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Abstract: This study developed a grid-connected biogas power generation system for a rural commu-
nity using a 3-phase 2.2 kW squirrel-cage induction machine as the self-excited induction generator.
The generator was driven by a 196 cc single-cylinder spark-ignition engine fueled by biogas. We
developed a back-to-back converter that consists of a 3-phase PWM rectifier as the generator-side
converter and a single-phase LCL-filtered grid-connected inverter. The generator-side converter
transferred the active power to the grid-side converter and supplied the reactive power control
back to the generator. The notch filter-based bus voltage control on the generator side mitigated
the inter-harmonics in the generator current. The injected grid current complied with the IEEE
1547 standard because of the multi-frequency unbalanced synchronous reference frame control. The
proposed system was validated with biogas produced from pig manure at a pig farm in central
Thailand, which found a maximum output of 1.2 kW with a thermal system efficiency of 10.7%.
The proposed system was scheduled to operate at 1.2 kW for 8 h per day with a levelized cost of
0.07 US$/kWh, 42% cheaper than the retail electricity price, and a payback period of 2.76 years. The
proposed system is suitable for a farm with a minimum of 34 pigs.

Keywords: back-to-back converter; biogas; induction generator; spark-ignition engine; sustainable energy

1. Introduction

Biogas production is a form of sustainable waste management for agricultural, in-
dustrial, and residential sectors, which has direct impacts and contributions to 12 out of
the 17 sustainable development goals (SDGs) [1]. Agricultural, industrial, and municipal
organic waste and sewage sludge are converted to biogas through fermentation of mi-
croorganisms under anaerobic conditions [2,3]. Biogas production from livestock farms in
developing countries has potential benefits in the reduction of greenhouse gas (GHG) emis-
sions and environment-friendly waste management [4]. Biogas fuel is normally utilized for
heat production, transportation, and electricity production [1].

Biogas can be converted directly to electricity through an electrochemical process using
solid oxide fuel cells (SOFCs) with near-zero GHG emissions. However, complicated biogas
cleaning and compression systems are required to make the SOFCs suitable for industrial
scales [5]. Moreover, the high investment cost is a barrier to adaptation in developing
countries [6]. Nevertheless, biogas-fed micro gas turbines are promising for power gen-
eration from sewage treatment systems [7,8]. Micro gas turbines fueled from biogas have
efficiencies between 20–30% [8], with a rotational speed between 1433π to 8000π rad/s.
A micro gas turbine is well equipped with a mechanical transmission system coupled
with a generator providing the 50/60 Hz electrical output. The GHG emission is far less
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than the conventional internal combustion engines. Commercial micro gas turbines range
from 30 kW to over 200 kW [8]. Internal combustion engine technologies are fully mature.
Commercial biogas engines for power generation range from 25 kW [9] to 2 MW [10] with
an electrical efficiency of up to 40%. Modification of standard internal combustion engines
fueled by biogas has been widely explored. Compression–ignition engines can be modified
to be fueled simultaneously by diesel and biogas [11]. A compression–ignition engine can
be alternatively converted into a spark–ignition engine which can be solely fed by producer
gas or biogas [12,13]. Standard spark–ignition engines require a slight modification for
using biogas as the sole fuel [14–16].

Electrically excited synchronous generators are normally used to convert the mechan-
ical work of the biogas-fed engines to AC electricity [11–13,15]. The output frequency
is regulated through the engine speed governor for a stand-alone application, while the
output voltage is regulated via the generator excitation current. For a grid connection, it
must be ensured that the generator voltage and frequency exactly match those of the grid
before synchronization. Permanent magnet synchronous generators (PMSGs) offer more
compactness than electrically excited synchronous generators [17], which were adopted for
biogas-fed power generation systems [9,14]. A power electronic converter is mandatory for
regulating the output voltage and frequency and for grid integration [9,10,14].

Self-excited induction generators (SEIGs) can be another candidate for biogas power
generation [18–20]. SEIGs have a rugged construction which requires almost no mainte-
nance, which can use commercial 3-phase induction machines as generators [21]. Moreover,
an SEIG has a cost much lower than a PSMG [22]. SEIGs are widely adopted for wind [23,24]
and small hydro [25–28] energy systems. However, SEIGs require reactive power for exci-
tation and regulation of the terminal voltage [29]. For the variable frequency stand-alone
system, SEIGs are driven by variable speed prime movers, e.g., wind and hydro turbines,
which are supplied from capacitor banks [20,25,30,31], hybrid excitation systems consisting
of static var generators (SVGs) and capacitor banks [19,23,24,26–28]. A 3-phase SEIG can be
operated as a stand-alone single-phase AC using a current-balancing circuit and a dummy
load [32]. For grid-connected operation, the SEIG can be operated with a fixed speed and
variable speed prime movers. For the fixed speed operation, the SEIG connects directly to
the grid [18], which is suitable for a governed speed prime mover with a limited mechanical
speed range of 1–5% above the synchronous speed. For the variable-speed grid-connected
operation, the SEIG connects to the grid through an AC–DC–AC link power converter [27].

In one application of biogas-powered SEIG-based generator systems, a 45 kW SEIG
fed a three-phase stand-alone system through a diode bridge rectifier and voltage source
converter (VSC) [20]. A 100 kW commercial gas engine–SEIG set was directly connected
to a three-phase grid [18]. A 7 kW gas engine–SEIG system directly supplied a 3-phase
stand-alone system with a VSC-based SVG for regulation of the generator voltage [19]. The
gas engines of these three SEIG-based biogas power generation systems were equipped
with a speed regulation system.

As mentioned above, there is no report on single-phase grid-connected biogas power
generation systems for a small community with a maximum power less than 5 kW. There-
fore, this work reports the development of a grid-connected biogas power generation
system for a small pig farm in central Thailand. A 196 cc single-cylinder spark-ignition
engine fueled by biogas from anaerobic digestion of pig manure and wastewater was used
as the prime mover. A 2.2 kW 3-phase squirrel-cage induction motor was operated as an
SEIG. In addition, we developed a power electronic converter for the generator excitation
control and integration of a 220 V 50 Hz single-phase grid. Laboratory and field tests
validated technical and economic viability were validated.

2. Materials and Methodology
2.1. Selection and Modification of a Spark-Ignition Engine

A Honda GX200T2 QHT air-cooled [33], 4-stroke spark–ignition engine (Tokyo, Japan)
with a horizontal shaft was chosen as the prime mover. Table 1 summarizes the engine
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specifications. The power–speed and torque–speed characteristics of the engine were
reproduced from the specification sheet, as shown in Figure 1. The maximum output power
was 4.1 kW at 120π rad/s, with a maximum torque of 12.4 N-m at 83π rad/s according to
the SAE J1349 standard. In addition, gasohol, mixed fuel between gasoline and ethanol,
with a maximum ethanol content of 10%, can be used with the GX200T2 QHT engine. Thus,
this engine is suitable for direct coupling to a two-pole machine with a nominal speed of
approximately 100π rad/s. The original carburetor was replaced by a gasoline/liquefied
petroleum gas (LPG) carburetor conversion kit, as depicted in Figure 2. This dual fuel
carburetor also facilitates the engine to be fed by biogas [16].

Table 1. Parameters of the inverter.

Symbol Quantity Value

Po Nominal output power 1.5 kW
VLLB Nominal SEIG line-to-line voltage 220 V
fgB Nominal SEIG frequency 50 Hz
Cex Excitation capacitors 40 µF (∆ connection)
VD Nominal DC voltage 400 V
Vo Nominal grid voltage 220 V
fo Grid frequency 50 Hz
fc Triangular carrier frequency 10 kHz
fs Sampling frequency 20 kHz
Ls SEIG-side inductor 2 mH
CD DC bus capacitor 1000 µF
L1 LCL filter inductor 1 mH
L2 Grid-side inductor 0.5 mH
C f LCL filter capacitor 3 µF
R f LCL filter damping resistor 1 Ω
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2.2. Assesment of Possible Power Conversion Topologies

This study selected a Hitachi TFO-K series 220/380 V 2.2 kW 2-pole squirrel-cage
induction motor (Tokyo, Japan) for the SEIG. The output of this system was connected
to a 220 V 50 Hz single-phase AC grid, which required a minimum DC input voltage of√

2× 220 = 311 V. The engine speed was unregulated, so the generator output voltage and
frequency were variable. The SEIG required a capacitor bank to build up the generator
terminal voltages from a residual flux density in the rotor core. An additional reactive
power source was also mandatory, to keep the SEIG excited when supplying the load [21].

Figure 3 depicts possible circuit topologies for this study. In the SEIG with the star
connection in Figure 3a with passive excitation, the capacitor bank CB1 supplies a reactive
power Q1 for an initial excitation, which builds a nominal line-to-line voltage of approx-
imately 380 V at no-load [20,34]. A passive rectifier converts the 3-phase AC voltage to
the DC bus voltage vD of approximately 550 V, which feeds an LCL-filtered single-phase
insulated-gate bipolar transistor (IGBT) inverter. The capacitor bank CB2 supplies addi-
tional reactive power Q2 for voltage regulation when feeding active power to the grid.
Although this circuit has a simple operation, the DC bus voltage is far higher than the
grid voltage peak value. This high bus voltage results in a bulky inverter-side inductor L1
of the LCL filter to limit the current ripple, high switching loss in the inverter, and high
semiconductor component ratings.
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sive rectifier with multi capacitor banks, (b) Passive rectifier with a capacitor bank and an SVG,
(c) Proposed back-to-back converter with a capacitor bank.

Moreover, the generator has low efficiency due to the distorted currents drawn by the
rectifier. Hybrid excitation schemes in Figure 3b with the reactive power supplied by a
static var generator (SVG) provide smooth voltage regulation [26,28,35]. A voltage source
converter (VSC) is adopted as the SVG, with Ls as the boosting inductors [28]. The VSC bus
voltage vDs is controlled to be greater than the peak value of the SEIG line-to-line voltage so
that the VSC can inject the reactive power Q2 into the generator for voltage regulation. In
addition, the SVG can compensate for the current harmonics of the rectifier so that the SEIG
currents become sinusoidal. This circuit topology and its control scheme are complicated
and unsuitable for low-power applications. A thyristor-based SVG can be adopted instead
of the VSC-based SVG [23,36]. However, the SEIG current harmonics and large DC bus
voltage vD still cause a low system efficiency.

Figure 3c shows the proposed back-to-back converter topology. The SEIG winding is
connected as the delta configuration so that the no-load line-to-line voltage is approximately
VLL =220 V, with a proper capacitor bank CB1. A VSC-based PWM rectifier is a boost-type
power converter that converts the SEIG 3-phase AC voltage to a DC voltage vD higher than
the peak value of the line-to-line input voltage. The DC bus voltage reference value V∗D
is 400 V, which is high enough for the single-phase inverter with lower IGBT rating and
switching loss. The VSC-based PWM rectifier also supplies the reactive power Q2 to the
SEIG while drawing the active power Pg. The proposed topology was expected to be more
efficient than the passive rectifier topologies in Figure 3a,b, due to the SEIG sinusoidal
currents and lower switching losses.

2.3. Proposed SEIG-Based Power Conversion System

Figure 4 depicts the power converter control system. The SEIG-side and grid-side
control schemes were implemented on a TMS320F28069 32-bit microcontroller from Texas
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Instruments. The voltage and current signals of the SEIG and grid were sampled via the
embedded analog-to-digital converters (ADCs), from which the control schemes generated
the switching signals from the PWM units for the IGBTs via the gate driver circuits. The
SEIG and capacitor bank were considered as a 3-phase AC voltage source with the star
connection. Therefore, the virtual phase voltages of the SEIG are defined as follows:

v′ga(t) = V̂′gcos ωgt
v′gb(t) = V̂′gcos

(
ωgt− 2π

3
)

v′gc(t) = V̂′gcos
(

ωgt− 4π
3

)
 (1)

where V̂′g =
√

2
(

VLL/
√

3
)

is the voltage amplitude and ωg is the generator electrical
frequency. The shaft rotational speed is not required. Instead, the shaft speed can be
estimated from the generator frequency ωg, which was used for supervisory control, along
with other mechanical parameters such as temperatures, biogas pressure, and gas flow rate.
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Figure 4. Control structure of the biogas power generation system.

Figure 5 shows the control system of the PWM rectifier in the synchronous reference
frame. The superscripts ‘*’ denote the reference signals. The measured physical line to line
voltages vgab(t) and vgbc(t) are transformed into a space vector, which is then shifted by
e−jπ/6/

√
3 to calculate the space vector v′gα(t) + jv′gβ(t) of the virtual phase voltages v′ga(t),

v′gb(t) and v′gc(t). The synchronous reference frame phase-locked loop (PLL) estimates the

angle θ̂g, frequency ω̂g, and amplitude V̂′g of the space vector v′gα(t) + jv′gβ(t) The PWM
rectifier currents isa(t) and isb(t) are only measured due to the symmetry of the 3-phase
3-wire system for transforming the synchronous reference frame currents isd(t) and isq(t).
Thus, the instantaneous active and reactive powers ps(t) and qs(t) of the PWM rectifier are
given as shown:

ps(t) =
3
2

V̂′gisd(t) (2)

qs(t) =
3
2

V̂′gisq(t) (3)
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Assuming there is no loss in the capacitor bank, the SEIG active power pg(t) and
reactive power q2(t) become the following:

pg(t) = ps(t) =
3
2

V̂′gisd(t) (4)

q2(t) = qs(t) =
3
2

V̂′gisq(t) (5)

The DC bus voltage vD(t) contains a ripple caused by the oscillating power of the
grid-side inverter at the frequency of 2ωo, where ωo = 2π fo is the grid frequency. Thus, a
second-order notch filter GNF(s) at 2ωo blocks the bus ripple component before feeding to
the bus voltage control loop with a proportional-integral (PI) controller GPI1(s). The bus
voltage controller generates the d-axis reference current i∗sd(t) to draw the active power
ps(t) from the SEIG in response to the bus power drawn by the single-phase inverter.

Voltage regulation of a variable-speed SEIG is challenging due to its nonlinear charac-
teristics [23,28,34]. The nominal synchronous speed of this SEIG was 100π rad/s, which
can tolerate a speed range of ±10%. Thus, the mechanical speed range of the engine suited
the SEIG well. We proposed a simple open-loop excitation scheme. The q-axis reference
current i∗sq(t) was proportional to i∗sd(t) with a constant gain Kq, to produce the reactive
power q2(t) for regulating the SEIG voltage. The sign of the estimated SGIG frequency ω̂g
defined the reactive power q2(t)’s direction, in the case of the phase sequence opposite to
(1). The PI controllers GPI2(s) regulated the dq-axes currents. A space vector modulation
(SVM) technique generated the switching signals for the IGBTs.

The 2ωo ripple component of the bus voltage affects the PWM rectifier and SEIG
current waveforms. Figure 6 displays the natural reference frame equivalence of the SEIG-
side control system. The PI controllers of the current control loops in Figure 6 are equivalent
to the proportional–resonant controllers at the resonant frequency of ωg. The bus voltage

filter G f v(s) attenuates the 2ωo component
∼
vD2ωo . Let the reference current i∗sd(t) given

as below:
i∗d(t) = Î∗g + Î2ωo cos (2ωot + ψ) (6)
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where Î∗g is the active power-producing component and Î2ωo cos (2ωot + ψ) is the resultant
of the 2ωo component. The reference currents i∗sa, i∗sb, and i∗sc in the natural reference frame
are obtained from the following:i∗sa

i∗sb
i∗sc

 =

 cos ωgt −sin ωgt
cos
(
ωgt− 2π

3
)
−sin

(
ωgt− 2π

3
)

cos
(

ωgt− 4π
3

)
−sin

(
ωgt− 4π

3

)
·[i∗sd

i∗sq

]
(7)
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Let i∗sq(t) = kqi∗sd(t), and consider only the 2ωo component of i∗sd(t), which causes
inter-harmonic components i∗sa,2ωo

, i∗sb,2ωo
, and i∗sc,2ωo

in the natural frame reference currents
i∗sa, i∗sb, and i∗sc as follows:

i∗sa,2ωo
i∗sb,2ωo
i∗sc,2ωo

 = ± Î2ωo

2

 cos
((

2ωo ∓ωg
)
t + ψ

)
+ kqsin

((
2ωo ∓ωg

)
t + ψ

)
cos
((

2ωo ∓ωg
)
t− 2π

3 + ψ
)
+ kqsin

((
2ωo ∓ωg

)
t− 2π

3 + ψ
)

cos
((

2ωo ∓ωg
)
t− 4π

3 + ψ
)
+ kqsin

((
2ωo ∓ωg

)
t− 4π

3 + ψ
)
 (8)

Thus, the bus voltage filter G f v(s) plays a vital role in mitigating the
(
2ωo ∓ωg

)
components in the PWM rectifier currents. A low-pass filter with a cut-off frequency
far below 2ωo results in a sluggish performance. In this work, we applied a standard
second order notch filter GNF(s) to block the 2ωo component while maintaining fast
dynamic performance.

The output stage of the proposed topology in Figure 4 is the single-phase LCL-filtered
grid-connected inverter. The damping resistor R f of the LCL filter ensures control stability
with a large grid impedance. Grid current io(t) feedback control is used in this study. The
grid voltage vo(t) is given here:

vo(t) = V̂ocosωot (9)

where V̂o is the voltage amplitude, ωo = 2π fo is the grid frequency. The desired grid
current io(t) is as shown:

io(t) = Îocos (ωot + ϕo) (10)

The single-phase inverter is controlled in the virtual synchronous reference frame control
by setting ioα(t) = io(t) and the orthogonal current ioβ(t) = io(t)e−jπ/2 = Î1sin (ωot + ϕo).
The grid current is decoupled into the dq axes using the Park transformation:[

iod(t)
ioq(t)

]
=

[
cos ωot sin ωot
sin ωot cos ωot

]
·
[

io(t)
ioβ(t)

]
=

[
Îocos ϕo
Îosin ϕo

]
(11)
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The synchronous reference frame control results in the decomposition of the instanta-
neous power and reactive power as follows [37]:

po(t) =
V̂o(t)

2
Îocos ϕo =

V̂o

2
iod(t) (12)

qo(t) = −
V̂o(t)

2
Îosin ϕo = −

V̂o

2
ioq(t) (13)

The grid-side control system is implemented in the unbalanced synchronous reference
frame, a sub-class of the synchronous reference frame control. Figure 7 depicts the stationary
reference frame representation of the synchronous reference frame control. The error
signals eα(t) and eβ(t) in the αβ−axes are transformed into the error signals ed(t) and
eq(t) in the dq−axes with the angle hωot. The controllers HDC(s) in the dq−axes produce
the manipulating signals yd(t) and yq(t), which are transformed back to the αβ−axes
manipulating signals yα(t) and yβ(t). Applying the convolution and modulation properties
of the Laplace transformation [38] yields the stationary reference frame outputs:

[
yα(s)
yβ(s)

]
=

1
2


(

HDC(s + jhωo)
+HDC(s− jhωo)

) (
−jHDC(s + jhωo)
+jHDC(s− jhωo)

)
(

jHDC(s + jhωo)
−jHDC(s− jhωo)

) (
HDC(s + jhωo)
+HDC(s− jhωo)

)
[eα(s)

eβ(s)

]
(14)
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If the β-axis input xβ(t) = 0 and only the output in the α-axis are considered for
the single-phase system, the stationary reference frame equivalence of HDC(s) becomes
the following:

HAC(s) =
yα(s)
e(s)

=
1
2
(HDC(s + jhωo) + HDC(s− jhωo) (15)

If HDC(s) = KP + KI/s is the standard PI controller, HAC(s) is as below:

HAC(s) = KP +
KI

s2 + (hωo)
2 (16)

The equivalent controller transfer function in the stationary reference frame in (16) is
identical to the ideal proportional-resonant controller, which provides an infinite gain at
the target frequency hωo, ensuring zero steady-state error. This control technique is called
the unbalanced synchronous reference frame control, which has been successfully applied
for single-phase converters [39,40]. The unbalanced synchronous reference frame control
can be implemented in different structures with identical performance [40].

Figure 8a depicts the grid-side control system of the single-phase inverter, which
is implemented in the multiple unbalanced synchronous reference frame on the same
microcontroller with the SEIG-side control. The proposed control scheme consisted of
a fundamental component controller at the grid frequency ωo, and multiple harmonic
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controllers at frequencies hωo. The harmonic controllers attenuate low-frequency harmonics
in the grid and inverter output voltages due to switching deadtimes [37]. An inverse Park
transformation PLL estimates the angle θo = ωot and the grid voltage amplitude V̂o [41].
A low-pass filter with a time constant of Tf o reduces the fast-changing rate of the power
reference P∗o to draw power from the SEIG and engine smoothly. The d−axis reference
current i∗od(t) is calculated from the filtered reference output power P∗o f using (12), whereas
the q−axis reference current i∗oq = 0 is used for a unity power factor. The fundamental
current controller uses the grid current as the α−axis component current ioα(t) = io(t)
and the reference current i∗oβ as the β−axis component current ioβ = i∗oβ for the reference
frame transformation [40]. The fundamental grid current components iod(t) and ioq(t) in
the dq−axes are regulated by the PI controllers GPIO(s) = KPo + KIo1/s, whose outputs
m∗d1 and m∗q1 are transformed back to the stationary reference frame. Only the α−axis
output m∗α1 is used. This control structure has inherent power decoupling and frequency
adaption capabilities [37]. Figure 8b shows the details of the harmonic current controllers
implemented in the modulation/demodulation structure at the frequencies hωo. The
harmonic controllers have a simpler structure than the fundamental component controller
with identical performance. The α−axis reference current i∗oα is compared with the grid
current io(t). The decomposed error signals in the dq−axes are regulated by the integral
controllers KIoh/s, from which outputs are transformed back to the α−axis signals m∗h.
The output signals of the fundamental current controller m∗α1 and the harmonic controller
m∗h form the input signal m∗ for the pulse width modulation (PWM) unit embedded in
the microcontroller. The transfer function of the grid current controller is equivalent to a
proportional–multi-resonant (PMR) controller, as in [37]:

Gio(s) =
m∗(s)

i∗o (s)− io(s)
= KPo + ∑n

h=1
KIoh

s2 + (hωo)
2 (17)
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2.4. Back-to-Back Converter Design

The proposed power converter in Figure 5 was constructed with parameters listed
in Table 1. The excitation capacitors Cex built up the SEIG voltage to the nominal value
of VLL = 220 V (line to line) at the no-load rotational speed of approximately 100π rad/s.
Assuming the efficiency of the converter and SEIG as 70%, the nominal output power was
set at 1.5 kW, at which the mechanical input power Pm = 2.14 kW, close to the rated power.
The SEIG-side and grid-side converters employed the asymmetrical regular sampled PWM
technique, with the triangular carrier frequency of fc = 10 kHz and the sampling frequency
of fs = 20 kHz. The resonant frequency fLCL is given by the following:

fLCL =
1

2π

√(
L1L2

L1 + L2

)
C

f

(18)

According to Table 1, fLCL = 5.06 kHz satisfies the stability criterion [42]:

fs

6
< fLCL <

fs

2
(19)

The grid current control loop with the harmonic controller orders 3rd, 5th, 7th, and
9th was designed at a bandwidth of 1100 Hz [37]. The current control loop of the PWM
rectifier was tuned at an approximated bandwidth of 1000 Hz, using the method in [43].
Figure 9 shows the simplified control block diagram of the bus voltage control loop, where
the notch filter is approximated as the low-pass filter. The controller parameters Kp1 and
Ki1 and the notch filter’s damping factor ξ were obtained from the extended symmetrical
optimum method [44] at a loop bandwidth of 15 Hz.
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2.5. Experimental Setup

Figure 10 shows the biogas power generation system prototype, which was installed
at Tha Manoa Subdistrict, Chaibadal District, Lopburi, Thailand (15.1998◦ N, 101.1652◦ E).
Figure 11 depicts the performance evaluation diagram of the prototype system. Gasohol
containing 90% 95-octane gasoline and 10% ethanol by volume was used for the laboratory
tests. The average thermal input power was determined from the consumption rate using
a digital weighing scale monitored in 10 min periods.

The engine was fueled by biogas for the field tests at Tha Manoa Subdistrict. In this
community, there are 8 pig farms, each containing 100–700 pigs. The air intake was adjusted
experimentally until the engine delivered a stable shaft power for the desired output power.
Each farm installed an anaerobic covered lagoon to produce biogas from pig slurry, a
primary measure for waste management. The byproduct biogas has been primarily utilized
for cooking. Sediment from anaerobic digestion was used for soil fertilization within
the community. This biogas production project joined the Thailand Voluntary Emission
Reduction (T-Ver) Program, which was verified to reduce the emissions by 1634 tCO2e/year
between 2015–2022 [45]. The produced biogas from each lagoon was purified by passing
through Fe(OH)3 absorbent granules, which were made from grey cement mixed with fine
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sand soaking in FeCl3 and NaOH [46]. Fan blowers pressurized the upgraded biogas for
distribution to 230 households for cooking between 5.00 am–9.00 am and 4.00 pm–9.00 pm
daily. The excess biogas had been planned to be used for power generation.
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Figure 11. Performance evaluation diagram of the biogas power generation system.

The thermal input power was determined from the volumetric flow rate using an
Omega FMA-A2100 thermal mass flowmeter (Stamford, CT, USA) and CH4 content was
monitored by an IRCD4 gas analyzer from Beijing Shi’An Technology (Beijing, China).
The shaft torque and speed and mechanical power were obtained from a CALT DYN-
200 torque–speed sensor (Shanghai, China) mounted between the engine and the SEIG.
Electrical parameters at the SEIG and converter outputs were measured by a Yokogawa
WT300 4-channel power analyzer (Tokyo, Japan). Current and voltage waveforms were
recorded by an ISO-TECH IDS-1074B 4-channel digital oscilloscope (Corby, UK).

3. Results
3.1. Control Performance of the SEIG and Back-to-Back Converter

This section validates the laboratory performance of the SEIG and back-to-back con-
verter system. The SEIG was driven by the GX200T2 QHT engine and fueled by gasohol.
The reactive power gain Kq = 0.5 was determined experimentally to keep the ratio between
the SEIG voltage and frequency constant throughout the operating range.
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Figure 12a shows the SEIG voltage build-up period. In the beginning, a small SEIG
voltage vgab(t) was induced by the residual flux density in the rotor core. After connecting
the SEIG with the back-to-back converter, vgab(t) gradually increased due to the reactive
power q1(t) from the capacitors Cex. While building the terminal voltage, the SEIG also
supplied active power to the DC bus capacitor CD, with the VSC operated as a passive
rectifier. Thus, the DC bus voltage was approximately equal to the peak value of the SEIG
line-to-line voltage. The VSC current isa(t) rose during the build-up period and decreased
to zero at the steady state. At the steady-state no-load condition, the SEIG current iga(t)
flowed between the SEIG and Cex, as observed from isa(t) ≈ 0. The voltage vgab(t) settled
at the RMS value of VLL ≈ 220 V at the steady state. Note that this voltage VLL depends on
the Cex value and the engine speed ωm. Figure 12b shows the startup of the PWM rectifier
when vD(t) increased to the reference V∗D = 400 V. The voltage vgab(t) dropped during the
transient condition because the SEIG supplied the active power pg(t) to the bus capacitance.
However, the SEIG was kept excited by the reactive power q2(t) feeding back from the
PWM rectifier to the SEIG.
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Figure 12. Transient voltage and current waveforms of the SEIG-side converter: (a) Voltage build-up
period, (b) DC bus voltage start-up period.

Once the PWM rectifier had been operated, the grid-side inverter was enabled.
Figure 13 shows the transient response of the grid current io(t) when injecting a power
output of 1200 W. The dq-axes current signals isd(t) and isq(t) of the PWM rectifier in the
microcontroller-based control system were sent to 14-bit digital t0 analog converters (DACs)
for monitoring on an oscilloscope. The SEIG-side control system produced the d−axis
current isd(t) to draw an active power pg(t) from the SEIG. The q−axis current isq(t) also
increased in proportion to isd(t). Figure 14 displays the steady-state waveforms of the grid
voltage vo(t) and current io(t), and the SEIG voltage vgab(t) and current iga(t) at the rated
output power of 1.5 kW, where the engine speed was approximately 97π rad/s. The SEIG
frequency measured 46 Hz. The SEIG current waveform was close to sinusoidal without
inter-harmonic components, as analyzed in (8), due to the notch filter blocking the 2ωo
component of the bus voltage. Meanwhile, the grid current waveform was near-sinusoidal
because of the added harmonic controller. The effect of the bus voltage ripple on the SEIG
current is illustrated in Figure 15, where the notch filter was replaced by a low-pass filter.
The bus voltage loop bandwidth was tuned at 15 Hz, similar to the notch filter-based
control. The changes in each SEIG current cycle indicate the presence of the inter-harmonic
components, as explained in (8).
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The SEIG current waveform was also near-sinusoidal, with a total harmonic distortion
(THD) of 2.67% at the rated power. Figure 16 depicts the grid current harmonics at the
output powers of 500 W (33%), 1000 W (66%), and 1500 W (100%), normalized by the rated
current of 6.75 A, which comply with the IEEE 1547 standard [47].
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Figure 17 shows the reactive power q2(t) the PWM rectifier injected to the SEIG with
the output power range from 10% to 100%. The reactive power from the capacitor bank Q1
is determined from the following:

Q1 = 3× (V2
LLωgCex) (20)
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The reactive power Q1 decreased with the output power due to the generator frequency
reduction. The reactive power q2(t) from the PWM rectifier plays an essential role in
the regulation of the SEIG voltage. Figure 18 depicts the SEIG voltage/frequency ratio,
normalized by the nominal value of VLLB/ fgB, which is close to unity over the output
power range.
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This mechanical frequency ωm of the induction machine is less than the electrical
frequency ωg for operating in the motor mode and higher than ωg for the generator mode.
The slip S due to the speed difference is given as below:

S =
ωg −ωm

ωg
(21)

Figure 19 compares ωm and ωg normalized by the nominal frequency ωgB = 2π fgB,
and slip S versus the shaft torque Tm. The mechanical frequency ωm decreased with the
increasing torque Tm, according to the engine characteristics. The SEIG-side converter drew
the active power pg(t) from the SEIG, which caused the SEIG frequency ωg to be less than
the mechanical frequency ωm. Thus, the slip S decreased with the torque in the negative
region while the machine operated in the generator mode.
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3.2. System Performance

The prototype’s performance was validated with biogas at the selected area, Ta Manoa
Subdistrict, in December 2021. The IRCD4 gas analyzer monitored biogas composition
during the experiment, with values listed in Table 2. Note that this IRCG4 gas analyzer
could not measure the moisture content of the biogas. However, it has been reported
that biogas typically contains less than 1% water by volume. The engine exhaust gas was
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monitored using an SA500 gas analyzer from Beijing Shi’An Technology (Beijing, China).
The probe of the exhaust gas analyzer was cleaned before each measurement. The exhaust
gas analyzer was ensured to indicate near-zero before starting the engine. The no-load
speed during the field experiments was approximately 108π rad/s because the shaft speed
with biogas drops, with the output power greater than with gasohol in the laboratory
test. Thus, the excitation capacitors of Cex = 35 µF were used in the field experiment in
response to the higher no-load speed. For the field tests with biogas, the prototype system
delivered the maximum output power of 1200 W, 80% of the rated value, due to low biogas
production. Unfortunately, the pigs were young during the test period, so their manure
was insufficient to produce enough biogas for the rated output power.

Table 2. Biogas composition in the field experiments.

Composition Content

CH4 68.5–70.0%
CO2 30%
H2S 0.14–0.24%

Figure 20 compares the engine shaft speed fueled by gasohol and biogas. The engine
speed with biogas dropped rapidly, with the output power greater than 70% of the rated
power. It was found during the field experiments that the SEIG lost excitation when the
output power was greater than 80% of the rated value. Meanwhile, the engine with gasohol
delivered the output power smoothly. However, the unstable biogas supply during the
experiment and the smaller energy density of biogas itself derated the prototype output
power. Figure 21 shows the biogas consumption with the output power at 21 ◦C and
101.325 kPa, which was obtained from the thermal mass flowmeter. This biogas flowrate
and the methene content in Table 2 was used to calculate the engine input power.
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Figure 22 compares the engine’s efficiency, SEIG, back-to-back converter, and system
with biogas and gasohol. The engine plays a vital role in system efficiency. The engine
efficiency with biogas was smaller than with gasohol. At the output power of 80%, the
engine efficiency was approximately 14%, while that with gasohol was 18%. The engine
efficiency can be improved if the biogas supply were to be sufficient for higher power
operation. The SEIG and back-to-back converter had an efficiency greater than 70% and
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90% for the output power above 50%. The system efficiency with biogas was approximately
10.7% at the output power of 80%. The system efficiency with biogas is expected to be
about 13% at the rated power, estimated from the system efficiency with gasohol.
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Figure 23 compares NOx and CO emissions of the exhaust gas. The NOx emission with
biogas is far less than that with gasohol. The NOx emission of the biogas-fed system was
less than 50 ppm at 80% of the rated output power, thanks to the purification process using
the Fe(OH)3 absorbent granules. Meanwhile, the CO emission of the biogas-fed engine
decreased with the output power, with the CO emission being lower than 400 ppm at 80%
of the rated output power. This is believed to be due to a complete combustion process. On
the other hand, the CO emission with gasohol was 2000 ppm for every output power level,
which was the maximum measurable value of the exhaust gas analyzer. Thus, the actual
CO emission was greater than 2000 ppm.
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The higher amount of NOx and CO emissions for the gasohol fuel resulted from
incomplete combustion, which agrees with the report in [16] performed on the same GX200
engine. Meanwhile, the brake thermal efficiency of the engine with biogas (CH4 of 80%)
in [16] was slightly greater than unleaded gasoline, which contrasts with the results in this
study. This is believed to be because the biogas in this study contained CH4 concentration
of approximately 70%.

4. Suitability and Economic Analysis

The proposed biogas generation system was technically proven. This section analyzes
the possible applications and economic feasibility of the system.

4.1. Suitability of the Proposed Biogas Power Generation System

Let us assume that the prototype system is operated at 1.2 kW for 8 h from 5.30–8.30 am
and 5.00–8.00 pm to support the peak load of the local grid. According to the biogas
consumption rate of 1.106 m3/h at 1.2 kW in Figure 22, this power production requires
biogas input of 8.85 m3 daily. It was reported in [48] that a mature pig excretes manure at
a rate of 2 kg/day, which produces 0.26 m3 of biogas. Therefore, a farm should have at
least 34 pigs to create a stable biogas supply. In practice, there are 100–700 pigs on the pig
farms in Ta Manoa subdistrict. Thus, installing the proposed prototype system on each farm
is feasible. It is estimated that the output power can be scaled up to 5 kW with the largest
390 cc engine in this GX series and a 7.5 kW induction machine. The spark–ignition engine
selected in this study is widely used in agricultural equipment such as water pumps and
sprayers. People in the community are familiar with the engine. Therefore, maintenance of
the engine can be carried out locally.

However, this biogas power generation system requires more operation and mainte-
nance compared with photovoltaic power generation. This issue can be a barrier to the
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wide adaptation of this biogas power generation. Therefore, energy and environmental
policies are the key drivers of this biogas power generation scheme for small communities.

4.2. Economic Viability

This analysis covers the biogas power generation system, excluding the anaerobic
digester and purification. Biogas is considered a by-product of the waste management
system. Table 3 summarizes the capital and annual operating costs and the salvage values
of the system components. The operating cost and salvage value were estimated during the
installation. Maintenance of the engine is the primary operating cost. In this assumption,
the system lifetime is five years. The engine is set to operate for 8 h daily, so the total
operating time is 14,600 h. Meanwhile, a biogas-fueled spark–ignition engine can be
operated for up to 60,000 h [49]. The life-cycle cost (LCC) for the five years is USD 1046
with an interest rate of 7%. Note that the power converter and SEIG can be overhauled
after the project life and reused in the new project.

Table 3. Break-down of costs of the proposed SEIG-based biogas power generation system.

Parts Capital Cost Annual
Operating Cost Salvage Value

Engine with biogas modification USD 260 USD 35 -
Generator (SEIG) USD 150 - USD 75
Power converter USD 450 - USD 200

Housing and piping USD 140 USD 7 -
Total USD 1000 USD 42 USD 270

Let us assume there is a 10% system unavailability due to maintenance and low biogas
production. An energy yield per year at 1.2 kW is then given as shown:

1.2 kW × 8 hours × 365 days × 0.9 = 3153 kWh (22)

Each year’s revenue is estimated to be USD 378.36 with a retail electricity price of
USD 0.12. Thus, the payback period will be 2.8 years. Therefore, the levelized cost of
electricity (LCOE) for the whole project lifetime is 0.07 US$/kWh. Note that the LCOE of
0.07 US$/kWh does not include the biogas cost, a byproduct of the waste management sys-
tem. The system efficiency must be improved to keep the LCOE viable if purchasing biogas.

A 3 kW photovoltaic power (PV) generation system was selected to compare with the
biogas power generation system in this study. In Thailand, a specific annual energy yield
of 1400 kWh/kWp/year was estimated using the PVsyst software. The installation cost for
a 3 kW PV system is approximately USD 3600, with an annual maintenance cost of 0.5%.
The salvage value is estimated to be zero. The project’s life is 25 years. Table 4 compares
the economic viability analysis of the biogas power generation with a 3 kW PV system.
Although the LCOE of the biogas system is slightly higher than that of the PV system, the
main benefit of the biogas in this study is a stable and dispatchable source.

Table 4. Economic viability of biogas power generation and a 3 kW photovoltaic system.

Indicators Biogas in This Study 3 kW PV

Energy yield 3153 kWh/year 4200 kWh/year
Project period 5 years 25 years

LCC USD 1046 USD 4738
Payback period 2.8 years 9.4 years

LCOE USD 0.07/kWh USD 0.05/kWh

5. Conclusions

A 196 cc 4-stroke single-cylinder ignition engine was fueled by biogas from pig manure
using a gas conversion kit. The engine drove a 2-pole 2.2 kW squirrel-cage inductor motor,
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operated as a self-excited induction generator. We developed a back-to-back converter for
generator control and integration with a 220 V 50 Hz single-phase network. The generator-
side converter employed a three-phase PWM rectifier to transfer active power to the grid-
side converter and supply reactive power back to the generator for voltage regulation. The
grid-side converter adopted an LCL-filtered voltage source inverter with multi-frequency
unbalanced synchronous reference frame control, resulting in an injected output current
which complied with the IEEE 1547 standard. Meanwhile, the notch filter-based bus voltage
control on the generator side effectively mitigated the inter-harmonic components in the
generator current caused by the oscillating power from the grid-side converter.

The prototype power generation system was validated with biogas from a swine farm
in Ta Manoa subdistrict, Lopburi, Thailand. The system delivered a maximum power of
1.2 kW with a thermal efficiency of 10.7%. If the system is operated at the output power
of 1.2 kW for 8 h per day, the prototype is suitable for a farm with at least 34 pigs. The
proposed system has a life-cycle cost of USD 1046 for 5 years. The levelized cost of electricity
was estimated to be USD 0.07/kWh, with a payback period of 2.76 years. The advantages
of the proposed biogas power generation system can be summarized as follows:

(1) Low investment cost;
(2) Spark–ignition engines and induction machines are manufactured in Thailand and

are widely available;
(3) The system is easy to operate, and maintenance of the engines can be carried out in

the community;
(4) The system is a dispatchable renewable source that can be used for grid support;
(5) Near-sinusoidal generator and output currents impose a low loss on the generator.
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4. Seruga, P.; Krzywonos, M.; Boer, E.D.; Niedźwiecki, A.; Urbanowska, A.; Pawlak-Kruczek, H. Anaerobic Digestion as a
Component of Circular Bioeconomy&mdash;Case Study Approach. Energies 2023, 16, 140.

https://doi.org/10.1016/j.jtice.2022.104207
https://doi.org/10.3390/en14248373
https://doi.org/10.3390/en14206618


Energies 2023, 16, 4963 22 of 23

5. Ingale, G.U.; Kwon, H.-M.; Jeong, S.; Park, D.; Kim, W.; Bang, B.; Lim, Y.-I.; Kim, S.W.; Kang, Y.-B.; Mun, J.; et al. Assessment of
Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming. Energies
2022, 15, 8679. [CrossRef]

6. Athanasiou, C.; Drosakis, C.; Booto, G.K.; Elmasides, C. Economic Feasibility of Power/Heat Cogeneration by Biogas&ndash;Solid
Oxide Fuel Cell (SOFC) Integrated Systems. Energies 2023, 16, 404.

7. Chang, C.C.; Do, M.V.; Hsu, W.L.; Liu, B.L.; Chang, C.Y.; Chen, Y.H.; Yuan, M.-H.; Lin, C.-F.; Yu, C.-P.; Chen, Y.H.; et al. A case
study on the electricity generation using a micro gas turbine fuelled by biogas from a sewage treatment plant. Energies 2019,
12, 2424. [CrossRef]

8. Xiao, G.; Yang, T.; Liu, H.; Ni, D.; Ferrari, M.L.; Li, M.; Luo, Z.; Cen, K.; Ni, M. Recuperators for micro gas turbines: A review.
Appl. Energy 2017, 197, 83–99. [CrossRef]

9. Yanmar Holdings. Cogeneration Systems—CP Series (Bio Gas). 2023. Available online: https://www.yanmar.com/en_th/
energy/cogeneration_systems/biogas/ (accessed on 16 June 2023).

10. Caterpillar. Gas Generator Sets G3520C. 2023. Available online: https://www.cat.com/en_US/products/new/power-systems/
electric-power/gas-generator-sets/18483554.html# (accessed on 16 June 2023).

11. Verma, S.; Das, L.M.; Kaushik, S.C. Effects of varying composition of biogas on performance and emission characteristics of
compression ignition engine using exergy analysis. Energy Convers. Manag. 2017, 138, 346–359. [CrossRef]

12. Homdoung, N.; Tippayawong, N.; Dussadee, N. Performance and emissions of a modified small engine operated on producer
gas. Energy Convers. Manag. 2015, 94, 286–292. [CrossRef]

13. Yingjian, L.; Qi, Q.; Xiangzhu, H.; Jiezhi, L. Energy balance and efficiency analysis for power generation in internal combustion
engine sets using biogas. Sustain. Energy Technol. Assess. 2014, 6, 25–33. [CrossRef]

14. Capaldi, P.; Daliento, A.; Rizzo, R. An innovative 10 kW microcogenerator suitable for off grid application and fed with syngas or
biogas. In Proceedings of the Universities Power Engineering Conference, Cluj-Napoca, Romania, 2–5 September 2014.

15. Da Costa, R.B.R.; Valle, R.M.; Hernández, J.J.; Malaquias, A.C.T.; Coronado, C.J.; Pujatti, F.J.P. Experimental investigation on
the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant
emission analysis. Appl. Energy 2020, 261, 114438. [CrossRef]

16. Karakitie, E.D.; Aralu, C.E.; Fadare, A.D. Performance charateristics of a conventional spark ignition petrol engine powered by
biogas. Fuel Commun. 2022, 10, 100032. [CrossRef]

17. Bash, M.; Pekaret, S.; Sudhoff, S.; Whitmore, J.; Fratzen, M. A comparison of permanent magnet and wound rotor synchronous
machines for portable power generation. In Proceedings of the 2010 Power and Energy Conference at Illinois (PECI), Urbana, IL,
USA, 12–13 February 2010.

18. Wang, L.; Lin, P. Analysis of a Commercial Biogas Generation System Using a Gas Engine–Induction Generator Set. IEEE Trans.
Energy Convers. 2009, 24, 230–239. [CrossRef]

19. Bellini, A.; Franceschini, G.; Lorenzani, E.; Tassoni, C.; Tomaiuolo, M. Field Oriented Control of Self-Excited Induction Generator
for Distributed Cogeneration Plants. In Proceedings of the 41st IEEE Industry Applications Conference, Tampa, FL, USA,
8–12 October 2006.

20. Klíma, J. Stand Alone Bio-Gas Power Plants with Induction Generator and PWM Voltage Source Inverter. IFAC Proc. Vol. 1997, 30,
137–142. [CrossRef]

21. Singh, G.K. Self-excited induction generator research—A survey. Electr. Power Syst. Res. 2004, 69, 107–114. [CrossRef]
22. Krishna, V.M.; Sandeep, V.; Murthy, S.; Yadlapati, K. Experimental investigation on performance comparison of self excited

induction generator and permanent magnet synchronous generator for small scale renewable energy applications. Renew. Energy
2022, 195, 431–441. [CrossRef]

23. Calgan, H.; Demirtas, M. A robust LQR-FOPIλDµ controller design for output voltage regulation of stand-alone self-excited
induction generator. Electr. Power Syst. Res. 2021, 196, 107175. [CrossRef]

24. Sowmmiya, U.; Uma, G. Control and maximum power tracking operation of hybrid excited variable speed induction generator.
Electr. Power Syst. Res. 2017, 143, 771–781.

25. Capelo, B.; Pérez-Sánchez, M.; Fernandes, J.F.; Ramos, H.M.; López-Jiménez, P.A.; Branco, P.C. Electrical behaviour of the pump
working as turbine in off grid operation. Appl. Energy 2017, 208, 302–311. [CrossRef]

26. Chilipi, R.R.; Singh, B.; Murthy, S.S. Performance of a Self-Excited Induction Generator With DSTATCOM-DTC Drive-Based
Voltage and Frequency Controller. Energy Conversion. IEEE Trans. 2014, 29, 545–557.

27. Marra, E.G.; Pomilio, J.A. Induction-generator-based system providing regulated voltage with constant frequency. IEEE Trans.
Ind. Electron. 2000, 47, 908–914. [CrossRef]

28. Scherer, L.G.; Tischer, C.B.; de Camargo, R.F. Power rating reduction of distribution static synchronous compensator for voltage
and frequency regulation of stand-alone self-excited induction generator. Electr. Power Syst. Res. 2017, 149, 198–209. [CrossRef]

29. Chauhan, P.J.; Chatterjee, J.K.; Bhere, H.; Perumal, B.V.; Sarkar, D. Synchronized Operation of DSP-Based Generalized Impedance
Controller With Variable-Speed Isolated SEIG for Novel Voltage and Frequency Control. IEEE Trans. Ind. Appl. 2015, 51, 1845–1854.
[CrossRef]

30. Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Adetokun, B.B. Optimal capacitance selection for a wind-driven self-excited reluctance
generator under varying wind speed and load conditions. Appl. Energy 2017, 190, 339–353. [CrossRef]

https://doi.org/10.3390/en15228679
https://doi.org/10.3390/en12122424
https://doi.org/10.1016/j.apenergy.2017.03.095
https://www.yanmar.com/en_th/energy/cogeneration_systems/biogas/
https://www.yanmar.com/en_th/energy/cogeneration_systems/biogas/
https://www.cat.com/en_US/products/new/power-systems/electric-power/gas-generator-sets/18483554.html#
https://www.cat.com/en_US/products/new/power-systems/electric-power/gas-generator-sets/18483554.html#
https://doi.org/10.1016/j.enconman.2017.01.066
https://doi.org/10.1016/j.enconman.2015.01.078
https://doi.org/10.1016/j.seta.2014.01.003
https://doi.org/10.1016/j.apenergy.2019.114438
https://doi.org/10.1016/j.jfueco.2021.100032
https://doi.org/10.1109/TEC.2008.2006554
https://doi.org/10.1016/S1474-6670(17)44422-3
https://doi.org/10.1016/j.epsr.2003.08.004
https://doi.org/10.1016/j.renene.2022.06.051
https://doi.org/10.1016/j.epsr.2021.107175
https://doi.org/10.1016/j.apenergy.2017.10.039
https://doi.org/10.1109/41.857971
https://doi.org/10.1016/j.epsr.2017.04.013
https://doi.org/10.1109/TIA.2014.2356642
https://doi.org/10.1016/j.apenergy.2016.12.137


Energies 2023, 16, 4963 23 of 23

31. Thomsen, B.; Guerrero, J.M.; Thøgersen, P.B. Faroe islands wind-powered space heating microgrid using self-excited 220-kW
induction generator. IEEE Trans. Sustain. Energy 2014, 5, 1361–1366. [CrossRef]

32. Ion, C.P.; Marinescu, C. Three-phase induction generators for single-phase power generation: An overview. Renew. Sustain.
Energy Rev. 2013, 22, 73–80. [CrossRef]

33. Honda. GX120/160/200. 2023. Available online: https://engines.honda.com/models/model-detail/mid-gx#Features (accessed
on 16 June 2023).

34. Senthil Kumar, S.; Kumaresan, N.; Subbiah, M. Analysis and control of capacitor-excited induction generators connected to a
micro-grid through power electronic converters. Generation, Transmission & Distribution. IET 2015, 9, 911–920.

35. Singh, B.; Niwas, R. Performance of synchronous reluctance generator for DG set based standalone supply system. Electr. Power
Syst. Res. 2016, 133, 93–103. [CrossRef]

36. Braga, A.; Rezek, A.; Silva, V.; Viana, A.; Bortoni, E.; Sanchez, W.; Ribeiro, P. Isolated induction generator in a rural Brazilian area:
Field performance tests. Renew. Energy 2015, 83, 1352–1361. [CrossRef]

37. Somkun, S. High performance current control of single-phase grid-connected converter with harmonic mitigation, power
extraction and frequency adaptation capabilities. IET Power Electron. 2021, 14, 352–372. [CrossRef]

38. Monfared, M.; Golestan, S.; Guerrero, J.M. Analysis, design, and experimental verification of a synchronous reference frame
voltage control for single-phase inverters. IEEE Trans. Ind. Electron. 2014, 61, 258–269. [CrossRef]

39. Somkun, S. Unbalanced synchronous reference frame control of singe-phase stand-alone inverter. Int. J. Electr. Power Energy Syst.
2019, 107, 332–343. [CrossRef]

40. Somkun, S.; Chunkag, V. Unified unbalanced synchronous reference frame current control for single-phase grid-connected
voltage-source converters. IEEE Trans. Ind. Electron. 2016, 63, 5425–5436. [CrossRef]

41. Golestan, S.; Monfared, M.; Freijedo, F.D.; Guerrero, J.M. Dynamics assessment of advanced single-phase PLL structures. IEEE
Trans. Ind. Electron. 2013, 60, 2167–2177. [CrossRef]

42. Wang, J.; Yan, J.D.; Jiang, L.; Zou, J. Delay-dependent stability of single-loop controlled grid-connected inverters with LCL filters.
IEEE Trans. Power Electron. 2016, 31, 743–757. [CrossRef]

43. Holmes, D.G.; Lipo, T.A.; McGrath, B.P.; Kong, W.Y. Optimized design of stationary frame three phase AC current regulators.
IEEE Trans. Power Electron. 2009, 24, 2417–2426. [CrossRef]

44. Sangwongwanich, A.; Abdelhakim, A.; Yang, Y.; Zhou, K. Chapter 6—Control of Single-Phase and Three-Phase DC/AC
Converters. In Control of Power Electronic Converters and Systems; Blaabjerg, F., Ed.; Academic Press: Cambridge, MA, USA, 2018;
pp. 153–173.

45. Sedpho, S. Community Biogas from Swine Farms Phase 3 at Thamanao Sub-District, Chaibadan District, Lopburi Province, Thailand;
Thailand Voluntary Emission Reduction Program; Tha Manao Subdistrict Administrative Organization: Lopburi, Thailand, 2020.

46. Pinate, W.; Dangphonthong, D.; Sirirach, S.; Sukkhon, S. Removal of hydrogen sulfide (H2S) from biogas for the community in
the province of Maha Sarakham. J. Phys. Conf. Ser. 2017, 901, 012049. [CrossRef]

47. 1547-2018; IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric
Power Systems Interfaces. Revision of IEEE Std 1547–2003; IEEE Standards Coordinating Committee: New York, NY, USA, 2018;
pp. 1–138.

48. Khotmanee, S.; Pinsopon, U. A Study on Biogas Production Potential in Thailand 2019. In Proceedings of the 7th International
Conference on Engineering, Applied Sciences and Technology (ICEAST), Bangkok, Thailand, 1–3 April 2021.

49. Kaparaju, P.; Rintala, J. 17–Generation of heat and power from biogas for stationary applications: Boilers, gas engines and
turbines, combined heat and power (CHP) plants and fuel cells. In The Biogas Handbook; Wellinger, A., Murphy, J., Baxter, D., Eds.;
Woodhead Publishing: Sawston, UK, 2013; pp. 404–427.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSTE.2014.2339373
https://doi.org/10.1016/j.rser.2013.01.031
https://engines.honda.com/models/model-detail/mid-gx#Features
https://doi.org/10.1016/j.epsr.2015.12.004
https://doi.org/10.1016/j.renene.2015.05.057
https://doi.org/10.1049/pel2.12038
https://doi.org/10.1109/TIE.2013.2238878
https://doi.org/10.1016/j.ijepes.2018.12.011
https://doi.org/10.1109/TIE.2016.2561260
https://doi.org/10.1109/TIE.2012.2193863
https://doi.org/10.1109/TPEL.2015.2401612
https://doi.org/10.1109/TPEL.2009.2029548
https://doi.org/10.1088/1742-6596/901/1/012049

	Introduction 
	Materials and Methodology 
	Selection and Modification of a Spark-Ignition Engine 
	Assesment of Possible Power Conversion Topologies 
	Proposed SEIG-Based Power Conversion System 
	Back-to-Back Converter Design 
	Experimental Setup 

	Results 
	Control Performance of the SEIG and Back-to-Back Converter 
	System Performance 

	Suitability and Economic Analysis 
	Suitability of the Proposed Biogas Power Generation System 
	Economic Viability 

	Conclusions 
	References

