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Abstract: Carbon dioxide (CO2) dissolution is the secondary trapping mechanism enhancing the long-
term security of CO2 in confined geological formations. CO2 injected into a randomly multilayered
formation will preferentially migrate along high permeability layers, increasing CO2 dissolution
efficiency. In this study, sequential Gaussian simulation is adopted to construct the stratified saline
formations, and two-phase flow based on MRST is established to illustrate the spatial mobility and
distribution of CO2 migration. The results show that gravity index G and permeability heterogeneity
σ2

Y are the two predominant factors controlling the spatial mobility and distribution of CO2 transports.
The CO2 migration shows a totally different spatial mobility under different gravity index and
heterogeneity. When the permeability discrepancy is relatively larger, CO2 preferentially migrates
along the horizontal layer without accompanying the vertical migration. For the formation controlled
by gravity index, CO2 migration is governed by supercritical gaseous characteristics. For the medium
gravity index, the upward and lateral flow characteristics of the CO2 plume is determined by gravity
index and heterogeneity. When the gravity index is smaller, permeability heterogeneity is the
key factor influencing CO2 plume characteristics. Permeability heterogeneity is the decisive factor
in determining final CO2 dissolution efficiency. This investigation of CO2 mobility in randomly
multilayered reservoirs provides an effective reference for CO2 storage.

Keywords: geological CO2 storage; heterogeneity; dissolution efficiency; upscaling permeability;
CO2 plume

1. Introduction

Global warming is the greatest existential challenge facing humanity according to
the Intergovernmental Panel on Climate Change (IPCC) Report [1]. Global warming
may threaten human life security and social sustainable development [2]. Geological
carbon sequestration is an effective measure against global climate change since it can
mitigate climate impacts and reduce greenhouse gas emission [3,4]. Saline aquifers in
deep geological formations are predominantly candidates for geological CO2 sequestration
given their hydrodynamic, geological, and thermal conditions [5,6]. It is estimated that
geological reservoirs have a potential storage capacity between 8000 and 55,000 Gt of
CO2, representing a sufficient capacity to store over 200 years of current carbon dioxide
emissions [7,8].

CO2 is in supercritical state when injected into saline aquifers (the pressure and
temperature of supercritical CO2 are 7.382 MPa and 31.048 ◦C, respectively) [9]. CO2
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trapping mechanisms are mainly as follows: stratigraphic or structural, solubility, residual,
and mineral trapping [10–14]. For structural trapping, supercritical carbon dioxide is
confined as a buoyant immiscible phase within the reservoir, restrained by the structure
and the seal rock. Due to residual pressure or capillary pressure, the immobilization of CO2
occupies the small pores of the saline aquifer during CO2 injection [15–17]. The fluid–rock
interaction of the aquifers results in solubility trapping, reducing the amount of mobile
CO2 lying below the cap rock and ensuring the long-term security of CO2 storage [18].
Furthermore, mineral trapping is considered to be the result of rock-fluid-CO2 interaction,
involving the geochemistry reactions of reservoir minerals such as calcite, dolomite, siderite,
etc. Mineral trapping is the slowest but the most permanent and most safe process [19–22].

For CO2 dissolution trapping mechanisms, CO2 dissolution efficiency due to rock-
fluid-CO2 interaction is controlled by reservoir heterogeneity on all scales [23,24]. Many
previous studies have extensively investigated the effect of the geological heterogeneity
on CO2 trapping by experiment, field data and numeral simulation. Kim et al. [25] carried
out Darcy-scale multiphase flow experiments on a heterogeneous specimen to obtain CO2
saturation during both drainage and imbibition. Sohal et al. [26] studied the effect of
heterogeneous wettability distribution on CO2 storage efficiency, which showed that both
heterogeneously distributed wettability and higher temperature accelerated the vertical
CO2 migration significantly and reduced storage capacity. Singh et al. [27] investigated CO2
dissolution and local capillary trapping in permeability and capillary heterogeneous reser-
voir, which suggested that vertical distance between the centers of mass of the supercritical
CO2 and dissolved CO2 plumes is larger for heterogeneous reservoirs. Onoja et al. [28]
investigated the relevance of representing relative permeability variations in the sealing
formation, the results demonstrate that gradational changes at the base of the caprock
could influence the pressure changes propagating vertically into the caprock from the saline
aquifer. Mouche et al. [29] presented an upscaled model for the vertical migration of the
CO2 plume, the results illustrate that the upscaled saturation is controlled by the capillary
pressure at the interface of the connected layers. Green et al. [30] studied the heterogeneity
effect of vertical permeability on CO2 long-term migration and showed that the heteroge-
neous formation with equivalent effective vertical permeability has a shorter breakthrough
time in saline aquifer. Deng et al. [31] investigated the effect of multi-scale heterogeneity on
storage capacity, designs of injection wells, injection rate, CO2 plume migration, and CO2
potential leakage. Kim et al. [32] and Paiman et al. [33] investigated the fracture hetero-
geneity, and revealed that fractures can significantly affect the predicted amount of trapped
CO2. Galkin et al. [34] adopted X-ray tomography and electron microscopy for description
of rock pore space considering reservoir heterogeneity, considered to be an important
method to introduce new methods for the development of complex reservoirs. Martyu-
shev et al. [35–38] modified the geological and hydrodynamic model considering both
horizontal and vertical permeability heterogeneities (anisotropy parameter), significantly
improving the adaptation of both injection and production wells. Oh et al. [39] researched
the injection-induced pressure and buoyancy force in a horizontally and vertically stratified
core utilizing a core-flooding system with a 2-D X-ray scanner, concluding that CO2 move-
ment was primarily controlled by media heterogeneity. Rasmusson et al. [40] constructed
strata alternating high and low permeability to investigate CO2 migration, considering the
coupled wellbore-reservoir flow. Although several studies have investigated the effect of
heterogeneity on CO2 migration, there are very limited researches regarding qualitative
analysis of CO2 dissolution efficiency considering small-scale variability in stratification
permeability during GCS.

The main objective of this investigation aims to reveal the effect of permeability
heterogeneity on CO2 dissolution efficiency in reservoir-caprock system. The two-phase
flow model is implemented in MRST (Matlab Reservoir Simulation Toolbox) [41], a finite-
volume based method. It is very convenient to develop new features within MRST. The
two-phase flow involves the dissolution of CO2 into brine and evaporation of H2O into the
CO2 gaseous state. Mathematical description and model implementation of the simulation
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model are illustrated in Sections 2 and 3, respectively. Model validation and sensitive
analysis of the CO2 dissolution efficiency are depicted in Section 4. Finally, the conclusions
are summarized in Section 5.

2. Mathematical Model
2.1. Extended Reaction System

There are three chemical components (CO2, H2O, NaCl) in the geological system. The
chemical species is determined by the following equilibrium chemical reactions [42,43]:

H2O(l)⇔ H2O(g), KH = f H
g /aH

l (1)

CO2(aq)⇔ CO2(g), KC = f C
g /aC

l (2)

where KH and KC are the equilibrium constants for H2O and CO2, respectively; f α
g and aα

l
represent the fugacity and activity of the α component in gas or liquid state.

The equilibrium constants of CO2 and H2O relation equations are expressed as:

Kβ = Kβ0exp
(pl − p0)Vβ

RTc
(3)

with
Kβ0 = 10aβ+bβTc+cβT2

c +dβT3
c (4)

where R = 8.314 [J·K−1·mol−1] is a universal gas constant; Tc is the temperature in ◦C; Vβ

is the mean molar volume of the pure condensed species when pressure changes from p0
to pl ; aβ, bβ, cβ and dβ are the equation parameters.

When the chemical reaction is at equilibrium, the mole fractions of H2O in gas xH
g and

CO2 in liquid xC
l are illustrated in Equations (3) and (4).

xH
g =

KHaH
l

FH Ptot
(5)

xC
l =

FC
(

1− xH
g

)
Ptot

55.508r′co2
KC (6)

where FH and FC the fugacity coefficients of H2O and CO2 in CO2-rich phase; Ptot is
the total pressure; r′co2

is the activity coefficient that illustrates the relation between the
solubility of aqueous CO2 in pure water and brine.

The mutual solubilities can be expressed in the following formula:

xH
g =

1− B− xS
l

1
A − B

(7)

xC
l = B

(
1− xH

g

)
(8)

A =
KH

FH Ptot
(9)

B =
FCPtot

55.508r′co2
KC (10)

Mass fractions of H2O in gas phase (XH
g ) and aqueous CO2 in liquid brine phase (XC

l )
can be obtained in a concise formula [44]:

XH
g =

18.015xH
g

18.015xH
g + 44.01

(
1− xH

g

) (11)
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XC
l =

44.01xC
l

18.015
(
1− xC

l
)(

1 + 0.05844mS
l
)
+ 44.01xC

l
(12)

where mS
l denotes the molality of NaCl in liquid state.

2.2. Mass Transport Equations

Based on the mass balances of the H and C components in the geological system, the
component transport equations are given as:

∑
α=l,g

[
∂
(

ϕSαραXH
α

)
∂t

+∇·
(

XH
α ραqα

)
−∇·

(
ϕSαραDα∇XH

α

)]
−QH

g = 0 (13)

∑
α=l,g

[
∂
(

ϕSαραXC
α

)
∂t

+∇·
(

XC
α ραqα

)
−∇·

(
ϕSαραDα∇XC

α

)]
−QC

g = 0 (14)

where α = l and α = g represent the liquid brine and gaseous CO2-rich phase; ϕ is the
reservoir porosity; Sα is the saturation of the α-phase; ρα is the density of the α-phase
(kg/m3); XH

α and XC
α indicate the mass fraction of H and C components in the α-phase; Dα

is the dispersion tensor (m2·s−1); QH
g and QC

g are the source term (kg·s−1); qα is the fluid
flux of the α-phase associated with Darcy’s velocity:

qα = −κkrα

µα

(
∇pα − ρgg∇z

)
(15)

where κ is the intrinsic permeability (m2); krα is the relative permeability of the α-phase;
µα is the viscosity (pa·s); pα is the fluid pressure (pa); g is the gravitational acceleration
(m·s−2); ∇z is the vertical distance (m).

2.3. Constitutive Equation

To set up the multiphase flow simulation, we need the capillary-saturation relationship
Pc(Sw). Flooding experiments on core samples from the reservoir are used to develop the
empirical relationship between Pc and Sw. Leverett J-function is adopted to normalize the
measured data [45–48]:

J(Sw) =
pc

σcos θ

√
K
ϕ

(16)

where σ is the surface tension measured in the laboratory; θ is the contact angle;
√

K/ϕ is
scaling factor proportional to the radius of pore-throat.

Van Genuchten model for the retention curve is used to express the effective liquid
saturation of the brine system [49]:

Sl(pc) =


1, pc < 0[

1 +
(√

kϕ
kg ϕ αp pc

)np]−mp

, pc ≥ 0
(17)

where Sl is the effective saturation; ϕ and kg are the mean porosity and mean permeability
of the reservoir, respectively; αp is the scaling parameter for the retention curve.

The relative permeabilities for the liquid and gas phases can be expressed as follows:

krl = krlm·(Sl)
εp

[
1−

(
1− S

1/mp
l

)mp
]2

(18)

krg = krgm·(1− Sl)
γp
(

1− S
1/mp
l

)2mp
(19)
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where krlm, krgm, εp and γp are the scaling parameters, the values of the main parameters
are as shown in Table 1.

Table 1. Values of the main parameters for relative permeability.

Parameter Value Parameter Value

krlm 1.0 krgm 1.0
αp 5.0 mp 0.4
εp 0.5 γp 0.5

3. Numerical Implementation
Newton-Raphson Iteration

Liquid pressure (pl), gas pressure (pg) and bottom hole pressure (pbh) are chosen as the
independent variables during the numerical implementation. Newton-Raphson iteration
method is adopted to solve the governing equations. The system of three equations is
expressed in compact form:

F(x) = 0 (20)

where

[F] =

FH
FC
FW

, [x] =

 pl
pg
pbh

 (21)

where FH, FC and FW represent the equilibrium control equations for H2O, CO2 and injection wells.

The Newton-Raphson iteration of x is expressed as:

Ji+1,k
t [δx]i+1,k = −[F]i+1,k

t (22)

where the Jacobian matrix is:

Ji+1,k
t =


∂FH
∂pl

∂FH
∂pg

∂FH
∂pbh

∂FC
∂pl

∂FC
∂pg

∂FC
∂pbh

∂FW
∂pl

∂FW
∂pg

∂FW
∂pbh


i+1,k

(23)

Taylor series is used to update the independent variables:

[x]i+1,k+1 = [x]i+1,k + [δx]i+1,k (24)

4. Numerical Simulation
4.1. Model Validation

In order to validate the accuracy of the numerical method, the sharp interface is
achieved by moving all of the gaseous CO2 above the liquid brine, and the plume depth of
the interface is given:

z(r) =
∫ h

0
Sg(r, z)dz (25)

Figures 1 and 2 show saturation distribution of the gas phase and the comparison of the
numerical result with the similarity solution of CO2 injection in homogenous formation by
Nordbotten. Nordbotten et al. [50] derived the similarity solution of carbon dioxide injected
into confined aquifers, assuming that a clear interface separates the gaseous CO2 and brine
liquid, as illustrated in Figure 2.
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4.2. Effect of Pressure

The problem of interest here is the injection of supercritical CO2 through a fully
penetrating vertical well beneath the caprock in the deep confined saline aquifer. Sequential
Gaussian simulation (SGSIM) as a stochastic method has been developed to generate a
series of models of possible reservoir rock heterogeneities [51]. This simulation technique
produces equiprobable models of a continuous variable with the appropriate probability
distribution and a spatial correlation function. The simplicity and flexibility of the SGSIM
code make it particularly appropriate for simulating petrophysical properties such as
permeabilities and porosities of the reservoir. The multilayered reservoir is composed of
horizontally stratified layers with the sequential Gaussian simulation method by SGSIM
code. The permeability is represented by the spatial variability of the intrinsic permeability,
and the permeability is rescaled to obtain the reservoir statical property as follows:

Y(x) = Y + σYYstd(x) (26)

where Y is the intrinsic permeability of the reservoir; σY is the sqrt of variance σ2
Y, indicating

the heterogeneity coefficient of saline aquifers; and Ystd(x) is the standardized Gaussian
random field with a zero mean and unit variance.

There are two immiscible fluid phases, namely the water-rich brine phase and the CO2-
rich gaseous phase. The brine phase is mainly represented by a high-concentration of NaCl
in water. The temperature is considered to be constant during CO2 injection. The simulation
system is represented by an axisymmetric model in the cylindrical system (r, ϕ, z).

The multilayered formation system is initially saturated with the brine in a hydrostatic
state, and the top and bottom boundaries are impermeable boundaries. The liquid pressure
at the right boundary increases downward with a vertical gradient. Schematic of the
simulation setup is shown in Figure 3. Logarithm permeability distributions of the reservoir
beneath the caprock with three different variances σ2

Y are illustrated in Figure 4. The
specified values of logarithm permeability distributions along the reservoir depth are
shown in Figure 5. The larger the variance is, the more heterogeneous the multilayered
formation is. The parameters listed in adopted for GCS are illustrated in Table 2.
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Gravity index G is defined as the ratio of gravity force resulting from vertical perme-
ability, density difference, and reservoir thickness to the viscose force:

G =
2π
(
ρl − ρg

)
ρggkhh2

Qµl
(27)

where ρl and ρg are the density of the brine liquid and supercritical gaseous phases; kh is
the vertical permeability of the reservoir; h is the vertical thickness of the formation; and Q
is the injection rate of the gas phase.

The parameters listed in Table 3 includes different values of injection rate Q, variances
σ2

Y and gravity index G. Note that gravity index G and variances σ2
Y are dimensionless.
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Table 2. Summary of the parameters adopted for GCS.

Parameters Symbol Units Values

Domain size (R, b) [m] (3000, 100)
Grid discretization (Nr, Nz) [–] (100, 100)
Porosity φ [–] 0.1
Mean permeability kg [m2] 10−13

Initial liquid pressure pl [bar] 150
Initial gas pressure pg [bar] 1
Well radius rw [m] 0.1
Total injection mass Minj [Mt] 2.5
Residual saturations (Slr, Sgr) [–] (0.2, 0)
Hydrodynamic
dispersivities (αL, αT) [m] (5, 1)

Molecular diffusion
coefficient Dm [m2·s−1] 10−9

Salinity mS
l [molal] 0.1

Temperature Tc [◦C] 60
Simulation time t [s] 3.15 × 107

Table 3. Gravity index calculations in different simulated cases.

Case Q(Mt/y) kg(m2) σ2
Y G

1 7.5 10−13 0 0.6
2 2.5 10−13 0 1.8
3 0.8 10−13 0 5.6
4 0.8 10−13 0.3 5.6
5 0.8 10−13 1.0 5.6
6 0.8 10−13 4.0 5.6
7 2.5 10−13 0.3 1.8
8 2.5 10−13 1.0 1.8
9 2.5 10−13 4.0 1.8

10 7.5 10−13 0.3 0.6
11 7.5 10−13 1.0 0.6
12 7.5 10−13 4.0 0.6

4.3. Spatial Mobility and Distribution of CO2

Effective gas saturation Sge is adopted to interpret the CO2 plume evolution during
CO2 injection:

Sge =
Sg − Sgr

1− Slr − Sgr
(28)

where Slr and Sgr are the residual liquid and gas saturation, respectively.
Dimensionless time variable t∗ is adopted to facilitate the interpretation of CO2 disso-

lution efficiency:

t∗ =
t
tc

(29)

tc =
ϕµlh(

ρl − ρg
)

gkh
(30)

where tc is the characteristic time, an important indicator of the migration time from the
bottom of reservoir to the top due to buoyant forces.

Figure 6 shows the spatial mobility and distribution of CO2 over time. The plots
in the first and second column in Figure 6 show the migration path for Cases 10 and
12, respectively. At the initial injection stage, the spatial mobility of CO2 shows a quite
different distribution behave for heterogeneous reservoirs when t = 0.01t∗. For the smaller
formation heterogeneity such as σ2

Y = 0.3, the upwind and lateral migration of the CO2
plume is relatively more uniform around the injection well, compared with heterogeneity
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σ2
Y = 4.0. The variation difference between the logarithm permeability distributions along

the reservoir depth is relatively larger for Case 12, as illustrated in Table 2, and the mainly
horizontal flow path is generated as the CO2 migrates along the horizontal layer with the
maximum permeability at time t = 0.01t∗. While t = 0.05t∗, CO2 starts the migration
along the layers with the relatively high permeabilities in the multilayered formation. Due
to the big discrepancies in permeability as shown in Figure 5, there are certain relatively
low permeability layers that restricts the upwind migration of CO2 with heterogeneity
σ2

Y = 4.0. It can be observed from the second column in Figure 6 that the CO2 preferentially
migrates along the horizontal layer, without accompanying the vertical migration. While
for the first column in Figure 6, the CO2 migrates along the horizontal layers in the early
injection period (t ≤ 0.4t∗), and CO2 continue to transport horizontally and gradually
migrate upwind to the top of the reservoir due to buoyancy forces in the late injection stage
(t ≥ 0.4t∗). It is indicated that permeability heterogeneity is the primary factor influencing
the spatial mobility and distribution of CO2 injection.
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4.4. Effect of Heterogeneity and Gravity Index

Figures 7–9 show the spatial distribution of the effective saturation (Sge) and mass
fraction of aqueous CO2 in brine (XC

l ) at the end of the injection (t = 1.1t∗). The influences
of heterogeneity and gravity index on CO2 migration are compared for the simulated cases.
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For homogenous formation, the low viscosity CO2 tends to migrate to the top of the
geological structure due to the density difference between the CO2 plume and the brine for
Cases 1, 2, and 3. During the upward migration of the CO2 plume, a large amount of gas
phase migrates to the top of the aquifer due to buoyancy forces. The effective saturation at
the top of the formation is relatively higher than that of the lower formation. It can be seen
from Cases 1, 2, and 3 that mass injection rate or the gravity index has obvious influence
on CO2 plume migration. The higher the CO2 injection rate, the farther the CO2 plume
migration. The CO2 migration sketch is approximately proportional to the CO2 injection
rate. The variation of the mass fraction of aqueous CO2 in brine shows a similar trend.

For the multilayered formation, gravity index and heterogeneity are the two pre-
dominant factors controlling CO2 plume migration. For the bigger gravity index such as
G = 5.6, gravity index is the dominant factor controlling CO2 migration, as illustrated in
Figure 7. When the formation heterogeneity is relatively small (σ2

Y ≤ 1), the distribution
and mobility of CO2 migration are almost identical at the end of the injection. While σ2

Y = 4,
there are some low permeability layers that impedes the vertical flow of CO2 migration.
The CO2 migrates laterally along the preferentially high permeability layers away from
the injection wells. The CO2 migration distance is almost the same for Cases 3, 4, 5, and
6 at a relatively small injection rate. For the medium gravity index such as G = 1.8, the
influence of heterogeneity is increasing. When σ2

Y ≥ 1, the distribution and mobility of CO2
migration is discontinuous due to the permeability heterogeneity. For smaller heterogeneity
such as σ2

Y = 0.3, the effective gas saturation is almost the same as that of the homogenous
formation. The gravity index and heterogeneity could influence the upward and lateral
migration of the CO2 plume at the medium injection rate. For the smaller gravity index
such as G = 0.6, formation heterogeneity is the key factor influencing CO2 distribution.
CO2 migrates laterally along the high permeability layers, and the corresponding lower
permeability layers obstruct the upward migration of the CO2 plume. The farther the CO2
migration, the bigger the permeability variance σ2

Y. It is suggested that with the increase
of heterogeneity variance σ2

Y, horizontal flow paths are generated and the heterogeneity
characteristics of effective saturation become more obvious. The existence of high perme-
ability layers in the multilayered formation is conducive to CO2 storage. The larger the
permeability variance σ2

Y is at field level, the more CO2 will be constrained underground
during CO2 storage.
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4.5. CO2 Dissolution Efficiency

Carbon dioxide dissolution efficiency η is the mass quantification of CO2 dissolved
into brine with respect to the CO2 injected into the formation per unit of time, as shown in:

η(t) =
M′(t + ∆t)−M′(t)
M(t + ∆t)−M(t)

(31)

where M′(t) and M(t) are the mass of the CO2 dissolved into the brine and the total CO2
injected into the well at time t, respectively; ∆t is the time step. The CO2 dissolved into the
brine is indirectly calculated from the undissolved gaseous state as follows:

η(t) =
Qt−∑

i

[
ϕViSgρgXC

g

]t

Qt
(32)

where Q is the mass injection rate of CO2; Vi is the volume of the i-th grid cell; and XC
g is

the mass fraction of CO2 in gaseous state.
Figure 10 shows the temporal evolution of CO2 dissolution efficiency in brine during

t = 1.1t∗, and the effects of gravity index and heterogeneity on CO2 dissolution efficiency
are investigated. It can be observed from the first column in Figure 10 that the gravity
index has a prominent influence on CO2 dissolution efficiency. The higher the gravity
index, the more CO2 is dissolved in brine. CO2 is more likely to dissolve in brines at a
lower injection rate. For homogenous formation, the CO2 dissolution efficiency is lower
than that of the heterogeneous stratum at the same gravity index and the permeability
heterogeneity is more conducive to CO2 dissolution. When the gravity index is relatively
bigger such as G = 5.6, the formation is gravity controlled and the influence of permeability
heterogeneity on CO2 dissolution efficiency is not obvious. For bigger and medium gravity
indices (G ≥ 1.8), the CO2 dissolution efficiency increases with the increase of heterogeneity
coefficient σ2

Y, and tends to achieve a stable value. As seen from G = 0.6 in Figure 10, with
the increase of the heterogeneity coefficient σ2

Y, the curve of CO2 dissolution efficiency is
also gradually increasing at the same time. The second column in Figure 10 shows that the
permeability heterogeneity is the decisive factor in determining the finial CO2 dissolution
efficiency. The dissolution curve shows a decreasing trend during CO2 injection. During
the initial injection period, the dissolution curve with the higher gravity index is relatively
higher, and then the gaps between these curves become smaller and smaller, approaching
a constant value. It should be noted that the CO2 dissolution efficiency curve with the
maximum gravity index (G = 5.6) is slightly higher for CO2 injection processes.
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5. Conclusions

In this paper, sequential Gaussian simulation is adopted to construct the multilayered
saline formations, and two-phase flow based on MRST is developed to investigate the
spatial mobility and distribution of CO2 being injected into the multilayered reservoir. The
main conclusions are as follows:

(1) The permeability heterogeneity is the primary factor influencing the spatial mobility
and distribution of CO2 injection. Heterogeneity variances σ2

Y is considered to be an
ideal representation of reservoir permeability.

(2) For the formation with the smaller heterogeneity, the upwind and lateral migration
of the CO2 plume is relatively more uniform around the injection well. For the
bigger heterogeneity, CO2 preferentially migrates along the horizontal layer without
accompanying the vertical migration.

(3) For the formation with the bigger gravity index, gravity index is the dominant factor
controlling CO2 migration. For the medium gravity index, the upward and lateral
migration of the CO2 plume is determined by the gravity index and heterogeneity.
For the smaller gravity index, formation heterogeneity is the key factor influencing
CO2 distribution.

(4) The dissolution curve shows a decreasing trend during CO2 injection. The dissolution
curve with the higher gravity index is relatively higher at the initial injection period
and the gap difference between dissolution curves approaches to a constant value.
The permeability heterogeneity is the decisive factor in determining the finial CO2
dissolution efficiency.

(5) From a practical point of view, most GCS field sites operate under G � σ2
Y. It is sug-

gested to store CO2 in formations with relatively larger heterogeneity coefficient σ2
Y.

(6) Reactive 3-Phase flow model for geological sequestration is considered for future
research. It will be a more sophisticated analysis of the GCS, incorporating the
chemical reaction among aqueous species and rock-forming minerals, as well as the
partition between gaseous CO2 phase and liquid brine phase.
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