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Abstract: Regarding the need to decrease carbon emissions, the electric vehicle (EV) industry is
growing rapidly in China; the charging needs of EVs require the number of EV charging stations
to grow significantly. Therefore, many refueling stations have been modified to integrated energy
stations, which contain photovoltaic systems. The key issue in current times is to figure out how to
operate these integrated energy stations in an efficient way. Therefore, an effective scheduling model
is needed to operate an integrated energy station. Photovoltaic (PV) and energy storage systems
are integrated into EV charging stations to transform them into integrated energy stations (PE-IES).
Considering the demand for EV charging during different time periods, the PV output, the loss
rate of energy storage systems, the load status of regional grids, and the dynamic electricity prices,
a multi-objective optimization scheduling model was established for operating integrated energy
stations that are connected to a regional grid. The model aims to simultaneously maximize the daily
profits of the PE-IES, minimize the daily loss rate of the energy storage system, and minimize the
peak-to-valley difference of the load in the regional grid. To validate the effectiveness of the model,
simulation experiments under three different scenarios for the PE-IES were conducted in this research.
Each object weight was determined using the entropy weight method, and the optimal solution was
selected from the Pareto solution set using an order-preference technique according to the similarity
to an ideal solution (TOPSIS). The results demonstrate that, compared to traditional charging stations,
the daily revenue of the PE-IES stations increases by 26.61%, and the peak-to-valley difference of
the power load in the regional grid decreases by 30.54%, respectively. The effectiveness of PE-IES is
therefore demonstrated. Furthermore, to solve the complex optimization problem for PE-IES, a novel
multi-objective optimization algorithm based on multiple update strategies (MOMUS) was proposed
in this paper. To evaluate the performance of the MOMUS, a detailed comparison with seven other
algorithms was demonstrated. These results indicate that our algorithm exhibits an outstanding
performance in solving this optimization problem, and that it is capable of generating high-quality
optimal solutions.

Keywords: algorithm; many-objective optimization; integrated energy station; energy dispatching;
optimal design

1. Introduction

With the rapid growth of the electric vehicle (EV) industry, traditional gas stations
are undergoing transformations to become EV charging stations to meet the increasing
demand for EVs. Furthermore, the large-scale charging demands of EVs can cause
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changes in the load characteristics of the power distribution network, increase the peak
load, and cause other issues that require reasonable planning and management measures
to balance the load and reduce the pressure on the grid [1,2]. The optimal scheduling
of EV charging stations can improve the utilization rate of charging stations, lower the
cost of charging, and, at the same time, reduce the user waiting time and the impact of
charging on the grid.

Developing a series of planning and scheduling schemes based on the characteristics
and requirements of the scheduling problem is crucial to ensure whole-system efficiency,
optimize resource utilization, and improve production efficiency. The authors of [3] devel-
oped an optimization model for the installation configuration and operation strategy of
integrated energy devices to assess the installation configuration problems of gas turbines.
Meanwhile, the authors of [4] established an optimization model for integrated energy
systems with the objectives of minimizing the energy utilization rate, total costs, and car-
bon emissions. The authors of [5] introduced a multi-objective optimization model for
integrated energy systems, considering the interests of electricity and natural gas networks,
as well as distributed regional heating and cooling units.

An efficient scheduling strategy can reduce the idle time of charging stations, lower
the time spent waiting in queues, improve user satisfaction, and reduce the operational
costs and energy waste of charging stations. The authors of [6] developed a method to
manage EVs, EV charging stations, and the grid in a hierarchical way. In [7], a critical load
recovery strategy was proposed; it couples the grid and the transportation network with a
path planning model to dispatch energy to EV charging stations during each time period.
The authors of [8] developed a new dynamic pricing strategy for EV charging costs with
the objective of maximizing the service quality. Meanwhile, another study [9] proposed a
charging strategy based on transactional energy management to reduce the charging costs
of the EVs.

A dispatching model serves as the foundation and prerequisite for developing
dispatching strategies. Dispatching strategies, in turn, are specific plans which are devel-
oped for specific problems based on the dispatching model. Both are complementary and
constitute the core components of a dispatching system. The authors of [10] established
an optimization and scheduling model for EV charging stations with the objective of
minimizing the total costs. This study focused on the capacity configuration problem
of the system.

Several studies have introduced renewable energy sources into EV charging stations
to reduce the cost of purchasing electricity from the grid. In [11], wind power and energy
storage systems were introduced into car charging stations and a scheduling model for the
stations was established, with the objectives of maximizing profit and minimizing the wind
curtailment rate. The authors of [12] developed a multi-objective scheduling model with the
objectives of minimizing the load variation rate, generation cost, and curtailment rate. The
purpose of this model was to enable the coordinated operation of the EV charging stations,
wind power systems, and thermal power systems, ensuring their synergistic operation.
These two aforementioned studies aimed to minimize wind power waste in order to reduce
the cost of purchasing electricity.

Profit is one of the primary objectives that people are most concerned about when
pursuing a goal. The authors of [13] developed a Stackelberg game model for the interaction
between the EV charging station, photovoltaic (PV) generation, and the microgrid. Mean-
while, the authors of [14] proposed a game-theory-based energy exchange method between
the wind farms and the EV charging stations, which reduced the risk of wind energy and
EV imbalances in the energy market using an optimal bidding strategy to maximize profits.
The authors of [15] established an optimized scheduling model for off-grid photovoltaics
operators, EV charging stations, and energy storage systems, with the goal of maximizing
profit. Meanwhile, [16] established a scheduling model for PV, EV charging stations, and
the grid, with the objective of minimizing the total costs.
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A few studies have introduced battery energy storage systems (BESSs) as backup
power sources in EV charging stations to store electrical energy from the grid to supply the
charging stations. The charging and discharging behavior of these energy storage systems
may lead to energy losses, thereby adding to the operational costs of these charging
stations. Thus, accounting for both the costs and losses of energy storage systems is a
critical consideration in the design and the operation of the charging infrastructure. From
examining the literature, the authors of [17] developed a capacity optimization model for
energy storage systems with the objective of minimizing the cost of the storage system. In
order to increase resource utilization, the authors of [18] established a dispatching model
which combined the grid, the EV charging stations, and the PV systems on private rooftops.
This study introduced PV systems on private rooftops into EV charging stations, making
residents a beneficiary group. Based on the status of the photovoltaic system along with
the information on the arrival and departure of the EVs at the charging station, the authors
of [19] developed a charging strategy to reduce the cost of purchasing electricity from
the grid. Meanwhile, the authors of [18,20] developed a scheduling model that includes
the residential electricity load, photovoltaic systems, EVs, and energy storage systems,
with the objective of minimizing the total cost (including the transaction costs between
the microgrid and the main grid, depreciation costs of BESSs, and pollution treatment
costs). The authors of [21] considered the optimal locations for EV charging stations, and
established a multi-objective programming model with the objectives of minimizing the
EV charging costs and the bus voltage deviations.

Based on the above research, it can be seen that most of the existing models for
the optimal dispatching of EV charging stations are either single-objective or dual-
objective optimization models. And either linear programming algorithms, intelligent
optimization algorithms, or deep learning algorithms are generally applied to solve
these models.

However, the coordinated scheduling of the EV charging stations with the grid is a
complex problem that is high-dimensional, multi-objective, and nonlinear. To increase
the resource utilization rate within the EV charging stations while ensuring the stability
of the regional grid, this paper incorporated a small-scale PV system and a BESS into the
EV charging station, transforming it into an integrated energy station (PE-IES). Then, an
optimal dispatching model for the PE-IES was established. While meeting the demand of
EVs, the PE-IES can feed the excess energy back into the grid to maximize the revenue and
minimize the peak-valley difference of the power load of the regional grid.

As the PE-IES energy optimal dispatching model has many objectives, solving this
model requires a corresponding optimization algorithm. The non-dominated sorting
genetic algorithm-III (NSGA-III) [22] introduced the reference point mechanism into the
selection of individuals, which made a significant breakthrough in solving many-objective
problems. However, the NSGA-III suffers from a poor distribution of individuals in the
feasible domain and encompasses an unsatisfactory convergence speed and local search
capability in solving complex engineering problems. Many scholars have conducted
research to address this issue.

Several scholars have introduced different operators into the NSGA-III algorithm. For
example, the authors of [23] applied a new selection-elimination operator to the iterative
process, with the small habitat technique to the selection of the reference points and the
elimination operator to the selection of the individuals. The authors of [24] applied a greedy
metric to mathematically transform the selected reference points in every few iterations. In
addition, some scholars have also improved the population iteration process. For example,
the authors of [25] applied the fruit fly optimization algorithm (FOA) instead of the GA
to the population update process part of the original NSGA-III algorithm, and applied
this improved NSGA-III algorithm to the multiple unmanned aerial vehicle path planning
problem. The authors of [26] proposed an information feed-back model and applied this
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model to the population update process of the NSGA-III algorithm. The individuals in
the current iteration were selected based on the information of the individuals in the
previous iterations. The above improved many-objective algorithm had varying degrees
of improvement in the solution quality and the computational speed compared to the
original algorithm.

However, the model of the PE-IES is a complex problem that is high-dimensional multi-
objective, and nonlinear. The algorithm must have both a strong global searching ability and a
local search ability to solve this problem. Therefore, it is crucial to improve both the global
searching capability and the local search capability of the algorithm. In 2020, inspired by the
unique mating behavior of the black widow spider, Peña Delgado AF proposed the black
widow spider optimization algorithm (BWOA) [27]. In 2015, the moth-flame optimization
(MFO) was an algorithm proposed by Seyedali Mirjalili, and was inspired by the laws of
nature [28]. The above two algorithms are known for having an excellent global search
capability and local search capability. A new population updating strategy was developed
by combining the linear search strategy of the BWOA, the spiral search strategy of the MFO,
and the Levy strategy. Thus, a many-objective optimization algorithm based on multiple
update strategies (MOMUS) has been proposed in this paper. Finally, in order to verify the
superior performance of the MOMUS, we compared it with seven other algorithms. The
results show that MOMUS is superior in terms of the solution quality compared to the other
seven algorithms.

The main contributions of this paper can be summarized as follows:

1. By incorporating a PV system and a BESS into the EV charging station and transform-
ing it into a PE-IES, not only can the charging demand of the EVs be met, but the total
revenue can also be increased while reducing the peak-valley difference of the power
load of the regional grid. Additionally, minimizing the loss rate of the BESS has been
set as an objective to improve the lifespan of the BESS.

2. A multi-objective optimization model for PE-IES has been established, taking into
account the dynamic electricity price, the number of charging vehicles in each time
period, and the PV output in each time period, with the objectives of maximizing
the daily profit, minimizing the peak-valley difference of the regional grid, and
minimizing the loss rate of the BESS.

3. A novel many-objective optimization algorithm based on multiple update strategies
(MOMUS) has been proposed. MOMUS has been compared with seven algorithms,
and the results show that the solution quality obtained by MOMUS is superior to that
of the other seven algorithms.

The rest of this paper is organized as follows. In Section 2, the research problem and
the component structure of the PE-IES are introduced. In Section 3, the framework of
the PE-IES optimization model is presented. In Section 4, three cases were established
to analyze the impact of the introduction of the PV and energy storage systems on the
integrated energy station. And the detailed procedure for solving the PE-IES using the
MOMUS algorithm is also presented. In Section 5, the simulation experimental data and
the result analysis are given. In Section 6, the main contributions of this paper and the
future work to be performed are summarized.

2. Problem Formulation
2.1. Research Problem

A large number of electric vehicle charging will have a series of impacts on the grid
and charging stations, among which the most significant is the energy supply. With the
increasing number of EVs, the demand for charging will also sharply increase, which may
affect the stability and reliability of the grid as a result. To meet the charging demand of a
large number of EVs, it is therefore necessary to upgrade and expand the grid to ensure
a stable and reliable energy supply. At the same time, the construction and planning of
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charging stations should be incorporated into energy planning and management to allocate
energy resources reasonably and reduce pressure on the grid.

In addition, charging stations need to have a large number of charging piles and
related facilities to meet the charging needs of the EVs. At the same time, the layout and
location of these charging piles should be considered to better serve users, reduce the
impact on the surrounding environment and traffic, and ensure the smooth operation of
the charging process. In addition, it is important to ensure the quality and safety of the
charging services, including through the regular maintenance and safety management of
the charging equipment.

Energy scheduling can enable efficient energy utilization of the charging stations,
reduce energy waste, and lower energy costs. In addition, it can also improve the quality of
both the charging services and the user experience by implementing intelligent scheduling
and queue management based on user charging demands and charging pile usage, thus
reducing waiting times and improving the charging efficiency for users.

In the beginning, many scholars had made contributions to the field of energy schedul-
ing for EV charging stations. In the collaborative scheduling problem between the electric
vehicle charging stations and the grid, there are multiple objectives involved, but most of
the models established in the aforementioned research only have one or two objectives,
which thereby limits their practical application. Considering the value of renewable en-
ergy, a PV system and a BESS were added to the PE-IES, and a collaborative optimization
and scheduling model between the PE-IES and the grid was established. The differences
between our research and the studies mentioned in the introduction are shown in Table 1.

Table 1. The differences between the optimal scheduling models in the above studies.

References Components Objectives Method

[3] Distributed renewable energy and
cooling/heating/electric multiple load

Energy utilization rate, total cost,
CO2 emissions GA

[4] Gas turbines, PV, and
cooling/heating/electric multiple load

Total cost, energy consumption
and CO2 emissions

The ε-constraint-fruit fly
optimization algorithm

[5] Gas network, electricity network,
multiple load

Total cost, rate of energy loss, and
CO2 emissions MGSO-ACL algorithm and IOR

[6] EVs and grid Total cost Linear programming algorithm
[7] EVs and grid Power failure time of the load Linear programming algorithm
[8] EVs The charging cost of the EVs Deep reinforcement learning
[9] EVs and grid The charging cost of the EVs. Linear programming algorithm

[10] PV, BESS, and grid Total cost Multi-agent PSO
[11] Wind, BESS, and grid Wind curtailment rate and profit NSGA-II and VIKOR

[12] Wind, EVs, and thermal power units
Rate of change of load, the total

cost of generating electricity, and
the wind curtailment rate

Modified PSO algorithm

[13] PV, EVs, and grid Total revenue Stackelberg and GA
[14] EVs and wind Total revenue A game theory
[15] EVs and wind Total revenue Linear programming algorithm

[16] PV, EVs and grid Total cost Robust chaotic
optimization algorithm

[17] BESS and grid Total cost of the BESS PSO-based frequency control
[18] PV, EVs, BESS, and grid Total revenue Linear programming algorithm
[19] PV, EVs, and grid Electricity purchasing cost Linear programming algorithm
[20] PV, BESS, EVs, and grid Total cost Deep learning algorithm

[21] EVs, and grid The charging cost of the EVs and
the busbar voltage deviation NSGA-II

Ours PV, BESS, EVs, and grid

The daily revenue, the
peak-to-valley difference of the
load in the regional grid and the

loss rate of the BESS

MOMUS (a novel algorithm)
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2.2. The Component Structure of the PE-IES Model

Large-scale EV charging will have an impact on both the grid and the charging stations.
For the grid, EV charging will increase the load, especially during peak periods, which
may cause bottleneck problems in the power system. Additionally, EV charging is mainly
concentrated during the night and the early morning, which may affect the peak-valley
difference of the grid, and measures need to be taken to balance the load. Without fully
considering the impact of EV charging on the grid, it may exacerbate the voltage instability
and power loss problems of the grid. For charging stations, large-scale EV charging will also
have an impact. It is necessary to consider how to meet the charging demand, especially
during peak periods. Additionally, the reasonable use of renewable energy, such as PV
can reduce the pressure on the power system. Furthermore, it is necessary to manage the
energy storage and distribution of EV charging stations to maximize their efficiency and
reliability. Therefore, to achieve the sustainable development of EV charging, it is necessary
to alleviate its impact on the grid and charging stations through reasonable planning and
management. Therefore, an optimization and dispatching model for the PE-IES has been
established in this paper.

The energy storage system consists of lithium batteries. When the grid load is low, the
energy storage system will perform charging from the public grid. When the grid load is
high, the energy storage system can feed back power to the grid so that it can gain profit
from the grid. Among other things, the storage system will give priority to supplying
electricity to the charging piles for charging. When the energy storage system is not enough,
the grid will supply power directly to the charging piles. Energy generated by the PV
system is provided to the energy storage system in priority. The energy flow configuration
diagram of the PE-IES is shown in Figure 1.

Energies 2023, 16, x FOR PEER REVIEW 7 of 28 
 

 

 
Figure 1. Energy flow configuration diagram in PE-IES. 

In this paper, the PE-IES consists of three parts: the PV system, the energy storage 
system, and the charging pile, as shown in Figure 2. The core part of the PV system (PV 
panels) will be laid on the roof of the IEFS building. The inverters will be three sets of 
inverters, including DC–DC inverters, DC–AC inverters, and AC–DC inverters, respec-
tively. The role of the AC–DC inverters is to deliver energy from the grid to the energy 
storage system or the charging piles. The role of the DC–DC inverters is to supply the 
power generated by PV to the station energy storage system, while DC–AC inverters 
transmit the power generated by PV to the public grid, and in this way, the station can 
obtain profits from the grid. 

 
Figure 2. The composition structure of the PE-IES. 

3. Optimized Model Framework 
In the PE-IES optimization model, the time-of-day tariff, the EVs charging price for 

each time interval, the station load status for each time interval, and the PV output for 
each time interval are used as the input data. Then, the energy flow values of six directions 

Figure 1. Energy flow configuration diagram in PE-IES.

In this paper, the PE-IES consists of three parts: the PV system, the energy storage
system, and the charging pile, as shown in Figure 2. The core part of the PV system (PV
panels) will be laid on the roof of the IEFS building. The inverters will be three sets of
inverters, including DC–DC inverters, DC–AC inverters, and AC–DC inverters, respectively.
The role of the AC–DC inverters is to deliver energy from the grid to the energy storage
system or the charging piles. The role of the DC–DC inverters is to supply the power
generated by PV to the station energy storage system, while DC–AC inverters transmit the
power generated by PV to the public grid, and in this way, the station can obtain profits
from the grid.
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Figure 2. The composition structure of the PE-IES.

3. Optimized Model Framework

In the PE-IES optimization model, the time-of-day tariff, the EVs charging price for
each time interval, the station load status for each time interval, and the PV output for each
time interval are used as the input data. Then, the energy flow values of six directions
(energy supplied by the PV system to the energy storage system, energy supplied by
the PV system to the grid, energy supplied by the energy storage system to the grid,
energy supplied by the energy storage system to the charging post, energy supplied by
the grid to the energy storage system, and energy supplied by the grid to the charging
post, respectively) in each time interval of the station will be solved using the modeling
simulation. The decision variables are the energy stored in the energy storage system for
each time interval. The values calculated from the decision variables to the six directions of
energy flow are presented in Algorithm 1. In addition, this paper applied MOMUS to solve
this model.

Algorithm 1 describes the method for converting the decision variables into energy
flow values between the systems within the PE-IES.

3.1. PV System

PV power generation is a technology that uses the PV effect of semiconductors (gen-
erally monocrystalline silicon, polycrystalline silicon, and amorphous silicon) to directly
convert light energy into electrical energy [29]. PV power generation is known as a non-
polluting, cheap, and freely available energy source for human use. PV power genera-
tion systems consist of solar panels (the core component), solar controllers, transmission
lines, other electrical appliances, etc. The output of photovoltaics can be represented by
Equation (1) [30]:

Ppv(t) =
G(t)
Gsr
× Ppvr × ηpv ×

[
1− βT × (T(t) + (TCT − 20)× G(t)

800
− TcrT)

]
(1)

where Ppv(t) indicates the PV output power at moment t, G(t) is the solar radiation intensity
at moment t, Gsr is the rated solar radiation, Ppvr is the rated power of the PV panel, ηpv is
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the generation efficiency, βT is the temperature coefficient, T(t) is the temperature of the
environment at moment t, TCT is the temperature of the PV panel under normal conditions,
and TcrT is the reference temperature of the PV panel. The parameters in Equation (1) are
shown in Table 2.

Algorithm 1. The transformation process of the decision variables.

1: Input: Population NP, Input data to the engineering model, such as PV output of each
period, Station load in each period, etc.

2: for i = 1: NP do
3: if The current column of NP has larger data than the previous column//The energy

storage system is in charge state. The charging piles are powered by the public grid during
this period then

4: if EXS(t) ≥ EPV(t) then//The charging capacity of the energy storage system is
greater than that of the PV system.

5: EPVS(t) = EPV(t), EGS(t) = EXS(t)− EPV(t)//All the electricity generated by the
PV system is provided to the energy storage system, and the remaining electricity is
provided by the public grid.

6: else // PV power generation is greater than the energy storage system charging
capacity.

7: EPVS(t) = EXS(t), EPVG(t) = EPVS(t)− EXS(t)//The PV system charges the
energy storage system and the excess capacity of the PV system is provided to the grid.

8: end if
9: else if The current column of NP has smaller data than the previous column//The energy

storage system is discharging.
10: if ESX(t) ≥ EK(t) then//The energy released by the energy storage system is greater

than the EVs demand
11: ESK(t) = EK(t), ESG(t) = ESX(t)− ESK(t)//The electricity needed by the Evs is

provided by the energy storage system as a priority, and the rest of the energy storage
system’s discharge is provided to the public grid.

12: else//The energy release of the energy storage system is not enough to meet the
demand of Evs

13: ESK(t) = ESX(t), EGK(t) = EK(t)− ESK(t)//The electricity needed by the Evs is
provided by the energy storage system as a priority, and any shortfall is provided by the
public grid.

14: end if
15: else % % The energy storage system neither charges nor discharges
16: EGK(t) = EK(t), EPVG(t) = EPV(t)//The charging piles are powered by the public

grid during this period.
17: end if
18: end for

Table 2. Parameters of the PV system.

Parameters Gsr Ppvr ηpv βT TCT TcrT

Values 1 57 85 0.0045 55 25
Units KW/m2 KW % - ◦C ◦C

3.2. Energy Storage System Model

The energy storage system of the PE-IES can be charged by the public grid and can
also supply energy to the charging piles or to the public grid. As shown in Figure 2, the
PE-IES model has six energy flow directions. The energy of the storage system comes from
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the public grid and the PV system, and so the current energy state of the storage system
can be expressed by Equation (2):

ES(t + 1) = ES(t) + EGS(t) + EPVS(t)− ESG(t)− ESK(t)
EGS(t) = PGS(t)× ∆t× ηc
EPVS(t) = PPVS(t)× ∆t× ηc
ESG(t) = PSG(t)× ∆t× ηd
ESK(t) = PSK(t)× ∆t× ηd
PSX(t) = PSG(t), PSX(t) = PSK(t)

(2)

where ES(t + 1) is the energy stored in the energy storage system in the t + 1 time interval,
EGS(t) is the amount of electricity supplied by the grid to the energy storage system in
the t time interval, EPVS(t) is the amount of electricity supplied by the PV system to the
energy storage system in the t time interval, ESG(t) is the amount of electricity supplied to
the public grid by the energy storage system in the t time interval, ESK(t) is the amount
of electricity supplied to the charging piles by the energy storage system in the t time
interval, PGS(t) is the charging power of the grid to the energy storage system in the t time
interval, PPVS(t) is the charging power of PV to the energy storage system in the t time
interval, PSG(t) is the discharge power of the energy storage system to the grid, PSK(t) is
the discharging power of the energy storage system to the power charging piles, PSG(t) is
the discharging power of the energy storage system to the grid, PSX(t) is the discharging
power of the energy storage system in the t time interval, ηc is the charging efficiency of the
energy storage system, ηd is the discharge efficiency of the energy storage system, and ∆t is
the time interval, where ∆t = 1h.

3.3. The Loss Rate of the Energy Storage System Model

The charging or discharging process of the energy storage system of the PE-IES will
bring losses to the energy storage system. In order to extend the life of the energy storage
system and reduce the losses, it is necessary to model the losses of the energy storage
system to calculate the current loss state of the energy storage system, which can estimate
the remaining life of the energy storage system. This paper uses the battery capacity loss
model from reference [31], which has been proven to have a high accuracy in calculating
the battery loss by the charging behavior of the battery. The battery capacity loss can be
represented by Equations (3) and (4):

Qc = (α× SOCi + β) expH×SZ (3)

H =
η × I − Ea

Rg × (273.15 + Tr)
(4)

where Qc is the battery capacity loss rate, SOCi is the initial state of battery charging, and S
is the cumulative battery throughput. α, β, Ea, Rg, Rg, and Z are the relevant parameters.

The values of α and β are determined according to the values of the SOC, as shown in
Table 3. The values of the other parameters are shown in Table 4. Please refer to [31] for
detailed information on each parameter.

Table 3. Values of α and β for the different values.

Parameters SOC < 0.45 SOC ≥ 0.45

α 2897.8 2694.3
β 7413.1 6025.6
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Table 4. Parameters in the capacity loss model of the energy storage system.

Parameters Values Units

Ea 31,500 Jmol−1

Rg 8.314 Jmol−1

Rg 152.5 -
Z 0.57 -

3.4. Optimization Objectives
3.4.1. Maximize the Daily Revenue of the PE-IES

The first objective was to maximize the daily profit of the PE-IES. The daily profit
of the PE-IES can be solved by Equation (5) based on the time-of-day tariff and the EV’s
charging price for each time interval:

Max R =
n
∑

t=1
(ESK(t)× PeXK(t)) +

n
∑

t=1
(EGK(t)× PeXK(t))

+
n
∑

t=1
(EPVG(t)× PeXG(t)) +

n
∑

t=1
(ESG(t)× PeXG(t))

−
n
∑

t=1
(EGS(t)× PeGX(t))−

n
∑

t=1
(EGK(t)× PeGX(t))

(5)

where R is the daily revenues of the PE-IES, EGK(t) is the amount of electricity provided
by the public grid to the charging piles in the t time interval, EPVG(t) is the amount of
electricity supplied by the PV system to the public grid in the t time interval, PeK(t) is the
charging price of the EVs in the t time interval, PeG(t) is the electricity price in the t time
interval, and PeXG(t) is the price at which the station sells electricity to the grid in the t
time interval.

3.4.2. Minimize the Peak-to-Valley Difference of the Load in the Regional Grid

When the PE-IES is connected to the grid as a load, it will affect the peak-to-valley
difference of the load in the regional grid. In order to reduce the peak-to-valley difference
of the load and maintain the safety of the grid, minimizing the peak-to-valley difference of
the load in the regional grid was set as the objective, as represented in Equations (6) and (7):

Min Peak− valley = Max{Final_load(t)} −Min{Final_load(t)} (6)

Final_load(t) =
n

∑
t=1

[(EGK(t) + EGS(t)− ESG(t) + load(t)] (7)

where Peak− valley is the peak-to-valley difference of the load in the regional grid, and
load is the original load of the regional grid, respectively.

3.4.3. Minimize the Loss Rate of the Energy Storage System

In order to have a longer lifetime for the energy storage system, the third objective was
to minimize the loss rate of the energy storage system. In this paper, we only considered the
effects of charging and discharging on the capacity of the energy storage system. The energy
storage system capacity loss is related to the throughput of the energy storage system’s
power. Therefore, the third objective can be defined as the minimum of the cumulative
number of charges in the energy storage system, as shown in Equation (8):

Min Q =
n

∑
t=1

QC(t) (8)

where Q is the total loss rate of the energy storage system in a day, and QC(t) is the loss
rate of the energy storage system in the t time interval. The percentage of the capacity loss
of the energy storage system can be calculated by Equations (3) and (4).
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3.4.4. Relationship between the Objectives

The PE-IES is profitable in two ways: the first way is to charge EVs, the second way
is to sell electricity to the grid. When the daily profit increases, the amount of electricity
purchased will also increase, as shown in Equation5. But the second objective function
(as displayed in Equation (7)) was to minimize the daily amount of electricity purchased,
which inevitably causes a conflict. The third objective was to minimize the loss rate of
the energy storage system of the PE-IES (as depicted Equation (8)). However, the loss
rate of the energy storage system is related to the amount of charge and discharge of the
battery. When the charge and discharge are high, the loss rate of the energy storage system
is also high, and in turn lower. It can be seen that the first objective and the third objective
will also conflict with one another. In summary, the three objectives in the PE-IES model
have an exclusion relationship. The PE-IES should therefore be solved by a multi-objective
optimization algorithm.

3.5. Constraints

The PE-IES energy control center develops the optimal operation strategy of the station
based on the charging demand of the EVs, the PV output, and the charging and selling
price of electricity. However, the following constraints need to be satisfied in the process of
dispatching energy.

(1) Energy balance constraints

The amount of energy produced in the PE-IES should be equal to the amount con-
sumed, which can be expressed by Equations (9) and (10):{

EK(t) = EGK(t) + ESK(t)
EPV(t) = EPVG(t) + EPVS(t)

(9)

{
EXS(t) = EGS(t) + EPVS(t)
ESX(t) = ESK(t) + ESG(t)

(10)

where EK(t) is the electricity demanded by EVs in the t time interval, EPV(t) is the electricity
produced by the PV system in the t time interval, EXS(t) is the electricity added to the
energy storage system, and ESX(t) is the electricity released from the energy storage system.

When the number of EVs exceeds the station capacity in a period, the station cannot
provide enough energy to meet the demand of the EVs. The constraint of Equation (11)
therefore needs to be satisfied.

n

∑
t=1

ESK(t) +
n

∑
t=1

EGK(t) =
n

∑
t=1

EK(t) (11)

(2) Inequality constraints

The power stored in the energy storage system needs to satisfy the constraints, as
shown in Equation (12):

MinES ≤ ES(t) ≤ MaxES (12)

where MaxES is the maximum storage capacity of the energy storage system, and MinES
is the minimum storage capacity of the energy storage system.

(3) Constraints on the state of the energy storage system

The energy storage system cannot have charging and discharging states at the same
time. Thus, the following constraints need to be satisfied, as shown in Equations (13)–(16):

[SPVS(t) + SGS(t)]× SSW(t) = 0 (13)
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[SPVS(t) + SGS(t)]× SSK(t) = 0 (14)

SPVS(t)× [SSG(t) + SSK(t)] = 0 (15)

SGS(t)× [SSG(t) + SSK(t)] = 0 (16)

where SPVS(t) is the charging state of PV to the energy storage system, SGS(t) is the
charging state of the public grid to the energy storage system, SSG(t) is the discharging
state of the energy storage system to the public grid, and SSK(t) is discharging state
of the energy storage system to the charging piles, SPVS(t) ∈ {0, 1}, SGS(t) ∈ {0, 1},
SSG(t) ∈ {0, 1}, SSK(t) ∈ {0, 1}.

4. Case Study and the Solution Method
4.1. Data Collection

(1) The tariff of grid in each period and the price of charging for EVs

The Beijing time-of-day tariff is shown in Figure 3. It can be seen that the valley
period of the public grid tariff was 23:00–7:00. The flat periods of the public grid tariff were
7:00–10:00, 15:00–18:00, and 21:00–22:00, respectively. The peak periods of the public grid
tariff were 10:00–15:00 and 18:00–21:00, respectively. The price of EV charging at each time
interval and the price of selling electricity from the station to the grid at each time interval
will thus be used as the initial data.
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(2) Load state of the PE-IES

The load of the PE-IES is mainly for charging EVs (private EVs and electric taxis).
The general charging time of private EVs was found to be concentrated in the period of
18:00–20:00. Electric taxis charging time was determined to be concentrated at 12:00–14:00
and 23:00–3:00 during the noon break and after work hours, respectively.

It has been assumed that the PE-IES needs to charge 100 vehicles per day, each with
a battery capacity of 60 KWh. When the EVs arrive at the station, the battery is assumed
to have a residual charge of 10% before charging and 90% after charging, respectively,
considering that the battery cannot be overcharged or discharged. The station load is
shown in Figure 4.

(3) The PV output

The PV system can only produce energy when light is available. According to
Equation (1), the PV system power in the PE-IES can be calculated, as shown in Figure 5.
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(4) Other basic data in the PE-IES

In the proposed PE-IES, there are 10 charging piles. The power rating of each charging
pile is 60 KW. Assuming that the energy storage system can store a maximum of 780 KWh
of energy, and that the energy stored in the energy storage system should not be higher
than 85% of the maximum capacity and not lower than 15% of the minimum capacity,
respectively, the battery capacity of the EV was set to 60 KWh with reference to the Tesla
Model 3. The daily load curve of a certain residential area is shown in Figure 6.

Figure 4. Number of arriving EVs in different periods.
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4.2. Case Study

In order to analyze the roles of the PV system and the BESS in the PE-IES and verify
the effectiveness of the PE-IES, this article simulated the operation of the PE-IES in three
different scenarios. The simulation experiments were conducted in MatlabR2020b with
the following computer configurations: CPU 2.4GHz, RAM 8.0GB. The specific operating
conditions of the three cases are as follows:

Case 1: in this case, there is no PV system or BESS in the PE-IES, meaning that all
energy comes from the grid. Without an energy storage system, when a car needs to charge,
the PE-IES can only purchase electricity from the grid to meet the EV charging demand.
PE-IES is a complete load for the grid. The charging power of the car cannot exceed the
maximum charging power of the station, and the specific value can be found in Section 4.1
of this paper. Due to the lack of an energy storage system, the PE-IES model only has two
objectives: the maximum daily revenue of the PE-IES, and the minimum load peak-valley
difference of the regional grid, respectively.

Case 2: in this case, the PE-IES only has the BESS, and the PV outputs zero in all time
periods. Since the grid load is lower in the early morning, the BESS can be charged during
this period. When the grid load is higher, the BESS can either be discharged to reduce
the amount of electricity purchased by the PE-IES or be directly discharged to the grid to
reduce the peak load of the grid. The constraints of the energy storage system can be found
in Equations (10)–(12).

Case 3: in this case, the PE-IES has both the PV system and the BESS. Both the grid
and the PV system can charge the energy storage system, which can provide energy to the
charging stations or to the grid. The grid can also provide energy to the charging stations
and the PV system can deliver energy to the grid. The constraints of the PV system and the
BESS can be found in Equations (9)–(16). The differences between the above three cases are
shown in Table 5.

Table 5. Comparison of various cases.

Case PV BESS

Case 1 × ×
Case 2 ×

√

Case 3
√ √

MOMUS can be used to calculate all three cases mentioned above. The population
size, NP, was 200, and the maximum number of iterations, Tmax, was 200, respectively.

4.3. MOMUS

The PE-IES model is a complex model with three objectives and multiple constraints.
Therefore, the algorithm needs to encompass a stronger search capability when solving this
model. Both the MFO and BWO algorithms have an excellent global search capability and
local search capability. The MOMUS algorithm learns from the spiral search approach of
the MFO algorithm and the linear search approach of the BWOA, respectively. The Levy
strategy was introduced into the MOMUS algorithm in order to avoid falling into the local
optima during the search process. The main steps for solving the PE-IES model using the
MOMUS algorithm are as follows:

Step 1: generate the parent population NP, advantageous population N0, the maximum
number of iterations Tmax, initial data of PE-IES energy dispatching model, etc.

Step 2: four individuals P1, P2, P3 and P4 will be selected from the parent population
NP, and the advantageous population N0 according to the number of iterations.

When the algorithm is in the first iteration, four different individuals P1, P2, P3 and P4
are selected in the population NP.
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When the algorithm is not in the first iteration, any two different individuals, e.g., P1,
P2 are selected in population N0, and any two different individuals, e.g., P3, P4 are selected
from population NP, respectively.

Step 3: generate three random numbers, e.g., r1, r2, and r3, and choose different update
formulas according to the following conditions.

When r1< 0.7 and r2< 0.7, the individual performs the position update with
Equation (17):

NS(i) = P1 +
P1 − (−1)k × P2

2
(17)

where NS(i) is the individual after the location update, and k is a parameter that takes the
values 0 or 1.

When r1 < 0.7 and r2 ≥ 0.7, the individual performs the position update with
Equation (18):

NS(i) =
P3 − (−1)k × P4

2
(18)

where P3 is an individual and P4 is another individual.
When r1 ≥ 0.7 and r3 < 0.9, the individual performs the position update with

Equation (19):
NS(i) = λ× NP(i)× eα×δ × cos(δ× 1.5π) + P1 (19)

where NP(i) denotes an individual in population NP, and λ, α and δ are parameters in the
location update equation, and can be expressed in Equations (20)–(23):

λ = e2 × cos(2π × t
Tmax

)− e−2 × sin(2π × t
Tmax

) (20)

α = ecos((1− t
Tmax )×π) (21)

w = −(1 + t
Tmax

) (22)

δ = (w− 1)× rand + 1 (23)

where rand is a random number between 0 and 1, respectively, and t is the number of
current iterations.

When r1 ≥ 0.7 and r3 ≥ 0.9, the individual can perform the position update with
Equation (24):

NS(i) = NP(i)× Levy(D)× eα×δ + NP(i) (24)

where Levy represents the levy flight formula and D is the dimension of the decision variable.
Step 4: place individuals with updated positions in the offspring population NS.

Npop = NP ∪ NS.
Execute Algorithm 1 (calculate the value of the energy transferred between the systems

of the PE-IES according to the state of the energy storage system).
The combined population Npop is sorted non-dominantly, and all individuals are

stratified (F1, F2, · · · ) according to their solutions. All individuals in stratum F1 are placed
in population N0.

Step 5: the number of individuals in each layer is added until |St| ≥ N, and the current
cumulative number of layer is recorded as Fl .

If |St| = N, then all individuals in F1, F2, · · · layers are placed in the offspr-
ing population.
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If |St| ≥ N, all individuals in the Fl layer are normalized using Equations (25)–(27),
and reference points are generated:

f n
i =

f ′ i(x)
ai − zmin

i
(25)

f ′ i(x) = fi(x)− zmin
i (26)

ASF(x, w) =
M

max
i=1

f ′ i(x)/wi x ∈ St (27)

where ai is the intercept between the axis of the ith target and the linear hyper-plane; M is
the number of objective functions, zmin

i is the minimum value of the ith objective function
in solution set St,wi = 10−6, and f ′ i is the ith transformed objective.

Step 6: the vertical distances between all individuals in the Fl layer and each reference
point are calculated, and all individuals in the Fl layer are connected to the nearest reference
point, where the vertical distances can be calculated by Equation (28).{

d(s, w) = s− wTs/‖w‖
w = z, z ∈ Zr, s ∈ St

(28)

Step 7: the number of individuals associated with the reference point j is calculated,
which can be represented as ρj. The number of individuals selected is calculated from ρj,
which can be denoted as K.

Step 8: randomly select a non-repeating reference point. And if ρj ≥ 1, the individual
with the smallest vertical distance from the selected reference point is selected. If all
reference points ρj ≥ 1, but k < K, then individuals with the reference point ρj ≥ 2 will
be selected.

Step 9: repeat steps 2–8 until the Tmax has been reached.
Algorithm 2 mainly describes the complete process of solving the PE-IES optimization

model using MOMUS. The objective functions of the PE-IES optimization model will be
used as the fitness functions.

Algorithm 2. The complete process of the MOMUS algorithm.

Input: Define the initial number of population (N), the maximum number of iterations (Tmax), the
input data of the PE-IES model, such as tariff of the grid, number of arriving EVs, etc.

1: Generate the parent population NP, Advantageous populations N0
2: if t < Tmax then
3: for i =1:NP do
4: Individuals update their positions based on Equations (17)–(20).
5: end for
6: Place individuals with updated positions in the offspring population NS,Npop = NP ∪ NS
7: Npop is non-dominated and dominant individuals are selected by Equations (25)–(28).
8: The dominant individual replaces all individuals in NP.
9: Execute Algorithm 1
10: end if

The flow chart of the MOMUS algorithm for solving the PE-IES energy optimal
dispatching model is shown in Figure 7.
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5. Results and Discussion
5.1. Results Analysis

In Case 1, the station becomes a complete load on the grid due to there being no PV
system and no energy storage system. The revenue comes from the difference between
the station’s purchase price of electricity from the grid and the price of charging the EVs.
The amount of electricity purchased from the grid for each time interval at the station
is the same as the amount of electricity demanded by the EVs. Since there is no energy
storage system in the station, the loss of the energy storage system is 0. Figure 8 shows the
profit for each time interval and cumulative profit. Figure 9 shows the amount of electricity
purchased for each time interval and the final load of the grid in that area. It can be seen
from Figure 9 that after the PE-IES is powered by the regional grid of a certain residential
area, the load in each time period of the residential area increased.
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In Case 2, the integrated energy station contains an energy storage system. When the
grid load is low, the energy storage system can be charged during this period, which can
reduce the energy waste from the grid. When the grid load is high, the energy storage
system can be discharged during this period, which can thereby reduce the amount of
electricity purchased. The above method can be used to carry out peak shaving and valley
filling of the regional grid.

In this case, the results of the operation is shown in Figure 10. After using the entropy
weight method to determine the weights of each objective function as 0.35, 0.34, and 0.31,
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respectively, a set of solutions were selected from the Pareto set (with objective 1 = −4811.9,
objective 2 = 1011.67, and objective 3 = 0.0871%, respectively). The purchased power of the
PE-IES in each time period is shown in Figure 11, and the load status of the regional grid is
shown in Figure 12, respectively.
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From Figure 11, it can be observed that the energy storage system charges during
periods of low-grid load (0:00–9:00, and 17:00–18:00, respectively), while discharging during
periods of high-grid load (9:00–13:00, and 18:00–21:00, respectively). It can be inferred from
Figures 11 and 12 that the PE-IES can use the energy storage system to meet the charging
needs of the EVs on-site while peak shaving and valley filling the regional grid. In addition,
Figure 12 compares the final load curves of the regional grid in Case 1 and Case 2, where
the peak-valley differences of Case 1 and Case 2 are 1343 and 1011.67, respectively. The
peak-valley difference of Case 2 decreased by 24.67% compared to Case 1.

Case 3 is the PE-IES model proposed in this paper. The revenue comes from the
difference between the station’s purchase price of electricity from the grid and the price of
charging the EVs. The PV system and the energy storage system that delivers energy to the
grid can also generate revenue. The energy storage system obtains energy not only from
the grid but also from the PV system. The results of Case 3 are shown in Figure 13.
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The weights of each objective were determined using the entropy weight method as
0.36, 0.33, and 0.31, respectively, and a set of solutions were selected from the Pareto set
(with objective 1 = −4861.9, objective 2 = 932.75, and objective 3 = 0.1002%, respectively).
The purchased power of the PE-IES in each time period is shown in Figure 14, and the load
status of the regional grid is shown in Figure 15, respectively.
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Figure 15. Amount of electricity purchased in the PE-IES (left Y-axis) and the load in each time period
of the regional grid (right Y-axis) in Case 3.

In Case 3, the energy storage system loss rate increased by 15.04% compared to Case 2.
However, the daily profit increased by 1.04% and 26.61% compared to Case 2 and Case 1,
respectively. The peak-to-valley difference of the load in the regional grid decreased by
7.80% and 30.54% compared to Case 2 and Case 1, respectively. The daily revenues in
Case 3 were found to be higher than those in Case 2. The first reason for this was that the
PV systems reduce the amount of electricity purchased at the station, which ultimately
reduces the cost of electricity purchased. The second reason was that the PV system delivers
the generated energy to the grid, which subsequently adds revenues to the station. The
loss rate of the energy storage system in Case 3 was found to be higher than that in Case 2.
As the energy generated by the PV system in Case 3 will be preferentially delivered to
the energy storage system, the charge and discharge of the energy storage system will
be increased. Eventually, the loss rate of the energy storage system will further increase
as a result.

Based on the above three cases, we can draw the following conclusions. The energy
storage system can be charged when the grid load is low, and discharged when the grid
load is high, which will reduce the peak-to-valley difference of the load in the regional grid.
Combined with the energy storage system and the PV system, the loss rate of the energy
storage system will increase. But it can also further reduce the peak-valley difference of the
regional grid, and increase the daily revenues of the station as a result.

5.2. Algorithm Comparison

To demonstrate the effectiveness of the MOMUS algorithm, eight algorithms (adap-
tive NSGA-III (ANSGA-III) [32], bi-Goal Evolution (BIGE) [33], effective θ-dominance-
based evolutionary algorithm (θ-DEA) [34], knee point-driven evolutionary algorithm
(KNEA) [35], NSGA-III [22], a reference points-based evolutionary algorithm (RPEA) [36], a
strength Pareto evolutionary algorithm based on reference direction (SPEAR) [37], and the
MOMUS algorithm) were applied in the experiments to calculate the PE-IES optimal dis-
patching model. Each algorithm was run 10 times. Figure 16 show the results of applying
these eight algorithms to solve the PE-IES model, respectively.

In order to compare the performance of the algorithms in solving the model, Tables 6–8
give the comparison results of three metrics (spread, HV, and runtime) for each of the eight
algorithms. Each of these algorithms was run 10 times, and the best, worst, and average
values of results are shown. Spread and HV were calculated as follows.
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(A) Results of ANSGA-III; (B) Results of BIGE; (C) Results of KNEA; (D) Results of NSGA-III;
(E) Results of RPEA; (F) Results of SPEAR; (G) Results of θ-DEA; and (H) Results of MOMUS.
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Table 6. Comparison of the metric spread.

Algorithm Best Mean Worst

ANGSA-III 3.8490 × 10−1 4.3647 × 10−1 5.3970 × 10−1

NSGA-III 3.9060 × 10−1 4.5866 × 10−1 5.2920 × 10−1

BIGE 6.9490 × 10−1 8.0529 × 10−1 8.9180 × 10−1

KNEA 4.7600 × 10−1 5.5656 × 10−1 6.2790 × 10−1

SPEAR 5.6420 × 10−1 7.3698 × 10−1 1.0730
RPEA 6.4240 × 10−1 7.3155 × 10−1 8.3870 × 10−1

θ-DEA 5.8520 × 10−1 6.3937 × 10−1 7.1420 × 10−1

MOMUS 3.8110 × 10−1 4.0502 × 10−1 4.5500 × 10−1

Table 7. Comparison of the metric HV.

Algorithm Best Mean Worst

ANGSA-III 7.6100 × 10−2 6.4730 × 10−2 5.7200 × 10−2

NSGA-III 6.8000 × 10−2 6.2010 × 10−2 5.8200 × 10−2

BIGE 6.5500 × 10−2 5.9620 × 10−2 5.4100 × 10−2

KNEA 7.7600 × 10−2 6.7660 × 10−2 6.2100 × 10−2

SPEAR 9.2500 × 10−2 8.0230 × 10−2 6.3700 × 10−2

RPEA 5.4500 × 10−2 4.3360 × 10−2 3.8900 × 10−2

θ-DEA 6.3500 × 10−2 5.7910 × 10−2 5.3900 × 10−2

MOMUS 1.4890 × 10−1 1.3122 × 10−1 9.0500 × 10−2

Table 8. Comparison of the metric runtime(s).

Algorithm Best Mean Worst

ANGSA-III 4.9647 5.4345 5.5674
NSGA-III 5.6456 6.6435 7.7454

BIGE 3.4623 3.2435 4.2334
KNEA 5.7464 5.7565 6.7455
SPEAR 1.7856 × 101 1.2336 × 101 1.2453 × 101

RPEA 1.1253 × 101 1.1248 × 101 1.6343 × 101

θ-DEA 3.0454 3.2231 3.5466
MOMUS 3.0132 3.1522 3.5453

(1) Spread: This metric indicates the distributivity of the solution set in the space of the
feasible domains [38]. When the value of spread is smaller, it proves that the distributivity
of the solution set in the space is stronger. It can be determined using Equation (29):

Spread =
dl + d f + ∑N−1

i=1

∣∣∣di − d
∣∣∣

dl + d f + (N − 1)× d
(29)

where dl and d f are the Euclidean distances between the extremal and boundary solutions
of the non-dominated solution set; N is the number of solutions in the non-dominated
solution set found by the algorithm; di is the Euclidean distance between adjacent solutions
in the non-dominated solution set; and d is the average of all di.

(2) Hypervolume (HV): the hypervolume consisting of the position of the solution set
in the feasible domain space and the position of the reference point [39]. When the HV
is larger, it indicates the better performance of the algorithm. It can be calculated using
Equation (30):

HV = ∪|Ω|i=1vi (30)

where |Ω| is the number of solutions in the non-dominated solution set, and vi is the
hypervolume formed by the ith solution and the reference point in the non-dominated
solution set.
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(3) Runtime: how long the algorithm takes to compute the problem. The larger the
runtime, the longer the runtime of the algorithm.

HV and spread are two evaluation indicators for measuring the quality of the solutions
obtained by these algorithms. The HV indicator represents the volume of the region
enclosed by the non-dominated solution set obtained by the algorithm and the reference
point in the objective space. A larger HV value indicates a better overall performance
of the algorithm. The spread indicator is often used as a measure of the diversity of the
solutions generated by an algorithm. In the process of solving the PE-IES, a smaller spread
value indicates a better overall performance of the algorithm. From the data in Table 7,
compared with the other seven algorithms, the runtime of the MOMUS algorithm was
shorter, which shows that the computational complexity of the MOMUS algorithm is
smaller. From the data in Tables 6–8, it is clear that the set of non-dominated solutions
computed by the MOMUS algorithm has a better overall performance compared to the
seven other algorithms. Overall, it has been demonstrated from this study that MOMUS
outperforms the other seven algorithms in terms of performance.

In Case 1, the PE-IES does not have a PV system nor a BESS, which is a traditional
electric vehicle charging station. In Case 2, the PE-IES does not have a PV system and
includes a BESS for energy storage. From Figures 9 and 12, it can be observed that compared
to the load peak-valley difference of the regional grid in Case 1, the load peak-valley
difference of the regional grid in Case 2 decreased by 24.67%, and the profit increased by
26.25%, respectively. Since Case 1 does not have a BESS, the energy loss of the energy
storage system in Case 2 increased by 0.0871%. As can be seen from this, energy storage
systems can not only store excess energy during periods of low demand and release it
during peak periods to smooth out the load on the grid and reduce its burden, but they can
also reduce electricity costs by storing energy during periods of low demand and releasing
it during peak periods. Furthermore, energy storage systems can generate additional
revenue for the charging station by selling excess energy back to the grid. In Case 3, the
PE-IES is a complete model that includes both the PV system and the BESS. From Figure 15,
it can be seen that the PE-IES in Case 3 increased its profits by 26.61% and reduced the load
peak-valley difference of the regional grid by 30.54%, respectively, compared to the PE-IES
in Case 1. In Case 3, the PE-IES has a PV system in addition to the BESS compared to the
PE-IES in Case 2. The loss rate of the energy storage system in Case 3 was higher than
that in Case 2. As the energy generated by the PV system in Case 3 will be preferentially
delivered to the energy storage system, the charge and discharge of the energy storage
system will increase as a result. However, the daily profit increased by 1.04%, and the
load peak valley difference of the regional grid was reduced by 7.80%, respectively. From
this, it can be seen that adding a PV system can reduce the purchase cost of electricity for
the PE-IES, and excess electricity can be sold to the grid to reduce the load peak-valley
difference of the grid, ultimately maintaining the stability of the grid operation.

Furthermore, this paper proposed a new many-objective optimization algorithm based
on multi-updating strategies. MOMUS was compared with ANSGA-III, BIGE, θ-DEA,
KNEA, NSGA-III, SRPEA, and PEAR under the same conditions using evaluation metrics,
such as HV, spread, and runtime. The results confirmed that MOMUS achieves a higher
quality Pareto front solutions compared to the other algorithms.

6. Conclusions

The large-scale charging of EVs imposes an additional load on the grid, which may
lead to an increased instability in the power system. It is necessary to balance the load
on the grid and prevent it from affecting the peak-to-valley difference in the grid. At the
same time, for EV charging stations, it is important to consider how to meet the charging
demand, utilize renewable energy resources effectively, and manage the energy storage
and distribution of the charging stations. Therefore, this article introduces the PV system
and BESS into the charging station to form a PE-IES. This paper considers the PV output at
different time periods, electricity prices at different time periods, the number of charging
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vehicles at different time periods, and the regional grid load at different time periods.
A multi-objective optimization model for PE-IES was also established. The goal was to
meet the charging demand for electric vehicles while considering the loss rate of the
BESS, ultimately improving the daily profit of the PE-IES and reducing the peak-to-valley
difference of the load in the regional grid. After conducting simulation experiments in
the three cases, the results indicate that compared to the traditional charging station, the
daily profit of the PE-IES will increase by 26.61%, and the peak-to-valley difference of the
load in the regional grid will decrease by 30.54%, respectively. The validity of the model
was also proven. Furthermore, this paper proposed a new algorithm (MOMUS) to solve
the PE-IES model. MOMUS was compared with seven other algorithms in terms of the
evaluation metrics HV, spread, and runtime. The obtained results confirm that MOMUS
outperforms the other algorithms in terms of its optimization performance. In the future,
the joint optimal scheduling of all PE-IESs in the region will be the focus of the work.
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