOC f − SOCi

ηPch

)
× Cb (2)

where SOCf is the final state-of-charge, η is the charger’s efficiency assumed as 99% and
Pch is the charging power (kW).

The EV charging demand profiled is obtained for a period of 24 h with 10-min resolu-
tion according to the flowchart shown in Figure 5. Two EV models are considered varying
the EV battery capacity and the charging power level:

• short-range vehicles with 24 kWh charging at 7.4 kW.
• long-range vehicles with 75 kWh charging at 11 kW.
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2.3. Transformer Aging Model

Transformers are one of the most important and expensive devices in the distribution
grid, and the efficiency of these assets is vital to ensure reliability and power delivery. Trans-
former service life is mainly related to insulation degradation. Under normal operating
conditions, core and coil losses generate significant internal heat, which if not dissipated,
can shorten the life of transformers [19].

Insulation aging or deterioration is a function of temperature, moisture content and
oxygen content over time. With modern oil preservation systems, moisture and oxygen
contributions to insulation deterioration can be minimized by leaving insulation tempera-
ture as the control parameter. Since, in most appliances, the temperature distribution is not
uniform, that part which is operating at the highest temperature will normally suffer the
most deterioration. Therefore, in aging studies it is usual to consider the effects of aging
produced by the higher temperature (hottest-spot temperature).

In this paper, transformer hottest-spot temperature (ΘH) is evaluated based on the
classic thermal model presented in IEEE Standard C57.91 [19]. All equations used in this
section are from this reference.
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The main factor contributing to transformer insulation degradation is transformer
winding hottest-spot temperature, which can be computed as in Equation (3):

ΘH = ΘA + ∆ΘTO + ∆ΘH (3)

where ΘA is the average ambient temperature during the load cycle under analysis, ∆ΘTO
is the top-oil rise over ambient temperature and ∆ΘH is the winding hottest-spot rise over
top-oil temperature, all in ◦C.

The ambient temperature is an important parameter in determining the transformer’s
load capacity. This paper adopted ambient temperatures’ curves over a period of 24 h, with
average values extracted from the National Solar Radiation Database [22] for the location
of the United Kingdom. Two curves are considered as shown in Figure 6, one for summer
season and the other for winter season.
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The rise in top oil temperature at one time after a step load change (∆ΘTO) is given by
the exponential expression as shown in Equation (4). This equation is used for each load
step of a load cycle. The top-oil rise calculated for the end of the previous load step is used
as the initial top-oil rise for the next load step calculation.

∆ΘTO = (∆ΘTO,U − ∆ΘTO,i)

(
1 − exp

−1
τOT

)
+ ∆ΘTO,i (4)

where τOT is the transformer oil time constant in hours, ∆ΘTO,U is the ultimate top-oil
rise over ambient temperature in ◦C and ∆ΘTO,i is the initial top-oil rise over ambient
temperature in ◦C.

The ultimate top-oil rise ∆ΘTO,U is given by Equation (5):

∆ΘTO,U = ∆ΘTO,R

[(
K2

U R + 1
)

(R + 1)

]n

(5)

where KU is the ratio of ultimate load to rated load in per unit, R is the ratio of load loss to
no-load loss and n is an empirically derived exponent whose value depends on transformer
cooling mode.

The rise of the winding hottest-spot over the upper oil is evaluated according to
Equation (6):

∆ΘH = ∆ΘH,RK2m (6)
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where ∆ΘH,R is the winding hottest-spot temperature at rated load in ◦C and m is an
empirical exponent whose value depends on transformer cooling mode.

Based on the transformer hottest-spot temperature, some important indices can be
evaluated. The transformer aging acceleration factor (FAA) can be evaluated as shown in
Equation (7) for a given load and temperature. FAA is greater than 1 if the hottest-spot
temperature is above the reference temperature of 110 ◦C and less than 1 if the hottest-spot
temperature is below 110 ◦C.

FAA = EXP[ 15000
383 − 15000

ΘH+273 ] (7)

where ΘH is the winding hottest-spot temperature (◦C).
The equivalent transformer aging factor can be evaluated as in Equation (8), expressed

in days for a varying load and temperature profile over the entire 24-h period analyzed.

FEQA =
∑N

i=1 FAAi ∆ti

∑N
i=1 ∆ti

(8)

where i is index of the time interval (t), N is total number of time intervals and ∆ti is time
interval in hours.

An equivalent aging factor equal to 1 means that the transformer aged 1 day (24 h) in a
cycle of 24 h, early deterioration not occurring. On the other side, an equivalent aging factor
equal to 1.5 means that the transformer aged 36 h in a cycle of 24 h, implying premature
aging. Transformer normal insulation life is 20.55 years, equivalent to 180,000 h. However,
if this transformer operates continuously under the foregoing conditions with daily aging
of 36 h, its useful life will be significantly reduced. The distribution transformer used in
this paper has 200 kVA and supplies 100 residences. The thermal parameters provided by
the manufacturer are listed in Table 2.

Table 2. Transformer thermal parameters [23].

Parameter Description Value

Rated Power 200 kVA
Maximum Temperature Rise of Oil (∆ΘTO,R ) 50 ◦C
Maximum Temperature Rise for Winding (∆ΘH,R ) 55 ◦C
No-load losses 500 W
Copper losses 2400 W
Transformer oil time constant (τTO ) 4.9 h
ONAN Cooling Method m = n = 0.8

3. Simulation Results

In this section, the impact of EV charging on transformer life is analyzed considering
different penetration levels and vehicles with different battery capacities: 75 kWh (long-
range) and 24 kWh (short-range). In addition, the effects of winter and summer seasons
are verified.

3.1. Base Scenario

The base scenario considers no household carries EVs. Results are separated accord-
ing to winter and summer seasons. Figure 7 shows the boxplot of transformer load and
hottest-spot temperature due to residential demand for a period of 24 h. In the boxplot,
the horizontal line inside the box is used to mark the median, while the upper and bottom
of the box represent 75th and 25th percentiles. The two horizontal lines outside of the
box represent the maximum and minimum of the data. Note that residential demand is
below the transformer nameplate rating of 200 kVA. Therefore, the hottest-spot tempera-
ture does not violate the reference temperature of 110 ◦C, and the transformer does not
experience loss-of-life.
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3.2. Penetration Level Impact

This section evaluates the impact of different EVs’ penetration levels on transformer
aging. In this study, the penetration level is defined as the ratio between the number of EVs
and the number of households, which is 100. EVs’ penetration level gradually increases
from 0% up to 60% in steps of 10%.

Figure 8 shows the boxplot of maximum transformer load and hottest-spot tempera-
ture to each penetration level. During winter, residential demand is higher and transformer
violates its rated capacity limit for lower penetration levels compared to summer. Also, the
impacts caused by EVs with 75 kWh batteries are more severe because they charge at higher
power levels, increasing peak demand. The total load already exceeds transformer-rated
capacity for penetration levels of 20% in both winter and summer with long-range batteries.
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For EVs with 24 kWh, the maximum hottest-spot temperature remains below the
reference value until the penetration level of 50%. For EVs with 75 kWh, the maximum
hottest-spot temperature reaches undesirable values for penetration levels as from 20%.

It is important to analyze the evolution of EVs’ penetration level to evaluate trans-
former life. Compared to the base scenario, there is a considerable increase in transformer
load and hottest-spot temperature as the penetration levels of EVs increase, especially
for vehicles with 75 kWh, where low penetration levels above 20% already lead to severe
violations. To better understand the impact of EV charging on transformer hottest-spot
temperature and loss-of-life, the penetration level of 50% is investigated in the follow-
ing section.

3.3. Case Study (Penetration Level of 50%)

This scenario assumes that out of 100 households, 50 have an electric vehicle. Figure 9
shows the boxplot of transformer load for winter and summer seasons, considering EVs
with battery capacity of 24 kWh and 75 kWh. In a residential area, users typically charge
their vehicles when returning home at the end of the day. Residential demand is also
high during this time, causing a considerable increase in peak demand overloading the
transformer. Results show the transformer is more likely to exceed its rated capacity for
EVs with higher battery capacity during the winter season.
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Figure 10 shows the cumulative distribution function of transformer hottest-spot
temperature, and the same behavior is observed. The worst scenario is when using vehicles
with higher battery capacity during the winter season. For vehicles with 24 kWh, the
probability of transformer hottest-spot temperature achieving values above the reference
temperature of 110 ◦C is 64.5% during winter and 17.6% during summer. For vehicles with
battery capacity of 75 kWh, the probability increases to 100% for both winter and summer
seasons. The main factor that affects the transformer is its insulation temperature, which in
turn is mainly related to overload operation and exposure to high ambient temperatures.
Since the ambient temperature at this location (England) is not very high during summer
season (maximum of 21 ◦C), transformer operating life is mainly affected by load, which is
higher during winter.
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Figure 10. Cumulative distribution function of transformer hottest-spot temperature for 24-h period.
(a) 24 kWh. (b) 75 kWh.

Figure 11 shows the boxplot of the transformer equivalent aging factor. Under normal
operating conditions, the transformer should have a maximum equivalent aging factor
of 1 day for a 24-h load cycle to prevent premature degradation. The results show the
occurrence of transformer aging is very rare when EVs with battery capacity of 24 kWh
are adopted both in winter and summer scenarios. However, when EVs with battery
capacity of 75 kWh are used, transformer aging always occurs, with minimum values of
127.8 during winter and 5.2 during summer. As an example, an equivalent aging factor
equal to 5.2 means that the transformer aged 124.8 h (5.2 × 24) in a cycle of 24 h, implying
premature aging. If this transformer is subjected under the foregoing conditions during
the whole year, its useful life will be shortened from 20.55 years (normal insulation life) to
4 years, which is not acceptable.
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Figure 12 shows the boxplot of transformer overload duration during a day. The results
clearly show the negative effect of using EVs with higher battery capacity as transformer
overload duration increases significantly. For EVs with battery capacity of 24 kWh, overload
duration has median value of 130 min (approximately 2 h) during winter and 0 min during
summer. For EVs with battery capacity of 75 kWh, overload duration has median value
of 410 min (approximately 7 h) during winter and 380 min (approximately 6 h) during
summer. This confirms that, when the transformer operates overloaded for long periods, it
will accelerate transformer aging and shorten its service life.



Energies 2023, 16, 4810 12 of 13

Energies 2023, 16, x FOR PEER REVIEW 12 of 14 
 

 

capacity of 75 kWh are used, transformer aging always occurs, with minimum values of 

127.8 during winter and 5.2 during summer. As an example, an equivalent aging factor 

equal to 5.2 means that the transformer aged 124.8 h (5.2 × 24) in a cycle of 24 h, implying 

premature aging. If this transformer is subjected under the foregoing conditions during 

the whole year, its useful life will be shortened from 20.55 years (normal insulation life) to 

4 years, which is not acceptable. 

Figure 12 shows the boxplot of transformer overload duration during a day. The re-

sults clearly show the negative effect of using EVs with higher battery capacity as trans-

former overload duration increases significantly. For EVs with battery capacity of 24 kWh, 

overload duration has median value of 130 min (approximately 2 h) during winter and 0 

min during summer. For EVs with battery capacity of 75 kWh, overload duration has me-

dian value of 410 min (approximately 7 h) during winter and 380 min (approximately 6 h) 

during summer. This confirms that, when the transformer operates overloaded for long 

periods, it will accelerate transformer aging and shorten its service life. 

 

Figure 11. Boxplot of transformer equivalent aging factor (FEQA). (a) 24 kWh. (b) 75 kWh. 

 

Figure 12. Boxplot of transformer daily overload duration. (a) 24 kWh. (b) 75 kWh. 

4. Conclusions 

This paper analyzed the impacts of long-range EVs on transformer life and compared 

results with the effects caused by short-range EVs. A probabilistic analysis is employed 

using the Monte Carlo Simulation. Residential demand is modeled based on real house-

hold curves from the UK Data Service, and EVs’ pattern is modeled based on data col-

lected from the Electric Nation Project developed in the United Kingdom. Several EVs’ 

Figure 12. Boxplot of transformer daily overload duration. (a) 24 kWh. (b) 75 kWh.

4. Conclusions

This paper analyzed the impacts of long-range EVs on transformer life and compared
results with the effects caused by short-range EVs. A probabilistic analysis is employed
using the Monte Carlo Simulation. Residential demand is modeled based on real household
curves from the UK Data Service, and EVs’ pattern is modeled based on data collected from
the Electric Nation Project developed in the United Kingdom. Several EVs’ penetration
levels are analyzed from 0% to 60% in steps of 10% for winter and summer seasons. From
the results, important conclusions can be addressed:

• The impacts caused by EVs with 75 kWh batteries are more severe because they charge
at higher power levels, increasing total peak demand;

• Transformer life is mainly affected by load and ambient temperature. Since ambient
temperature at the site of the study is not very high during summer and residential
demand is higher in winter, transformer is more likely to exceed its rated capacity
during winter;

• Transformer overload duration is significantly higher when EVs with higher battery
capacity are used, accelerating transformer aging and shortening its service life;

• As EVs’ penetration level increases, there is a considerably increase in transformer load
and hottest-spot temperature, especially for vehicles with 75 kWh, where low penetra-
tion levels above 20% already lead to severe violations on hottest-spot temperature;

• For penetration level of 50% during summer, the use of long-range EVs leads to a
minimum equivalent aging factor of 5.2, which means a transformer aged 124.8 h in a
cycle of 24 h, decreasing its lifetime.

As in most studies, EV demand is modeled in this paper assuming an everyday plug-in
charging behavior. More research should be carried out modeling EVs’ charging pattern
for a week-long period since some studies already demonstrated that vehicles with higher
battery capacity do not charge every day [24]. This behavior directly affects the number of
vehicles charging simultaneously and, therefore, EV peak load. Besides, as high ambient
temperatures directly impact transformer loss-of-life, more analysis should be conducted
using data from a different location with warmer weather.

Author Contributions: Conceptualization, C.M.A. and J.H.A.; methodology, C.M.A.; software,
J.H.A. and A.M.P.B.; validation, A.M.P.B.; formal analysis, C.M.A.; investigation, C.M.A. and
J.H.A.; resources, A.M.P.B.; data curation, A.M.P.B.; writing—original draft preparation, C.M.A.;
writing—review and editing, J.H.A. and C.M.A.; visualization, A.M.P.B.; supervision, C.M.A.; project
administration, C.M.A.; funding acquisition, C.M.A. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This research was supported in part by PROPESP/UFPA (PAPQ) and CNPQ, Brazil.

Data Availability Statement: Not applicable.



Energies 2023, 16, 4810 13 of 13

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IEA. CO2 Emissions in 2022. Paris. 2023. Available online: https://iea.blob.core.windows.net/assets/3c8fa115-35c4-4474-b237-1

b00424c8844/CO2Emissionsin2022.pdf (accessed on 27 March 2023).
2. Cabtree, G. The coming electric vehicle transformation: A future electric transportation market will depend on battery innovation.

Science 2019, 366, 422–424. [CrossRef] [PubMed]
3. Electric Vehicle Database. Available online: https://ev-database.org (accessed on 27 March 2023).
4. Pisano, G.; Ruggeri, S.; Soma, G.G.; Falabretti, D.; Grillo, S.; Gulotta, F.; Pilo, F. Impact of Electrical Vehicle Private Charging

Stations on the Quality of the Low Voltage Network Supply. IEEE Open Access J. Power Energy 2023, 10, 351–362. [CrossRef]
5. Jain, A.; Karimi-Ghartemani, M. Mitigating Adverse Impacts of Increased Electric Vehicle Charging on Distribution Transformers.

Energies 2022, 15, 9023. [CrossRef]
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