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Abstract: This paper presents a new approach to compensate for the current imbalance of an inter-
leaved DC–DC buck converter (IBC), in which the current sensors are not involved in the operation
of the converter when it is connected to an invariable load. The current sensors are only used during
the offline identification process that builds the universal fuzzy model of the converter’s steady states.
Model building involves an upstream identification phase, followed by further dimensionality reduc-
tion of the model and error minimization. The method presented here discusses the mathematical
complexity of the analytical modelling of hybrid systems and opposes it with a complexity-reduced
identification by learning from data. An offline rendered model of the stable and steady states of the
IBC is used as a mapping of the required inverter output current to n-fold asymmetric duty cycles,
which are distributed among the IBC phases to allow arbitrarily accurate load sharing. The mapping
is carried out in the mathematically normalized space of variables or in the physical sense RMS
values, achieving the desired robustness in a noisy environment and stability. The final and canonical
feedback control is built from the standard and optimized PI controller, which is compensated by the
identified IBC model correction. The only measured feedback of the whole controller is the output
voltage. Even when applied to the simulation model (physical MATLAB platform) of a two-phase
IBC with the built-in system asymmetry, the presented methodology is also applicable to the n-phase
IBC without loss of generality.

Keywords: sensorless interleaved DC–DC buck converter; switched affine systems; hybrid systems;
fuzzy identification; fuzzy modeling; fuzzy model-based control

1. Introduction

Interleaved DC–DC buck converters (IBCs) are commonly used in internal combustion
engine vehicles (ICE) with 48 V and 12 V voltage systems, battery-powered electric vehicles,
and mild-hybrid, plug-in hybrid and fuel cell electric vehicles to supply various loads.
Significant power gains can be achieved by splitting the current across multiple parallel
phases. The motivation for this article lies in the 48 V IBC power supply for heating
catalytic converters in vehicles. Short and slow driving has the disadvantage that the
combustion engine and the catalytic converter do not heat up to or maintain the optimum
temperature, which leads to increased pollutant emissions. For space and price reasons, the
current sensors in each parallel branch of the IBC are usually omitted, leading to natural
disadvantages of such systems. This is due to the fuzziness of the load distribution between
the converters.

As a representative of pulse energy converters (PEC), the IBC belongs to the same
group of hybrid dynamical systems consisting of multiple buck converters connected in
parallel, the number of which varies from application to application (Figure 1). The com-
plexity of the dynamics of such a cyber-physical process, which comprises the structure
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of multiple piecewise linear processes, is correspondingly high [1,2]. Therefore, the de-
velopment of an accurate analytical model from a control perspective is tedious, and the
mathematically observed nature of the hybrid process evolves into a complex topology of
hybrid automata [3]. In search of an alternative to derive the complex analytical model
consisting of entangled continuous and discrete states, researchers prefer the widely used
averaged switched model [4–6]. In the state space, it minimizes the matrix ranks and
enables the application of model predictive control (MPC) of the IBCs. In this way, the
foundations are laid for comprehensive control, taking into account the constraints and the
possibility of pursuing the optimal control solution. In general, MPC is not widely used
in PEC. Researchers in this field tend to use methods based on established linear control
theory to optimize the investment in terms of the physical merits of the system and its
control problems. In this paper, the way to implement both approaches is described, and
the harmony of both strategic views is established based on heuristics [7].

Figure 1. Two-phase interleaved buck DC–DC converter, standard circuit topology.

PECs are used for a wide range of different applications. As a member of the PECs,
the IBC shares the breadth of applied variants, but its structure is already defined for
those where high currents and energy densities are required. Here, we examine the
problem of current imbalance between IBC phases (Figure 1). For a variety of reasons, it is
impossible to provide physically identical converters, even when “technically identical”
DC–DC buck converters are connected in parallel. All components of the converter have
slight differences that affect the imbalances of the currents differently. A few decades ago,
when there were analogue pulse width modulators (PWM), the problem was mainly the
accuracy of the trigger signals for the transistors or providing the exact duty cycle per
phase. Today, with digital technology, the problem of triggering accuracy has diminished,
and the imbalance is more a product of the inequality of the physical switching times of the
transistors and their inevitable parasitic electrical elements. There is also the problem of
the estimated series resistance (ESR) of the inductors and their unequal inductance. For
this reason, the IBC traditionally requires the installation of current sensors in all phases
of the conversion, which can provide a comprehensive solution to control the output
voltage and current balance [8–10]. The implementation of current sensors is associated
with various challenges. These range from non-contact current sensors, which are cost-
insensitive, to simpler sensors, which have various anomalies. The latter are susceptible to
electromagnetic contamination and unavoidable electrical effects on the circuit topology. In
addition, the physical dimensions of the sensors significantly affect the compact form of
the converters in most applications. For these reasons, a sensorless solution is sought for
current measurement.
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The problem has been approached from many different angles for IBCs with constant
switching frequency. The standard control toolbox inevitably provides different observer
solutions for the observable systems, such as a solution that integrates the Kalman filter [4,5],
or some recent solutions that use a reduced-order observer for the standard DC–DC buck
converter [11] and a Luenberger observer for the DC–DC boost converter [12]. These
methods use the ripple of the output voltage to reconstruct the phase currents. The biggest
problem with these solutions is the correct detection of the phase current, which relies only
on a very weak output ripple that decreases with the number of phases used. Moreover,
this primarily requires adequate amplification of the measured voltage signal, which, in
most cases, leads to problems in synchronizing the measurement and certainly amplifies the
omnipresent system noise. Apart from the problems already mentioned in the measurement
of voltage ripple and the increase in its complexity due to the introduction of amplifiers and
filters, in different control transients, which have traditionally been treated phase-wise, such
solutions based on an adapted and uniform voltage measurement additionally obscure the
detection of the phase sequence. There are also ways of incorporating additional elements
into the circuit that form the basis for the detection of phase currents in the work [13].
This is not the typical solution without a current sensor providing additional circuitry
for voltage measurement but is less costly and physically complex for typical current
sensors. A more advanced circuit for determining the current values in the respective
converter branch is described in [14]. Based on the voltage waveform, conclusions can be
drawn about the currents in the individual branches. In contrast to the measurement of
the output voltage ripple, the authors of [15,16] provide information about the currents by
measuring the input voltage ripple via the additional RC elements. As mentioned earlier,
in all these solutions that qualitatively analyze the output or input voltage ripple, the
main problem is to distinguish the signal ripple and to identify the correct phase sequence.
In [15], signal reconstruction is performed by frequency reconstruction using low-order
matrix-vector multiplication and low-order fast Fourier transforms. The authors of [16]
use an autotuning method in imbalance control using the differences in the input voltage
ripple during a switching cycle. The autotuning control algorithm may well cause stability
problems in n-phase applications. Some modern solutions rely more on the natural current
balancing of the converters, as briefly presented in [17] and later illustrated in [18], or a
solution with more numbered phases with a reduction in current sensors [19]. The self-
balancing effect [17,18] can be used in the configuration of the converters to achieve more
precise control by replacing the diode with a MOSFET and reducing the controlled time
delay together with an external capacitor across the MOSFET to ensure a zero-voltage
switching effect. Even with perfect compensation of the elements in the latter examples,
where the problem arises of tuning additional MOSFET capacitors that further limit the
operating point range, or where there is limitation of a high switching frequency solution,
the problem will persist in other elements and cause nonlinear anomalies not only in one
phase of the IBC. A cost-related simplification with a reduced number of sensors [19] brings
similar problems that have already been mentioned, in addition to the accuracy problem
of the chosen modeling method, which requires a regulation of the adjustments of the
disequilibrium coefficients.

The measurement of voltage ripple can be enhanced. In [20], a possible solution is
presented that uses the measurement of the output voltage ripple per cell to reconstruct the
RMS values of the currents. Here the current signals are masked with different switching
control frequencies per phase and the final equality of the frequencies guarantees the correct
balance. A complex analysis of the output voltage ripple and tracking is presented as a
current solution in [21], but is not applicable for IBC examples for more than two phases,
which involve more correlations and current dependencies. To anticipate the asymmetry of
the phases in the estimated resistance, the authors of [22], and more recently [23], deactivate
one of the phases or a combination and, based on this information, balance the differences.
These solutions are efficient and are the most commonly used in practice. Some known
disadvantages are the relatively slow current equalization and the imposition of unbal-
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anced triggering, which can lead to increased acoustic and electromagnetic interference.
Considering the synchronization problem of the measurements and the complexity of the
output voltage ripple, the authors of [24] use an injected perturbation signal per phase
to reconstruct the current values from the input and output voltage measurements. The
successful results of masking and injecting a previously generated signal into the input
side of the converter and measuring it at the output of the converter have certainly inspired
some recent and successful work, including the consideration of a more profound and
technologically advanced manufacturing process for electronic elements [25,26].

The solutions widely used and available in the market are still burdened with the
unresolved problem of IBC current imbalance. In science, the problem of IBC current
imbalance is still very present, highlighted by the modern development of power generation
systems, but also by examples from energy utilization [27,28].

In order to extend the solution for robust operation of the converter and to avoid an
additional electrical element in the already dynamically complex hybrid mathematical
modelling structure, we provide an alternative to previous solutions without a current
sensor that guarantees an arbitrarily accurate current balance in the steady state of the
converter. Unlike other solutions, in our work, we take into account the decomposition
of feedback influences on the stability of a complex control system, especially the voltage
in the developed modern technical environment. We avoid the additional injection of
signals that can lead to electromagnetic pollution of other circuits in the environment and
additional heat emission from the converter. Our approach models the steady state of the
converter based on its stable open-loop characteristics and avoids dynamic interference
with the transients at the converter’s operating point. The modelling is based on fuzzy
identification, which covers the entire mathematical solution space for the converter’s
steady state and applies heuristics as a universal approximation only when necessary. The
output voltage is controlled only to compensate for the steady-state current error through
the external feedback loop, which provides an accurate reference current through the fixed
resistive load while balancing the currents between the phases of the converter.

Section 2 addresses the modelling paradigm that should be considered when develop-
ing accurate modelling. Section 3 considers the reduction of modelling complexity through
identification. Section 4 presents the results of the methodology applied to the simulation
model and Section 5 concludes the discussion in this article.

2. Mathematical Modeling, Simulation and Current Imbalance Problem

The IBC has a hybrid mathematical model that takes into account the existence of
continuous and discrete mathematical expressions. The continuous trajectories of the model
are interrupted by discrete system states, resulting in a smooth piecewise change of the
system, usually referred to as switching. The hybrid states are generally neither timeless
nor invariant and we call them modes. The number of phases of the cyber-physical process
presented here, in which we group the IBCs, defines the circuit topology and influences
the number of modes of the hybrid model. In the example from Figure 1, we can define
nine modes of operation of the converter, including a continuous conduction mode (CCM)
and a discontinuous conduction mode (DCM), where iL1(t) and iL2(t) pass through the 0
state. Even though 16 possible switch positions are theoretically possible, the modes only
refer to physically possible process states. Transferred to the mathematical state space, the
equations for nine different switch topologies are derived on the basis of Kirchhoff’s laws:

Mode 1 [T1 = opened, D1 = closed; T2 = closed, D2 = closed]

d
dt


iL1(t)

iL2(t)

vo(t)

 =


− (rT1+rL1)

L1
0 − 1

L1

0 0 0

1
C 0 − 1

RC

·


iL1(t)

iL2(t)

vo(t)

+


1
L1

0

0

·E (1)
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Mode 2 [T1 = closed, D1 = opened; T2 = closed, D2 = closed]

d
dt


iL1(t)

iL2(t)

vo(t)

 =


− (rT1+rL1)

L1
0 − 1

L1

0 0 0

1
C 0 − 1

RC

·


iL1(t)

iL2(t)

vo(t)

+


0

0

0

·E (2)

Mode 3 [T1 = closed, D1 = closed; T2 = closed, D2 = closed]

d
dt


iL1(t)

iL2(t)

vo(t)

 =


0 0 0

0 0 0

1
C 0 − 1

RC

·


iL1(t)

iL2(t)

vo(t)

+


0

0

0

·E (3)

Mode 4 [T1 = closed, D1 = closed; T2 = opened, D2 = closed]

d
dt


iL1(t)

iL2(t)

vo(t)

 =


0 0 0

0 − (rT2+rL2)
L2

− 1
L2

0 0 − 1
RC

·


iL1(t)

iL2(t)

vo(t)

+


0

1
L2

0

·E (4)

Mode 5 [T1 = closed, D1 = closed; T2 = closed, D2 = opened]

d
dt


iL1(t)

iL2(t)

vo(t)

 =


0 0 0

0 − (rT2+rL2)
L2

− 1
L2

0 0 − 1
RC

·


iL1(t)

iL2(t)

vo(t)

+


0

0

0

·E (5)

Mode 6 [T1 = opened, D1 = closed; T2 = closed, D2 = opened]

d
dt


iL1(t)

iL2(t)

vo(t)

 =


− (rT1+rL1)

L1
0 − 1

L1

0 − (rT2+rL2)
L2

− 1
L2

1
C 0 − 1

RC

·


iL1(t)

iL2(t)

vo(t)

+


0

0

0

·E (6)

Mode 7 [T1 = opened, D1 = closed; T2 = opened, D2 = closed]

d
dt


iL1(t)

iL2(t)

vo(t)

 =


− (rT1+rL1)

L1
0 − 1

L1

0 − (rT2+rL2)
L2

− 1
L2

1
C 0 − 1

RC

·


iL1(t)

iL2(t)

vo(t)

+


1
L1

1
L2

0

·E (7)

Mode 8 [T1 = closed, D1 = opened; T2 = opened, D2 = closed]

d
dt


iL1(t)

iL2(t)

vo(t)

 =


− (rT1+rL1)

L1
0 − 1

L1

0 − (rT2+rL2)
L2

− 1
L2

1
C 0 − 1

RC

·


iL1(t)

iL2(t)

vo(t)

+


0

1
L2

0

·E (8)
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Mode 9 [T1 = closed, D1 = opened; T2 = closed, D2 = opened]

d
dt


iL1(t)

iL2(t)

vo(t)

 =


− (rT1+rL1)

L1
0 − 1

L1

0 − (rT2+rL2)
L2

− 1
L2

1
C 0 − 1

RC

·


iL1(t)

iL2(t)

vo(t)

+


0

0

0

·E (9)

Based on Equations (1)–(9), it is possible to create the hybrid automata in the MATLAB
platform [29] by providing the digital PWM that triggers the modes assigned by the physical
logic. Thanks to the numerical integration of MATLAB-SIMULINK and the fact that several
modes are switched in a natural way, the overall complexity of the simulation model
is significantly reduced. The number of modes cannot be neglected when building the
hybrid mathematical model, which drastically affects the derived state space modelling.
We refer to [1], where the modelling of hybrid dynamical systems is described, which can
be applied to the modes of the IBC system. For the IBC in this paper, the authors consider
that, among the different and equivalent approaches to hybrid modelling, the mixed
logical dynamical (MLD) approach is the most comprehensive mathematical approach that
integrates integer and linear/quadratic programming theory simultaneously. Accordingly,
the final mathematical IBC model must conform to the unique state space expression for
the systems with piecewise linearity:

xc(k + 1) =



A1xc(k) + B1uc(k) if δ1(k) = 1
+
...
+

Amxc(k) + Bmuc(k) if δm(k) = 1

f or δ1(k) + · · ·+ δm(k) = 1 ∀ δi ∈ {0, 1} i = 1, . . . , m

(10)

Equation (10) is applicable in cases where the switching period of a converter has
a unique state space. Since this is not the case for either the DC–DC buck converter or
the IBC, Equation (10) must be reformulated using the MLD method, expanding the new
states z(k) = [xc(k) xd(k)]

T for the discrete part of the hybrid formulation. State variables
labelled with the subscript c belong to the continuous space, while those labelled with d
belong to the space of discrete variables from the set {0, 1}. The discretization time for
an n-phase IBCs MLD model, considered under a sampling time k, must be more than
3n times faster than the natural switching period of a DC–DC buck converter itself. It
must be able to construct the entire state space model and simultaneously evaluate discrete
variables that provide the switching logic of the modes. The multiplication by 3 results
from the fact that this is the number of modes for a buck DC–DC converter. Let us return to
Equation (10). If we consider it with a higher sampling time (processing resolution), we
can predict the system response for a switching period Ts of the IBC. Its common state
space must be evaluated according to the equation:

xc(k + 1) =



(A1xc(k) + B1uc(k))·δ1(k)
+
...
+

(Amxc(k) + Bmuc(k)) · δm(k)

f or δ1(k) + · · ·+ δm(k) = 1 ∀ δi ∈ [0, 1] i = 1, . . . , m number o f IBC modes

(11)
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In the equation, unlike (10), the logical variables become real values δi ∈ [0, 1] and it is
derived from xd(k) discrete variables [1,30]. Due to the complexity of modelling and subsequent
control, MLD modelling and model predictive control (MPC) are rarely applicable to IBCs, but
they certainly represent the most accurate modelling of hybrid dynamical systems.

Compared to MLD modelling, the other modelling principles lead to coarser solutions
and, accordingly, to all conclusions, including approaches for current sensorless converters.
Even with a mathematically perfectly modelled process, open-loop control is never a suit-
able solution for processes where we can expect physically induced changes in the process
parameters. Furthermore, the technology used to manufacture the electrical components,
even if very superior in terms of integration, cannot perfectly replicate the components,
which would be a necessary prerequisite for our accurate mathematical modelling and
subsequent accurate control. For this reason, and especially for open-loop control, we
need to identify the process to be controlled by its physical footprint. Apart from this, our
IBC cyber-physical process also has its physical limitations. Firstly, the power is limited
due to the components used. Secondly, and most importantly in the sensorless solution,
is the ultimate purpose or nature of the application. These two limiting parameters can
lead to various alternative solutions for sensorless control of IBCs. The heuristics-based
identification of the converter’s model presented below provides a suitable basis.

3. Interleaved Buck DC–DC Converter Fuzzy Identification and Fuzzy Inverse Model

Analogous to [31], our task is to study the entire space of steady states of the converter
in order to construct the matrix transformation that answers in real time the relationship
between the parameters of the converter at each of the operating points. The stability of the
converter in the open loop and the possibility to measure it is the sufficient condition for
deriving the model approximation of the Banach subspace

(
V2n+1, ‖.‖

)
. In Section 2, the ex-

ample of an entangled topology converter with state vector x(t) =
[
iL1(t)iL2(t)vo(t)

]
,

expressed for n = 2 phases, obtains its transformation by ‖.‖ and becomes x(t) as a
pseudo-norm of its original elements. The input to our process is the vector of duty
cycles d(t) = [d1(t) · · · dn(t)], which, together with the norm of the state vector, forms a
basis of the Banach subspace

[
1d1 · · · 1dn 1iL1

· · · 1iLn
1vo

]
∈
(
V2n+1, ‖.‖

)
. The simulation of

our hybrid model in the three-dimensional state space derived in Section 2 forms as a func-
tion Q : R3 → R5 without time

(
V1

5, ‖.‖
)

. The final
(

V5, ‖.‖
)
∈
(

V1
5, ‖.‖

)
is obtained by

filtering out all transient states from the simulation. Fuzzy identification thus provides the
mapping in

(
V5, ‖.‖

)
from our state vector to the duty cycle vector with arbitrary accuracy:

d = F(x)t→∞ + ε. (12)

In (12), the argument vector x(t) = x(t) since all the variables in
(

V2n+1, ‖.‖
)

are

the norm of their origins. Time is omitted from the equation because our
(

V2n+1, ‖.‖
)

space is a tangent space to the dynamical
(
V2n+1, ‖.‖

)
. The fuzzy model F(x) is a mapping

approximation (for error ε→ 0) of the inverse and unknown hybrid mathematical model
in the steady states of the system G−1 from Equation (13):

x′t→∞ = 0 ⇒ xt→∞ = G(d) ∈
(

V1
5, ‖.‖

)
. (13)

The fuzzy model is derived for the structure of the MIMO system and its form is
expressed in (14). 

d1
...

di
...

dn

 =



F1
...
Fi
...

Fn

 · x + ε (14)
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All fuzzy models F1 ∧ · · · ∧ Fi · · · ∧ Fn are created and based accordingly on their
parameter set θ1 = {c1, a1} ∧ · · · ∧ θi = {ci, ai} · · · ∧ θn = {cn, an}. In deriving the models,
n processes must be provided for identification. Each process is dedicated to one phase of
the IBC and provides the mapping of the common input vector of the states x to a phase
duty cycle di in (14). By analogy with [31], the fuzzy rules per phase are as follows:

if Hi
j then gij(x) . (15)

In (15), Hi
j =

{(
x, µHi

j(x)
)

: x ∈ X1 ×X2 × . . .×Xk

}
and gij(x) denote the conse-

quence function for the chosen membership Hi
j. In the sequel, and as in (15), the index

i stands for the phase number. The sets X1 . . . Xk are the discourses of the fuzzy input
variables and, in this case, the sets of all possible real values of our state vector variables,
x ∈ Rk. Our outputs are duty cycles in their closed discourse set di ∈ Yi = [0, 1]. The index
j = 1, 2, . . . b denotes the number of rules from the rule base of dimension b. Once all six
steps of the fuzzy identification algorithm from [31] are completed per phase, the fuzzy
models for each of the selected state variables provide the grade of membership µHi

j(x)
and yield (16):

Fi(x|θi) =
∑
(

aij,0
+aij,1

x1+aij,2
x2+···+aij,k

xk

)
µ

Hi
j (x)

∑ µ
Hi

j (x)

µHi
j(x) =

[
∑b

m=1

∣∣∣x−cij

∣∣∣2
|x−cim |

2

]−1

.

(16)

The consequence functions in (17) provide the typical linear model of the phase i of
the converter for the respective operating point j.

gij(x) = aij,0 + aij,1 x1 + aij,2 x2 + . . . + aij,k xk (17)

The model may bear a resemblance to linear control theory models, but its full ex-
pression includes the empirical values of the physical converter tested, which includes
natural nonlinearities that would simply be neglected in the analytical type of modelling.
The equation in (17) can be recognized in (16), weighted by the grades of membership, to
interpolate all possible distances to the previously selected representative models for the
respective operating points. The accuracy of the rendered fuzzy model is proportional to
the number of rules b in the fuzzification process or to the characteristic models located in
the centers defined by the c-means clustering method. In the c-means clustering method,
the identification is performed by gradually adjusting the centers of the operating points
by minimizing the cost function in (18).

J = ∑M
i=1 ∑b

j=1 (µHi
j(x))p‖xi − cj‖2 (18)

In (18), M denotes the number of selected pairs (x, di) from the Banach subspace(
V2n+1, ‖.‖

)
, while p denotes the grade of fuzziness.

In identification in general, the database or data source has a major impact on the
accuracy of the model developed later. It remains that accuracy is proportional to M,
(model error ε→ 0 while M→ ∞). Although important, authors very often only superfi-
cially explain the initialization of the optimization, the considerations in the selection of
the model parameters and the way in which the learning database is formed for a given
model, when this is not random or arbitrary. In this paper, we discuss the way in which
model identification is driven by human knowledge of the system (black/grey/white box
identification), as well as analytical methods that can be used to create the database that
later serves as the source for the identification that is performed for better accuracy.
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Therefore, the identification of the interleaved DC–DC buck converter in this article is
considered to be of the grey variety. Through Equations (1)–(9), as an example of two-phase
converters, we have the analytical knowledge for our identification approach. The basic
topologies for the two-phase converter described above represent the analytical complexity
without including control of the circuit topologies and their correlations. Nevertheless,
even for the n-phase converter and its state space, we know the system basis of our targeted
Banach subspace

[
1d1 · · · 1dn 1iL1

· · · 1iLn
1vo

]
. In the (2n + 1)-dimensional normed space of

stable points, we have to define our new mapping (14). Despite the analytical state space
model, which can be derived but extended by using integer programming equations for
discrete states that switch the modes of the converter, our new mapping (14) is a product of
inverse modelling thanks to identification, where the new state variables are the duty cycles
d = [d1, . . . di, . . . , dn]

T . As a reminder, these variables were originally inputs in the direct
analytical modelling of the state space, while the rest of the system basis in

(
V2n+1, ‖.‖

)
were considered as states. The inverse of modelling in the analytical sense is thus:

.
d = F(d, x). (19)

The identification of the system (19) must be performed using the database con-
taining sufficient data pairs Hi

j for each characteristic operating point j of the converter.
Fuzzification of the partially identified models (17) around the operating points helps in
complexity reduction of the final and robust fuzzy identified model, generally expressed
in (16). The identification process primarily generates a database according to linearization
theory [32,33], also known as forward difference approximation (FDA).

Our identification problem from (19), the modelling of a dynamical system, can be
represented as a set of differential equations,

.
x = f

(
x1, . . . , xn; u1, . . . , uσ; v1, . . . vq; t

)
, (20)

where n differential equations of n state variables (x1, . . . , xn) are equal to the n set of
functions of state variables, σ inputs (u1, . . . , uσ), and q algebraic variables. The indices
n are used intentionally to correspond to the previous number of phases. Without loss
of generality and valid for our identification of the dynamical system in its steady states(

V2n+1, ‖.‖
)

(applying exclusively to stable open-loop systems), the complexity of the
problem is reduced. This is mainly the result of the time exclusion in (20) and the fact that
the previously considered input variables in our identification are considered as algebraic
variables of the homogeneous inverse problem (19). According to FDA theory, which
provides a good system approximation near the stable operating states d0, the forward
disturbance is simulated to obtain a suitable learning dataset. This means that the system
identification process must simulate the perturbation ∆ expressed in

∆
.
d = F(∆d, ∆x). (21)

For a perturbation, which, in short, means small signal differences of only one of the n
state variables at a time, we obtain,

.
di+ −

.
d0 = F(di+ − di0, x + ∆x) →

.
di+ = F(di+ − di0, x + ∆x) (22)

For an n perturbative differential Equation (22).
Using the identification terminology in the creation of the database, several different

test perturbations in the steady states of the predefined duty cycle di0 or j centers di
will provide the database for the identification of Fi in (14) for i = 1, . . . , n. For each
new equilibrium in the state space where

.
di+ → 0 ∀ di+ ∈ Yjx1 for Y = [0, 1] , the database

contains certain i+ perturbation sequences or mappings Fi that must be identified. In the
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identification proposed here, these include the associated changes in the algebraic variables
(x + ∆x), which were the state variables in the analytical approach.

Identification Algorithm, Applicability Paradigm

The process of identification already mentioned in the theory has greater practical
merits in two respects. First, the theory has a physical and mathematical background
consistent with modern and accurate analytical modelling of hybrid systems. Second, the
methodology employs machine learning in modelling only where necessary and during
offline identification. This allows for a reduction in complexity and model implementation,
taking into account the very limited processing and storage capacities of the IBCs studied.
In order to achieve as even a load distribution as possible between the IBC phases, the
methodology assumes that current measurement for all phases is temporarily and only
possible during the identification process. In contrast to the final model evaluation and use,
the offline identification itself requires more temporal and spatial processing capacities and
algorithms, which are presented below (Algorithms 1–3), starting with the Algorithm 1,
which generates the complete Banach subspace

(
V2n+1,‖.‖

)
.

Algorithm 1: Generating the Banach subspace of the IBC steady states

Initialization: Setting up the constraints for the discourses of the variables

1. Definition of the preferred number of equidistant operating points j ∈ Z in the IBC
parameter space, the characteristic duty cycles for equidistant operating points
d0 = (d10, d20 , . . . , dj0) ∈ Yjx1, the perturbation step size ∆d ∈ (0, 1) (infinitesimally
small value), the settling time of the system t∞ ≈ c·Ts for c ∈ Z (the time required to
reach a stable state of the system), the number of perturbation steps around the operating
points k ∈ Z and the number of IBC phases n ∈ Z

for i = 1 to j do
for r = 0 to k do

1. dir = di0
2. Excite the IBC by dir = (d1, d2, . . . , di, . . . , dn) where

dir = (di + r·∆d) ∪ di0\di
3. Pause Algorithm 1 for c·Ts time
4. Store the tuple (dir , x) in the fuzzy universe Fi (dataset)
5. dir = di0
6. excite the IBC by dir = (d1, d2, . . . , di, . . . , dn) where

dir = (di + r·∆d) ∪ di0\di
7. Pause Algorithm 1 for c·Ts time
8. Store the tuple (dir , x) ∈

{
(0, 1)n, Rn+1} in the fuzzy universe Fi (dataset)

9. r = r + 1
i = i + 1

Once we have provided the data representing our steady states
(

V2n+1, ‖.‖
)

, the
algorithm can proceed to fuzzy modelling, starting from the c-means clustering of our
dataset F = ∪i Fi ⊂

(
V2n+1, ‖.‖

)
, see Algorithm 2.

The data space modelled with fuzzy provides the system knowledge required to
predict the parameters of the stable system state based on only one input variable, namely,
the new output current IBC in the subsequence IRload. The following Algorithm 3 is a test
procedure for the newly developed fuzzy model, which primarily develops a new test data
space that already works through the previously created inverse fuzzy system model. In
the dataset provided by Algorithm 3, the fuzzy system model asymptotically approaches
the ground truth system space of stable states relaxed by ε2, and their intersection provides
the opportunity to perform supervised learning, improve accuracy and reduce complexity.
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Algorithm 2: Modelling of the IBC steady-state space by fuzzy model (see reference [31])

Initialization: Definition of the universes of the discourses and the iteration parametersk

1. Definition of the preferred number of equidistant operating points b ∈ Z in
the IBC operating space, the initial parameters, centers of the operating points
c0 = (c10, . . . ci0, . . . , cb0)

T ∈ R(n+1) × b, the number of iterations k ∈ Z, the
minimum model error ε1 ∈ R, the grade of fuzziness p = 2 and the number of
attempts, ‘attempts’ ∈ Z

for i = 1 to n do
1. load Fi
2. watchdog = 0, model_error =1
3. while model_error > ε1 do

watchdog = watchdog + 1
1. for r = 1 to k do

c-means clustering by minimizing the cost function (18),
where M is the number of data tuples in Fi

2. Store the new centers cinew = (c1, . . . , cb)
T ∈ Rj x (n+1)

3. c0 = cinew

4. Calculate the matrix of parameters ai using the weighted least
squares method

5. Store the parameters θi = (ci, ai)

6. Calculate the model_error = 1
M ∑i(Fi − di)

2 for Fi, di ∈ (0, 1)M

if watchdog ≥ attempts do
break

4. i = i + 1

Algorithm 3: Fuzzy model linearization (complexity reduction)

Initialization:

1. Definition of the preferred number of test points b ∈ Z in the IBC operating space, the
minimum error ε2 < ε1 ∈ R, the number of IBC phases n ∈ Z, the settling time of the
system (the time required to reach a stable state of the system) t∞ ≈ c·Ts for c ∈ Z

1. Generating the b number of random load current values of the IBC and form
IRload =

(
IRload1

, IRload2 , . . . , IRloadb

)
∈
[
IRloadmin

, IRloadmax

]b ∀ I ∈ R
2. for r = 1 to b do

1. Form the input vector for the fuzzy model F
xT

m =
(

1,
(

IRloadr
n , IRloadr

n , . . . , IRloadr
n

)
∈ Rn, IRloadr ·Rload

)
∈ Rn+2

2. Excite the IBC by dm
T = (dm1, dm2, . . . , dmi, . . . , dmn) which is calculated

by (14)
dm = (F1, F2, . . . , Fn)

T·xm, Fi ∈ Rn+2 (Fi vector of calculated fuzzy coefficients
obtained by the explicit form of (16))

3. Pause Algorithm 3 for c·Ts time

4. if ∑n
i=1

∣∣∣ IRloadr
n − iLi

∣∣∣ ≤ ε2 do

Store the tuple (dmr , xmr ,
IRloadr

n ) in the linearization universe L (dataset)
5. r = r + 1

3. for i = 1 to n do
1. Fit the function di = fi

(
IRloadr

n

)
to the dataset{(

dmri ,
IRloadr

n

)
: ∀
(

dmri ,
IRloadr

n

)
∈
(

dmr , xmr ,
IRloadr

n

)
∈ L

}
2. Store the function fi

(
IRloadr

n

)
to the matrix f f or dm2 = f

(
IRload

n

)
3. i = i + 1



Energies 2023, 16, 4836 12 of 19

The final system model has the analytical form dm2 = f
(

IRload
n

)
and was built based

on machine learning. When Algorithm 3 does not allow complexity reduction and the
system contains complex nonlinearities, the final current compensation can sufficiently rely
on the fuzzy model from Algorithm 2 and its duty cycle prediction mapping (12) and (14),
dm1 = F (xm) with arbitrary accuracy ε1.

4. Results of Identification Applied on Two-Phase Interleaved DC–DC Buck Converter

For the identification presented in the above section and applied to the converter exam-
ple in Figure 1, we built the MATLAB [29] simulation model using two approaches. First,
by implementing the state space topologies (1)–(9) switched by discrete functions derived
from the duty cycle control logic via PWM. Here, we consider the natural commutation
of converters for DCM, resulting in a discrete hybrid automaton of a designed converter.
Secondly, the simulation modelling was based on the use of electronic circuits formed
by selecting the electronic components available in the system or simply by Simulink
blocks [29] from the Simscape/Electronics/Semiconductor_Devices package. Comparison
of the approaches produced identical results in the simulation, but, due to the much simpler
linking of the identification excitation signals to the model and GUI-based parameterization
of semiconductors and electronic components in general, the latter was used for further
identification and control, Figure 2. The two-phase interleaved converter is designed for
future practical use of high-power converters in electrical heating where we have a constant
load and variable power transfer to the load, in the physical sense, a heater. As mentioned
in the introduction, it is still tendentious to assume that the interleaved converters on the
market are built with identical or physically cloned hardware for each buck converter.
Moreover, in the case of parallel connection of the individual buck converters, even if they
have the same technical datasheet, we can expect slight physical differences that have a
strong impact on the load sharing in parallel operation. In our simulation, we predicted
very common and possible phase element differences, but, in practice, the differences
cannot be estimated. In analytical modelling, these differences are hardly measurable
and not available in the manufacturer’s technical documentation, especially regarding the
dynamic behavior of the converter.

Figure 2. Simulation model of the interleaved DC–DC buck converter.

The converter is constructed as shown in Table 1. We also see here the differences
between the components in two buck converters (for the coil and the MOSFET transistors),
which we assume arose in the production process and must be compensated for by the
converter’s control algorithm. To demonstrate the methodology for the general identifica-
tion process algorithm presented above, we have chosen a two-phase IBC for simplicity,
Figure 1. Without loss of generality, the methodology is also applicable to multiphase
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converters, where the complexity of offline identification increases proportionally to the
number of phases. This means that our identification process in (14) is reduced to n = 2
and requires the simulation of two sets of perturbation databases, each identifying the
steady-state duty cycles per phase of the converter. In identifying the simulation model, we
selected j = 9 operating points that are equidistant in the range of duty cycles d ∈ [0, 0.6].

Table 1. Parameters and elements of the interleaved buck DC–DC converter.

Source Voltage Switching
Frequency ESR MOSFET 1 MOSFET 1

SNUBBER ESR MOSFET 2 MOSFET 2
Snubber

48 V 50 kHz 0.0007 Ohm 10−6 F 0.0007 Ohm 10−8 F

Coil 1 Inductivity ESR
Coil 1 Coil 2 Inductivity ESR

Coil 2 Load Output
Capacitance

8 × 10−6 H 0.015 Ohm 12 × 10−6 H 0.01 Ohm 0.1 Ohm 10−3 F

In Figure 3, we see the test results of the currents’ comparison for three different
applicable solutions for sensorless open-loop control of IBCs. One of them is based on
the most widely used approach of direct arithmetic averaging of the duty cycle per phase,
calculated from the standard modelling toolbox (averaged buck DC–DC converter model)
and the linear dependence of the duty cycle and fraction vo

E . The other two are based on
fuzzy modelling of the stationary spaces of the duty cycle, with the linearized fuzzy model
being the better solution. The simulation shows a high sensitivity to disturbance steps in
the duty cycle, which means that all variations in the duty cycle around the operating point
must be in close proximity. This IBC phenomenon has already been discussed above and
it has been proven here that the error in the resolution of the duty cycle of the controller,
including the PWM conversion added to the natural switching point of the semiconductor,
must be as small as possible.

In forming the datasets and for the simulation example of this article, the perturbation
step of the duty cycle must be in the second or higher decimal place of the scalar value
of the duty cycle. We see this example problem clearly in Figure 4, where we show what
kind of numerical differences in duty cycles cause the degree of current imbalance at the
output of the converter for the simulation test in Figure 3. Following the algorithm from
the section above, the identification yields F1(x|θ1) and F2(x|θ2) , where θ1 = (c1, a1),
θ2 = (c2, a2), for a1, a2 ε R4×9 and c1, c2 ε R3×9. However, for the identified simulation
example x = (iL1, iL2, vo), the parameter matrix ai is extended to include the bias coefficient,
as in (16) and (17). The complete parameter matrices can be found in Appendix A. The
idea of reducing the granularity of identification by increasing the number of operating
points, which increases the complexity of online processing, may not be necessary in the
initial identification phase. Therefore, we have promoted post-linearization here, which
increases the model accuracy that is obscured by unsupervised process learning. Figure 3
shows the difference in accuracy that post-linearization can achieve in the numerical sense
and later in terms of output imbalance. In general, to achieve a better final model result,
i.e., optimizing accuracy against online complexity, one needs to reduce the dimensionality
of the online model by further optimizing the identified model rather than increasing
the number of operating points and, hence, the number of perturbations in the datasets.
To do this, the test results of the identified model must be filtered only for the points
that agree with the ground truth in order to derive the model towards the minimum of
the approximation error ε (12), Algorithm 3. In other words, this means that we move
from fully unsupervised learning to supervised learning from data. In practice, this
means two levels of learning, Algorithms 2 and 3. According to the dimensionality of
the chosen problem in (14), reducing the dimensionality for the chosen example leads
to two linear equations (see Appendix A). In the methodology presented here, the final
optimization model mapping is a bijection of the full subsets of the Banach space. Therefore,
the final model mapping is in the space of continuous functions, which provide better
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conditions for control stability. Although this work focuses on the actuator problem,
where we generally look for a linear transfer function and control, we present here the
solution where our previous identification provides a solid platform for developing a
stable model-based control algorithm for actuator current transfer. Figure 5 shows the
recommended control approach, where the actuator follows an ideal first-order system
response when dynamically exchanging current setpoints. The control design and stability
analyses are performed using the standardized MATLAB [29] Control System Designer.
Following the ideal parallel operation of converters, the control law can be developed
based on an averaged model of a buck DC–DC converter, which is amplified by the number
of phases used. The created averaged converter model [34], which includes only two
topologies, (1) and (3), provides the necessary basis for deriving the PI model, which is
optimized by an optimization algorithm that includes gradient descent and the ideal step
response boundaries as design requirements.

Figure 3. The currents of the converters as a result of the comparison of the compensation of the
converter control, defined by three different methods: the arithmetic calculation for ideal converters,
the model mapping based on fuzzy identification, and the model mapping based on fuzzy iden-
tification after linear regression. (a) Currents generated by the simulation system for 10 different
operating points; (b) Currents generated by the simulation system at the fourth operating point,
zoomed section.

The simulation results, shown in Figures 3 and 4, confirm the expected stable operation
of the actuators in the robust range of operating points.

With the expected change in current setpoint, the control system is able to compensate
and maintain the ideal load distribution of the parallel converters (Figure 6). The results
in Figure 6 are self-explanatory, starting from the corner of the normalized current output
(Figure 6a), where the RMS value of the output current is displayed, to the detailed view
of the current balance per phase (Figure 6b,c) without RMS filter normalization. The
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settling time in the system dynamics of the reference change is smoothly delivered by the
PI controller in the manner of the reference model in MPC algorithms and is not burdened
by the dynamic voltage feedback pattern, which is normalized. Thus, the smooth and
scheduled reference is provided by the function dm2 = f

(
IRload

n

)
as a fixed mapping

generated previously and offline by Algorithm 3.

Figure 4. Comparison of the duty cycle of the individual converters for the current results in Figure 3:
(a) Simulation of the duty cycle of the system for 10 different operating points; (b) Simulation of the
duty cycle of the system in 1 operating point, zoomed section.

Figure 5. Control of an interleaved DC–DC buck converter compensated by identification-based
modelling of duty cycle mappings.
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Figure 6. Control results with gradual change in the reference values for the load current: (a) the
output load current of the converter compared to the reference, (b) the inductance currents of the
same simulation test, (c) the inductance currents in detail for the specific transient time window.
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5. Conclusions

The article presents a new method to compensate for the IBC asymmetry of output
currents that load the constructive converters differently. The method envisages the use
of current sensors only during offline system identification, but not during subsequent
use. The physical limitations of the system in the context of the application example can
lead to a reduction in system complexity. As shown in this article, the example of the
IBC designed as a function of energy transfer to the invariant load opens this possibility.
The methodology thus consists of a two-stage identification algorithm. The first stage of
identification is based on unsupervised learning from data and creates a system map for
the truths of the physical built-in asymmetry. In the second stage of identification, the
algorithm filters the data and creates only the ground truth database for model reduction
and supervised learning optimization. The resulting model enables the model-based
compensation of the control variable of the controller used. The identification algorithm
presented here generates a fuzzy model that is further linearized and applied to an IBC
hybrid automaton simulation model. The simulation successfully demonstrates the model-
based compensation of the asymmetry of the output currents in the IBC and the integration
into the load current control of the IBC. The methodology is generalized and developed for
n-phase IBCs. In addition to the identification algorithm and fuzzy modelling, a unique
approach to the formation of the database is presented, which is mathematically based on
small signal approximation theory. The identified fuzzy model or dimensionality reduced
time invariant mapping after linear regression preserves the nonlinearity of the system and
provides model-based asymmetry compensation for the classical PI control signal. The final
control is configured in the canonical connection of the optimized PI controller with the
ID model-based compensation and distribution of the control signal. Subsequent research
will focus on physical implementation and application of the IBC configuration for variable
load systems.
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Appendix A

(a) Fuzzy Model Coefficients

a1 =

0.0164368 0.016407 0.0164237 0.016404 0.0164839 0.0163233 0.0164113 0.0164895 0.0168527
−2.35 × 10−5 0.0002101 0.0002428 0.0003372 0.00023 0.0004977 0.0003358 0.0003804 9.46 × 10−6

−0.000358 −0.00012 −8.57 × 10−5 9.52 × 10−6 −9.72 × 10−5 0.0001713 9.09 × 10−6 5.49 × 10−5 −0.000315
0.0240283 0.0216619 0.0213271 0.0203759 0.0214449 0.0187643 0.0203853 0.019928 0.0236219

c1 =

6.1856448 28.757804 46.899344 66.676355 72.66018 103.38586 83.924945 114.03851 128.75428
4.1063468 21.550839 50.040896 32.680635 70.375985 86.682426 105.05255 122.04902 150.6788
1.0012811 4.9875495 9.6353373 9.8780853 14.242119 18.951336 18.837432 23.560752 27.906738

a2 =

0.0165152 0.0173812 0.0171376 0.017419 0.0170732 0.016745 0.0164965 0.0161993 0.0160417
−0.000741 −0.002574 −0.001507 −0.001596 −0.000904 −0.000341 7.00 × 10−5 0.0004543 0.000612
−0.000515 −0.00236 −0.001279 −0.001372 −0.000678 −0.000115 0.000293 0.0006758 0.0008327
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0.027932 0.0463074 0.0355475 0.0364426 0.0295111 0.0238756 0.019781 0.0159496 0.0143803

c2 =

8.9738245 43.501825 57.434922 86.072751 78.158037 65.927916 92.09228 110.21913 127.1749
4.5235491 17.785223 48.94542 54.217529 68.707618 83.484193 94.356219 121.3248 148.33988
1.3213994 6.0718123 10.57939 13.969905 14.626563 14.876633 18.586843 23.104913 27.513776

(b) Post Linear Regression Model of Duty Cycle

d =

[
0.016188714524
0.016324370811

][
iL1
iL2

]
+

[
0.002211991399
0.002160889206

]
(c) Optimized PI Controller Transfer Function

GPI = 1.393364 · 10−5+142.18 · 1
s

.
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