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Abstract: The manufacturing industry is the pillar industry of China’s economy and a major carbon
emitter, and its carbon emission reduction efforts directly determine whether the country’s carbon
emission reduction target can be successfully met. In the context of the goals of the carbon peak and
carbon neutrality policy, we examine the impact of manufacturing structure optimization on carbon
emissions from 2003 to 2020 through a spatial econometric model, taking the old industrial centers in
Northeast China as an example. We then apply a machine learning model to simulate manufacturing
carbon emissions during the carbon peak stage and identify the optimal path for carbon emission
reduction, which is important for promoting manufacturing carbon emission reduction in Northeast
China. Since the goal of low-carbon economic development has gradually replaced the goal of
maximizing economic efficiency in recent years, manufacturing structure optimization has come
to focus on energy saving and emission reduction. Therefore, we define manufacturing structure
optimization from the dual perspective of technology and energy consumption to broaden the existing
research perspective. The results show the following: (1) The overall trend in manufacturing structure
optimization in Northeast China is steadily improving, and the level of manufacturing structure
optimization from the technology perspective is higher than that from the energy consumption
perspective. (2) Manufacturing structure optimization and manufacturing carbon emissions in
Northeast China both show a positive spatial correlation. Manufacturing structure optimization in
Northeast China can effectively promote carbon emission reduction, and it also has a spatial spillover
effect. (3) The carbon emission reduction effect of manufacturing structure optimization from the
energy consumption perspective is better than that from the technology perspective, and the carbon
emission reduction effect under the institutional innovation scenario is better than that under the
baseline scenario and the technological innovation scenario. Focusing on manufacturing structure
optimization from both technology and energy consumption perspectives, as well as continuously
improving technological innovation and institutional innovation, can help to achieve manufacturing
carbon emission reduction in Northeast China.

Keywords: manufacturing structure optimization; manufacturing carbon emissions; scenario
simulation; spatial econometric model; machine learning model; Northeast China

1. Introduction

Energy is the basis of economic and social development; it is an important material
guarantee for the survival and development of human society, and it directly determines
the scale and speed of social and economic development [1]. Since the reform and opening
up of China’s economy, the country has made great achievements in economic development.
However, the crude economic growth mode has led to increasingly serious environmental
problems. According to statistics [2], China’s carbon emissions reached 10.523 billion tons
in 2021, accounting for 31.06% of global carbon emissions. As the largest carbon emitter in
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the world, with enormous pressure to reduce carbon emissions in the future, China has
proactively taken the responsibility to reduce carbon emissions, and it proposes carbon
emission reduction goals of achieving a carbon peak by 2030 and carbon neutrality by 2060.
In view of the inertia in energy system development, coal resources have price advantages
compared with other energy sources. The energy structure being dominated by coal will
not change in the short term, and there is less space to achieve energy saving and emission
reduction through energy structure optimization [3]. The most important and feasible
way to achieve energy saving and emission reduction is through industrial structure
optimization [4]. The manufacturing industry is the largest production sector in China
in terms of fossil energy consumption and carbon emissions, and there are significant
differences between sub-sectors. Moreover, its structure affects resource allocation and
energy use efficiency. The Implementation Plan for Carbon Peak in Industry states that the
current industrial structure needs to be adjusted urgently, and the blind development of
high-energy-consumption, high-emission, and low-technology projects should be resolutely
curbed to achieve the industrial carbon peak.

Northeast China is the largest and most representative traditional industrial zone
in the country. It has formed the manufacturing development characteristics of heavy
industrial structures and coal-based energy structures. After the 1990s, institutional and
structural contradictions became prominent, industrial enterprises had aging equipment
and obsolete technology, the leading industries in resource-based cities declined, and the
traditional advantages of manufacturing industries were gradually lost, leading to serious
economic decline [5]. Meanwhile, the crude economic growth model led to an increasing
depletion of resources and serious environmental pollution. At the same time, the region
has made historical contributions to the development and growth of new China. Thus,
Northeast China is a key region for carbon emission reduction in China’s manufacturing
industry, and there is an urgent need for manufacturing structure optimization and carbon
emission reduction there.

In summary, it is important to explore the paths to carbon peak of the manufacturing
industry from the perspective of structure optimization in Northeast China, which is con-
ducive to revealing the future trend in manufacturing carbon emissions in Northeast China
under the goals of the carbon peak and carbon neutrality policy, identifying the optimal path
for carbon emission reduction, and analyzing the problems involved. Therefore, this paper
will provide a theoretical basis for the green and low-carbon transformation development
of China’s manufacturing industry, and a practical basis for rational policy formulation.
The possible contributions of this paper are as follows: (1) Traditional research methods
do not sufficiently consider the variability in technology level and energy consumption
level in manufacturing sub-sectors, which is not in line with the current energy-saving
and emission-reduction focus of manufacturing structure optimization. Therefore, we
constructed models for manufacturing structure optimization from the dual perspective of
technology and energy, which broaden the existing research perspective. (2) This paper
selects the most suitable method for the simulation of manufacturing carbon emissions
in Northeast China by comparing the BP neural network model, support vector machine
model, and random forest model. As a result, the research results are more scientific, and
the research conclusions are more generalized.

2. Literature Review and Research Hypothesis
2.1. Literature Review
2.1.1. Research on the Impact of Structure Optimization on Carbon Emissions

Research on the relationship between industrial structure optimization and carbon
emissions has a long history. In terms of theoretical analysis, some scholars have found that
industrial restructuring has an important impact on environmental improvement [6]. A
reasonable industrial structure is conducive to energy conservation and emission reduction
and industrial restructuring is the main way to reduce carbon emissions, but the propor-
tion of secondary industry in the economy should not be reduced and carbon emissions
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should be reduced by promoting technological progress through a secondary industry-led
approach [7,8]. In terms of empirical analysis, several scholars have found using static and
dynamic panel models, spatial econometric model analysis, and system synergy models
that industrial structure optimization can improve energy use efficiency, reduce pollutant
emissions, and thus achieve carbon emission reduction [9,10].

The manufacturing industry is an important source of carbon emissions [11,12], and
scholars have conducted rich research on carbon emissions from manufacturing. Man-
ufacturing structure is an important influencing factor of manufacturing carbon emis-
sions [13,14]. Zhang et al. advised that the manufacturing industry is both an important
source for driving the growth of China’s real economy and a major energy-intensive indus-
try. In addition, its structure optimization can contribute to the reduction in manufacturing
carbon emissions [15]. In terms of the effect of manufacturing structure optimization on
carbon emissions, scholars have explored this from several perspectives [16,17]. Tang et al.
used the genetic algorithm NSGA-II with an elite strategy of non-dominated ranking to
solve the multi-objective optimization model for low carbon, employment, and economy;
they advised that manufacturing structure optimization is an important tool for low-carbon
economic development [18].

2.1.2. Prediction and Simulation Research of Carbon Emissions

The research methods in existing studies on carbon emission prediction and sim-
ulation are mainly divided into three categories. One is based on the macroeconomic
operation mechanism, combining carbon emission influencing factors—such as population,
land, industrial production, economic level, and energy activities—to construct policy
models, including the STIRPAT model, LMDI model, ADL-MIDAS model, etc., for carbon
emission analysis and prediction. For example, Wang et al. used the STIRPAT-extended
model to forecast industrial carbon emissions [19,20]. Shao et al. conducted a scenario
simulation of manufacturing carbon emissions based on the LMDI model and dynamic
scenario analysis [21]. The second category is methods based on an information feedback
system, including the gray prediction method and the system dynamics method. For
example, the system dynamics approach is widely used for carbon emission simulation
prediction [22–24]. Tang et al. explored the influence of land use type on carbon emissions
through the SD model and simulated the scenarios [25]. The third category is machine
learning methods based on the data itself, including BP neural networks, LSTM neural net-
works, etc. [26,27]. For example, Marjanovic et al. performed carbon emission simulations
via an extreme machine learning model and artificial neural network model [28]. Liu et al.
predicted industrial carbon emissions based on the LSTM neural network and scenario
simulation method; they advised that industrial carbon emissions under the baseline sce-
nario are capable of peaking in 2024, but show a rebound trend after reaching the carbon
peak [29].

Although a lot of research has been conducted on manufacturing carbon emissions,
there is still little research focusing on the impact of manufacturing structure optimization
on carbon emissions. The manufacturing structure is an important influence factor on
carbon emissions, and its structure optimization is an important means to achieve car-
bon emission reduction; in addition, low-carbon green transformation is the only way to
accomplish this. In the context of high-quality economic development and the construc-
tion of an ecological civilization, manufacturing structure optimization has been given
a new connotation in modern times, and this paper divides manufacturing structure op-
timization into the technology and energy consumption perspectives to supplement the
existing research. In addition, carbon emission prediction and simulation based on the
macroeconomic operation mechanism and information feedback system methods are more
subjective, and the information mining of the data itself is not deep enough; therefore, this
paper uses machine learning models to simulate the carbon peak scenario in Northeast
China for manufacturing carbon emissions from the perspective of structure optimization.
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2.2. Research Hypothesis
2.2.1. The Performance of Manufacturing Structure Optimization on Carbon
Emission Reduction

According to the theory of energy economy and environment, the development pro-
cess of the manufacturing industry consumes energy to obtain economic benefits and
produces pollution to the environment. Environmental pollution not only comes from
energy consumption, it may also come from inefficient spatial organization and layout and
an inefficient industrial structure. In addition, there are significant differences between
the economic output and carbon emissions of different manufacturing sub-sectors. Man-
ufacturing structure optimization can improve allocation efficiency, high-pollution and
high-energy-consumption industries will be gradually eliminated, and the focus will in-
stead be the development of high-technology and high-value-added industries. In addition
to reducing carbon emissions, this process decreases energy consumption and increases
utilization efficiency, i.e., manufacturing structure optimization can promote manufacturing
carbon emission reduction. Based on this, we propose the first hypothesis:

Hypothesis 1. Manufacturing structure optimization has a significantly positive effect on carbon
emission reduction.

2.2.2. Manufacturing Carbon Emission Reduction Performance under Various Scenarios

Technological innovation can promote manufacturing structure optimization by im-
proving the allocation efficiency of production factors and energy utilization efficiency. It
can also achieve manufacturing carbon emission reduction by reducing the use of fossil fuel
energy and improving energy utilization efficiency. Meanwhile, institutional innovation can
stimulate manufacturing structure optimization through the “cost effect” and “innovation
compensation effect”. In addition, it can also reduce the use of fossil fuel energy and can
improve the efficiency of energy use through the push-back mechanism, thereby producing
results that promote manufacturing carbon reduction. In general, technological innovation
and institutional innovation can promote manufacturing carbon emission reduction from
the perspective of manufacturing structure optimization. This leads to our second set of
hypotheses:

Hypothesis 2. Compared with a baseline scenario, the manufacturing industry will experience a
higher carbon emission reduction effect under a technological innovation scenario and an institu-
tional innovation scenario.

3. Materials and Methods
3.1. Methods
3.1.1. Spatial Econometric Model

The spatial correlation analysis of the core variables is required prior to spatial econo-
metric model analysis, and the most commonly used method for this is the Moran’s I
statistic test [30] in global spatial correlation analysis, with the following expression:

Moran′s I =
∑n

i=1 ∑n
j=1 Wij

(
Yi −Y

)(
Yj −Y

)
S2 ∑n

i=1 ∑n
j=1 Wij

(1)

where Yi and Yj are the observations in regions i and j, respectively, and S2 = 1
n ∑n

i=1
(
Yi −Y

)2,
Y = 1

n ∑n
i=1 Yi, and Wij is the spatial weight matrix. The range of Moran’s I statistic is

generally −1 to 1, with values less than 0 indicating a negative correlation, values equal to
0 indicating non-correlation, and values greater than 0 indicating a positive correlation.
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To avoid biased estimation results due to model-setting errors, this paper relies on the
generalized nested spatial model (GNSM) proposed by Elhorst [31] as the basis for spatial
econometric analysis. The expression of the model is as follows:

y = α + ρwy + Xβ + θwX + µ, µ = λwµ + ε (2)

where y is the explained variable; w is the spatial weight matrix; X is the vector of explained
variables; µ and ε are the random perturbation terms; ε obeys the zero-mean, homoskedas-
ticity normal distribution; ρ is the spatial correlation coefficient of the explained variables;
θ is the spatial correlation coefficient of the explained variables; and λ is the spatial correla-
tion coefficient of the perturbation terms. Additionally, according to the different settings
of ρ, θ, and λ, GNSM can be simplified to the three most common spatial measurement
models.

When λ = 0, the model is simplified to a spatial Durbin model (SDM):

y = α + ρwy + Xβ + θwX + ε (3)

When λ = 0 and ρ = 0, the model simplifies to a spatial lag model (SXL):

y = α + Xβ + θwX + µ + ε (4)

When ρ = 0 and θ = 0, the model is simplified to a spatial error model (SEM):

y = α + Xβ + µ, µ = λwµ + ε (5)

The construction of the spatial weight matrix is a prerequisite for a spatial correlation
analysis and the basis for the application of spatial econometric models; however, there is
no fully accurate way for setting spatial weight matrices in the literature [32]. Therefore,
this paper is based on the three spatial weight matrices of geographic adjacency, geographic
distance, and economic geographic distance. In this way, the robustness of the results is
ensured. The spatial weight matrix of geographic adjacency was constructed by choosing
the Queen adjacency; the spatial weight matrix of geographic distance was constructed
based on the first law of geography, i.e., the sets Wij = 1/dij (dij is the geographic distance
between centroids of regions i and j, and it is calculated by latitude and longitude); and the
spatial weight matrix of the economic geographic distance was constructed by referring
to Lin’s study [33], setting Wij

∗= Wij × Eij (Wij is the spatial weight matrix of geographic
distance), where, in the matrix Eij, the main diagonal elements are 0 and the non-main
diagonal elements are Eij = 1/

∣∣Yi −Yj
∣∣(i 6= j); in addition, Yi is the mean real GDP per

capita for region i during the research period, and the three spatial weight matrices were
row normalized separately.

3.1.2. Machine Learning Models

The BP neural network model (BP model) [34] is an artificial neural network model
based on a multi-layer feedforward neural network and an error backpropagation learning
algorithm, which is the most widely used, the most intuitive, and the most easily under-
stood neural network model with a basic network structure containing an input layer,
hidden layer, and output layer. Usually, the hidden layer can contain multiple layers, and
each layer is connected to the adjacent layers by neurons.

A support vector machine model (SVM model) [35] is a generalized linear classifier
that classifies data binary via supervised learning; it can take into account the learning
and prediction accuracy of training samples and the generalization learning ability of
new samples; it can also solve the parameters of the model according to cross-validation,
and it has a relatively good machine learning ability. It has relatively good prediction
advantages for machine learning problems with relatively small training sample sizes,
non-linear prediction problems, and relatively large dimensions of sample variables; in
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addition, its modeling uses relatively little sample information, which makes it one of the
most widely used models.

The random forest model (RF model) [36] is a classifier with multiple decision trees
built in a random way. It is a relatively new machine learning model, consisting of different
types and numbers of decision trees, each of which is independent. The Bootstrap algorithm
is used to generate more samples via random sampling, which can effectively reduce the
error caused by random fluctuations in the sequence; furthermore, the samples are assigned
to different nodes of the regression tree according to the minimum purity method, so that
the cycle is repeated until the node splitting condition is no longer satisfied, and then
multiple regression trees are built to form a forest.

3.2. Variable Selection
3.2.1. Explained Variable

The explained variable in this paper is manufacturing carbon emissions (CE). Carbon
emissions are measured based on energy consumption. By referring to the carbon emission
calculation method and parameters of the IPCC [37], we constructed the following formula:

CEi =

n

∑
j

n

∑
k

Ek ×Ωk (6)

Ωk = CLVk × CCVk × CORk × 44/12 (7)

where CEi denotes the total carbon emission of the manufacturing industry in region i, j
denotes the type of manufacturing, and k denotes the type of energy. In order to ensure the
accuracy of the estimation results, 19 energy sources were fully considered in this paper,
namely, raw coal, washed refined coal, other washed coal, coal products, coke, coke oven
gas, other gas, other coking products, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied
petroleum, refinery dry gas, other petroleum products, natural gas, and thermal power and
electricity. In addition, Ek denotes the consumption of energy k, Ωk is the carbon dioxide
emission factor, CLVk is the average low-level heating value, CCVk is the carbon content
per unit calorific value, and CORk is the carbon oxidation rate. The conversion standard
coal factors and CO2 emission factors of various energy sources are given in Table 1.

Table 1. Conversion standard coal factors and CO2 emission factors.

Energy Type Standard Coal Factor
(kg Standard Coal/kg)

CO2 Emission Factor
(kg CO2/kg)

Raw coal 0.714 1.900
Washed refined coal 0.900 2.405
Other washed coal 0.286 0.764

Coal products 0.529 1.714
Coke 0.971 2.853

Coke oven gas 0.614 0.847
Other gas 0.357 0.801

Other coking products 1.300 3.833
Crude oil 1.429 3.017
Gasoline 1.471 2.925
Kerosene 1.471 3.033

Diesel 1.457 3.096
Liquefied petroleum gas 1.714 3.101

Fuel oil 1.429 3.171
Refinery dry gas 1.571 3.008

Other petroleum products 1.200 2.527
Natural gas 1.330 2.165

Thermal power (equivalent) 0.034 0.110
Electricity (equivalent) 0.123 0.777

Data source: Compiled by the authors. The units are mostly kg, while coke oven gas, other gas, and natural gas
units are m3; the unit for heat is 106 J and the unit for electricity is kW·h.
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3.2.2. Core Explanatory Variables

The core explanatory variables of this paper are manufacturing structure optimization
from a technology perspective (ST) and manufacturing structure optimization from an
energy consumption perspective (SE). According to the modern connotation of manufac-
turing structure optimization, this paper defines manufacturing structure rationalization
and upgrading as manufacturing structure optimization from the technology perspective,
and manufacturing structure rationalization and ecologization as manufacturing structure
optimization from the energy consumption perspective. Lastly, this paper uses the entropy
weight method for calculation.

Classifying the manufacturing industry is the premise used to start research on manu-
facturing structure optimization. This classification is based on the 31 sub-sectors of the man-
ufacturing industry detailed in the National Economic Classification (GB/T 4754-2017) [38]
and manufacturing industry classifications according to the level of technology and en-
ergy consumption. First, for the classification of the manufacturing industry based on
the technology level, this paper synthesizes the High Technology Industry (Manufactur-
ing) Classification, the Organization for Economic Cooperation and Development (OECD)
manufacturing classification requirements, and the study by Fu et al. [39]. According to
the technology level, the manufacturing industry is divided into three categories: high-
technology manufacturing, medium-technology manufacturing, and low-technology man-
ufacturing (Table 2). Next, for the classification of the manufacturing industry based on
the energy consumption level, this paper synthesizes the research of the Statistical Report
on National Economic and Social Development, the Benchmark Levels, and the Bench-
mark Levels of Energy Efficiency in Key Areas of High Energy Consumption Industries,
as well as the study by Shen et al. [40]. According to the energy consumption level, the
manufacturing industry is divided into three categories: high-energy-consumption man-
ufacturing, medium-energy-consumption manufacturing, and low-energy-consumption
manufacturing (Table 3).

Table 2. Classification of manufacturing industry based on technology level.

Category Manufacturing Classification

High-technology
manufacturing

chemical raw materials and chemical products manufacturing; pharmaceutical manufacturing; general
equipment manufacturing; special equipment manufacturing; automobile manufacturing; railroad, ship,

aerospace, and other transportation equipment manufacturing; electrical machinery and equipment
manufacturing; computer, communications, and other electronic equipment manufacturing;
instrumentation manufacturing; metal products, machinery, and equipment repair industry

Medium-
technology

manufacturing

petroleum, coal, and other fuel processing industry; chemical fiber manufacturing; rubber and plastic
products industry; non-metallic mineral products industry; ferrous metal smelting and rolling processing

industry; non-ferrous metal smelting and rolling processing industry; metal products industry;
comprehensive utilization of waste resources industry

Low-technology
manufacturing

agro-food processing industry; food manufacturing; wine, beverage, and refined tea manufacturing;
tobacco products industry; textiles; textile clothing, apparel industry; leather, fur, feathers and their

products, and footwear industry; wood processing and wood, bamboo, rattan, palm, and grass products
industry; furniture manufacturing; paper and paper products industry; printing and recording media

reproduction industry; education industry; sports and entertainment goods manufacturing; other
manufacturing industries

Data source: Compiled by the authors.
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Table 3. Classification of manufacturing industry based on energy consumption level.

Category Manufacturing Classification

High-energy-
consumption

manufacturing

petroleum, coal, and other fuel processing industry; chemical raw materials and chemical products
manufacturing; non-metallic mineral products industry; ferrous metal smelting and rolling processing

industry; non-ferrous metal smelting and rolling processing industry

Medium-energy-
consumption

manufacturing

agro-food processing industry; food manufacturing; wine, beverage, and refined tea manufacturing;
textiles; wood processing and wood, bamboo, rattan, palm, and grass products industry; paper and
paper products industry; pharmaceutical manufacturing; chemical fiber manufacturing; rubber and

plastic products industry; metal products industry; general equipment manufacturing

Low-energy-
consumption

manufacturing

Tobacco products industry; textile clothing, apparel industry; leather, fur, feathers and their products,
and footwear industry; furniture manufacturing; printing and recording media reproduction industry;
education industry; sports and entertainment goods manufacturing; special equipment manufacturing;
automobile manufacturing; railroad, ship, aerospace, and other transportation equipment manufacturing;
electrical machinery and equipment manufacturing; computer, communications, and other electronic

equipment manufacturing; instrumentation manufacturing; other manufacturing; comprehensive
utilization of waste resources industry; metal products, machinery, and equipment repair industry

Data source: Compiled by the authors.

Using the Thiel index [41] to measure the degree of industrial structure rationalization
can avoid errors in the calculation of the degree of industrial structure deviation that arise
from ignoring the relative importance of different industries in economic development;
therefore, this paper employs the Thiel index to measure the degree of manufacturing
structure rationalization. When the economy is in equilibrium, the Thiel index TL is equal
to 0. Conversely, when the economy is in disequilibrium and the degree of manufacturing
structure rationalization is low, the formula is as follows:

TL =

n

∑
i=1

(
Yi
Y
)ln(

Yi
Li

/
Y
L
) (8)

where Y is the manufacturing total output value, L is the manufacturing total employment,
Yi is the output value of the manufacturing sector i, Li is the employment of the manufac-
turing sector i, and n as the number of manufacturing sectors. Using the specific gravity
method to measure the degree of industrial structure upgrading can avoid the subjectivity
of the similarity coefficient method in selecting the reference system; therefore, this paper
employs the specific gravity method to measure the degree of manufacturing structure
upgrading, in order to fully investigate the differences between high-technology manufac-
turing, medium-technology manufacturing, and low-technology manufacturing categories.
To more accurately measure the subtle differences in the degree of manufacturing structure
upgrading, the weight of the high-technology manufacturing category was set to 1 and the
weight of the medium-technology manufacturing category was set to 0.5. The formula is as
follows:

S =

high-technolgy manu f acturing output value
+medium-technolgy manu f acturing output value × 0.5

manu f acturing total output value
(9)

Using the specific gravity method to measure the degree of industrial structure ecolo-
gization can avoid the defect of this factor receiving a lower classification in the industrial
symbiosis model; therefore, this paper employs the specific gravity method to measure the
degree of manufacturing structure ecologization in order to fully investigate the differences
between the low-energy-consumption manufacturing, medium-energy-consumption man-
ufacturing, and high-energy-consumption manufacturing categories. To more accurately
measure the subtle differences in the degree of manufacturing structure ecologization, the
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weight of low-energy consumption manufacturing is set to 1, and the weight of medium-
energy-consumption manufacturing is set to 0.5. The formula is as follows:

TE =

low-energy consumption manu f acturing output value
+medium-energy consumption manu f acturing output value × 0.5

manu f acturing total output value
(10)

3.2.3. Control Variables

The control variables include the number of manufacturing employees (L), the man-
ufacturing output value (P), energy intensity (EI), energy structure (ES), technological
innovation (TI), and environmental regulation (ER). They are all independent variables.
Energy intensity is based on the ratio of manufacturing energy consumption to manufac-
turing output value, and the energy structure is based on the ratio of manufacturing coal
consumption to all energy consumption. Technological innovation was defined in accor-
dance with Tang et al. and Xu et al. [42,43], and the number of utility-type patents granted
was used to measure the level of technological innovation. Environmental regulation was
defined in accordance with Li et al. [44], and a comprehensive indicator method consisting
of five indicators—industrial sulfur dioxide removal rate, industrial soot removal rate,
industrial wastewater compliance rate, comprehensive utilization rate of general industrial
solid waste, and centralized treatment rate of wastewater treatment plants—was chosen to
measure the level of environmental regulation. The dimensionless processing of the data
was carried out by taking the natural logarithm.

3.3. Data Sources

Northeast China, in a narrow sense, includes only Liaoning, Jilin, and Heilongjiang
provinces, with a total of 36 prefecture-level administrative regions. Data for the Daxin-
ganling region are seriously lacking, but the GDP of this region only accounts for about
1% of the total for Heilongjiang province; therefore, the research object of this paper is the
35 regions excluding Daxinganling, as shown in Figure 1.
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Taking into account the large differences in the classification of national economy
industries before and after 2002, the time cut-off point of the central government’s strat-
egy to revitalize the old industrial zone in Northeast China in 2003 is used. In addition,
due to the lag in the release of statistical data, the research period of this paper is taken
as 2003 to 2020, a total of 18 years. The data sources include the China Energy Statis-
tical Yearbook (2004–2021); the China City Statistical Yearbook (2004–2021); the Liaon-
ing Statistical Yearbook (2004–2021); the Jilin Statistical Yearbook (2004–2021), the Hei-
longjiang Statistical Yearbook (2004–2021); the statistical yearbooks and statistical bulletins
of prefecture-level cities; the Comprehensive Energy Consumption General Rules for Calcu-
lation (GB/T 2589-2020) [45]; the National Bureau of Statistics Tables of Energy Purchase,
Consumption and Inventory (2020); the IPCC Guidelines for National Greenhouse Gas
Inventories (2019); the Guidelines for Provincial Greenhouse Gas Inventories (2011); the
Guidelines for Carbon Emission Accounting in Various Industries, etc.

In order to ensure the scientific accuracy of the research, missing values are processed
via the interpolation method. For missing data in a year in the middle of the time series,
the mean filling method is used for data processing, and for missing data in a year before
and after the time series, the regression filling method is used for data processing. To avoid
the effects of price fluctuations on economic variables, manufacturing output is deflated
by the industrial producer ex-factory price index, and GDP is deflated by the GDP index,
using 2003 as the base period.

4. Results
4.1. Empirical Analysis of the Impact of Manufacturing Structure Optimization on
Carbon Emissions
4.1.1. Analysis of Manufacturing Structure Optimization and Carbon Emission
Characteristics in Northeast China

The changes in manufacturing structure optimization from the technology and energy
consumption perspectives in Northeast China are shown in Figures 2 and 3, respectively.
From 2003 to 2020, the average values of the manufacturing structure optimization from the
technology and energy consumption perspectives are 0.42 and 0.33, respectively; further,
the average annual growth rates are 1.53% and 0.94%, respectively, both factors showing a
fluctuating, upward trend. This indicates that the manufacturing structure in Northeast
China is in the stage of gradual optimization, and its structure rationalization, upgrading,
and ecologization are generally on the rise, which is consistent with the general trend of
socio-economic development. The average value and rate of growth of manufacturing
structure optimization from the technology perspective are higher than those from the en-
ergy consumption perspective, indicating that the average level of technology in Northeast
China is better than the average level of energy consumption. This shows that the problem
of energy consumption in the manufacturing industry is more serious, and the emphasis on
energy conservation and emission reduction needs to be further strengthened in Northeast
China.

Province by province, the average values of manufacturing structure optimization
from the technology perspective in Liaoning, Jilin, and Heilongjiang provinces are 0.49, 0.48,
and 0.30, respectively, while, the average values of manufacturing structure optimization
from the energy consumption perspective are 0.38, 0.37, and 0.25, respectively, indicating
that the manufacturing structure in the Liaoning and Jilin provinces are significantly better
than that in the Heilongjiang province. The average annual growth rates of manufacturing
structure optimization from the technology perspective in Liaoning, Jilin, and Heilongjiang
provinces are 0.17%, 2.75%, and 3.02%, respectively, while, the average annual growth rates
of manufacturing structure optimization from the energy consumption perspective are
0.62%, 2.54%, and 0.01%, respectively, indicating that all three provinces show a fluctuating,
upward trend. In addition, the rate of manufacturing structure optimization in the Jilin
province is again higher.
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east China.

The results of the spatial correlation tests for manufacturing structure optimization
from the technology and energy consumption perspectives in Northeast China are shown in
Tables 4 and 5, respectively. The Moran’s I scores for manufacturing structure optimization
from the technology and energy consumption perspectives in Northeast China under the
three spatial weight matrices are positive overall, and they pass the significance test. It
can be seen that the spatial autocorrelations of manufacturing structure optimization from
the perspective of technology and energy consumption in Northeast China are positive,
i.e., they mostly show high-value or low-value clustering.
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Table 4. Spatial correlation of manufacturing structure optimization from the technology perspective.

Year
Geographic Adjacency Geographic Distance Economic Geographic Distance

Moran’s I Z-Value p-Value Moran’s I Z-Value p-Value Moran’s I Z-Value p-Value

2003 0.147 * 1.616 0.053 0.083 *** 2.676 0.004 0.194 *** 2.540 0.006
2004 0.135 * 1.511 0.066 0.096 *** 2.971 0.002 0.197 *** 2.570 0.005
2005 0.112 * 1.291 0.098 0.089 *** 2.813 0.003 0.179 *** 2.366 0.009
2006 0.173 ** 1.857 0.032 0.137 *** 3.962 0.000 0.216 *** 2.788 0.003
2007 0.211 ** 2.202 0.014 0.132 *** 3.839 0.000 0.261 *** 3.298 0.001
2008 0.166 ** 1.796 0.036 0.109 *** 3.291 0.001 0.222 *** 2.863 0.002
2009 0.307 *** 3.087 0.001 0.186 *** 5.129 0.000 0.309 *** 3.847 0.000
2010 0.352 *** 3.491 0.000 0.207 *** 5.611 0.000 0.315 *** 3.924 0.000
2011 0.177 ** 1.889 0.030 0.104 *** 3.182 0.001 0.222 *** 2.856 0.002
2012 0.303 *** 3.045 0.001 0.167 *** 4.683 0.000 0.296 *** 3.697 0.000
2013 0.387 *** 3.816 0.000 0.195 *** 5.338 0.000 0.302 *** 3.775 0.000
2014 0.304 *** 3.053 0.001 0.159 *** 4.488 0.000 0.259 *** 3.281 0.001
2015 0.329 *** 3.286 0.001 0.177 *** 4.919 0.000 0.285 *** 3.572 0.000
2016 0.137 * 1.524 0.064 0.090 *** 2.832 0.002 0.218 *** 2.811 0.003
2017 0.112 * 1.295 0.098 0.054 ** 1.977 0.024 0.196 *** 2.569 0.005
2018 0.063 0.849 0.198 0.056 ** 2.026 0.021 0.170 ** 2.263 0.012
2019 0.024 0.486 0.314 0.037 * 1.572 0.058 0.133 ** 1.848 0.032
2020 0.034 0.583 0.280 0.044 ** 1.736 0.041 0.142 ** 1.947 0.026

Data source: Calculated by Matlab 2020a. ***, **, * indicate significant at 1%, 5%, and 10% levels, respectively.

Table 5. Spatial correlation of manufacturing structure optimization from the energy consumption
perspective.

Year
Geographic Adjacency Geographic Distance Economic Geographic Distance

Moran’s I Z-Value p-Value Moran’s I Z-Value p-Value Moran’s I Z-Value p-Value

2003 0.020 0.454 0.325 −0.007 0.523 0.301 −0.012 0.194 0.423
2004 0.016 0.415 0.339 −0.016 0.315 0.376 −0.033 −0.035 0.486
2005 −0.012 0.164 0.435 −0.028 0.029 0.489 −0.062 −0.374 0.354
2006 −0.039 −0.091 0.464 −0.027 0.055 0.478 −0.048 −0.216 0.415
2007 −0.010 0.182 0.428 −0.004 0.597 0.275 −0.014 0.180 0.428
2008 0.014 0.398 0.345 0.017 1.115 0.133 −0.012 0.203 0.420
2009 0.043 0.668 0.252 0.028 * 1.359 0.087 0.016 0.520 0.302
2010 0.108 1.256 0.105 0.055 ** 1.995 0.023 0.054 0.946 0.172
2011 0.126 * 1.401 0.081 0.058 ** 2.082 0.019 0.069 1.120 0.131
2012 0.249 *** 2.552 0.005 0.121 *** 3.582 0.000 0.178 *** 2.361 0.009
2013 0.207 ** 2.167 0.015 0.090 *** 2.829 0.002 0.117 ** 1.665 0.048
2014 0.172 ** 1.845 0.033 0.084 *** 2.708 0.003 0.108 * 1.566 0.059
2015 0.216 ** 2.247 0.012 0.102 *** 3.120 0.001 0.137 ** 1.893 0.029
2016 0.237 *** 2.441 0.007 0.112 *** 3.367 0.000 0.168 ** 2.245 0.012
2017 0.190 ** 2.006 0.022 0.078 *** 2.560 0.005 0.126 ** 1.762 0.039
2018 0.158 ** 1.717 0.043 0.069 *** 2.348 0.009 0.094 * 1.398 0.081
2019 0.172 ** 1.850 0.032 0.084 *** 2.687 0.004 0.107 * 1.547 0.061
2020 0.147 * 1.613 0.053 0.074 *** 2.469 0.007 0.091 * 1.364 0.086

Data source: Calculated by Matlab 2020a. ***, **, * indicate significant at 1%, 5%, and 10% levels, respectively.

The change in manufacturing carbon emissions in Northeast China is shown in
Figure 4, which shows an overall trend of rising and then falling. From 2003 to 2013, manu-
facturing carbon emissions in Northeast China rose from 3.04× 1011 kg to 6.59× 1011 kg,
a rise of 116.63%. From 2013 to 2020, the manufacturing carbon emissions in Northeast
China decreased from 6.59× 1011 kg to 4.58× 1011 kg, a decline of 30.59%, indicating
that the total manufacturing carbon emissions in Northeast China changed significantly
during the research period. Province by province, the manufacturing carbon emissions in
Liaoning, Jilin, and Heilongjiang provinces all showed a general trend of rising and then
falling. Manufacturing carbon emissions ranked from high to low for Liaoning, Jilin, and
Heilongjiang provinces, respectively.
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The composition of manufacturing carbon emissions in Northeast China is shown in
Figure 5. As can be seen, the ferrous metal smelting and rolling processing industry is the
largest contributor to carbon emissions, accounting for 42.45% of the total. The ferrous
metal smelting and rolling processing industry includes iron making, steel making, steel
rolling processing, ferroalloy smelting, and many other types of manufacturing. It is also
the traditional industry of the old industrial zone in Northeast China. In terms of carbon
emissions, chemical raw materials and chemical products manufacturing and the petroleum,
coal, and other fuel processing industry are second only to the ferrous metal smelting and
rolling processing industry, with an average share of 17.14% and 14.73%, respectively. These
three are among the five major high-energy-consumption manufacturing industries, but
the data show that manufacturing carbon emission reduction policies also need to focus on
other industries in Northeast China.
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The evolution of the spatial pattern of manufacturing carbon emissions in Northeast
China is shown in Figure 6, which specifically includes four years, 2003, 2009, 2015, and
2020, and is classified using the natural breakpoint method. As can be seen from the figure,
the level of manufacturing carbon emissions in Northeast China have significant spatial
differences, showing that there are more emissions in the south and fewer in the north,
thereby indicating that carbon emissions in Liaoning province are significantly higher than
those in Jilin and Heilongjiang provinces.
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At the prefectural city level, the regions with larger manufacturing carbon emissions
are mostly located in Liaoning Province and Jilin Province. A total of 14 prefecture-level
cities had carbon emissions of more than 1.00 × 1010 kg in 2020, namely, Shenyang, Dalian,
Anshan, Fushun, Benxi, Jinzhou, Yingkou, Liaoyang, Panjin, Huludao, Changchun, Jilin,
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Songyuan, and Harbin, accounting for 76.13% of the total and representing a major source
of manufacturing carbon emissions in Northeast China. In particular, the manufacturing
carbon emissions in Shenyang, Dalian, and Changchun are extremely prominent among
the prefecture-level cities in Northeast China, accounting for 35.60% of the total, which is
the by far the largest contribution to manufacturing carbon emissions in Northeast China.

The results of the spatial correlation test for manufacturing carbon emissions in North-
east China are shown in Table 6. The Moran’s I scores under the three spatial weight
matrices of geographic neighborhood, geographic distance, and economic geographic
distance are generally greater than 0, which indicates that manufacturing carbon emissions
in Northeast China have a positive spatial correlation; that is, they present a high-value or
low-value clustering in space. Moreover, the overall spatial correlation of manufacturing
carbon emissions in Northeast China shows an upward trend, which is consistent with the
findings of Shao et al. The carbon emissions are presented in a positive spatial correlation
due to the spatial association effect, competition effect, and demonstration effect between
the different regions [46].

Table 6. Spatial correlation of manufacturing carbon emissions.

Year
Geographic Adjacency Geographic Distance Economic Geographic Distance

Moran’s I Z-Value p-Value Moran’s I Z-Value p-Value Moran’s I Z-Value p-Value

2003 0.103 1.214 0.112 0.027 * 1.338 0.090 0.192 *** 2.524 0.006
2004 0.144 * 1.593 0.056 0.043 ** 1.716 0.043 0.200 *** 2.613 0.005
2005 0.154 ** 1.679 0.047 0.044 ** 1.741 0.041 0.202 *** 2.630 0.004
2006 0.118 * 1.347 0.089 0.028 * 1.367 0.086 0.198 *** 2.582 0.005
2007 0.120 * 1.366 0.086 0.031 * 1.437 0.075 0.192 *** 2.520 0.006
2008 0.110 1.281 0.100 0.019 1.151 0.125 0.166 ** 2.183 0.015
2009 0.092 1.110 0.133 0.009 0.910 0.181 0.163 ** 2.193 0.014
2010 0.122 * 1.389 0.082 0.027 * 1.339 0.090 0.178 *** 2.365 0.009
2011 0.140 * 1.549 0.061 0.028 * 1.360 0.087 0.176 *** 2.333 0.010
2012 0.144 * 1.593 0.056 0.026 * 1.323 0.093 0.162 ** 2.176 0.015
2013 0.154 ** 1.681 0.046 0.032 * 1.458 0.073 0.175 ** 2.320 0.010
2014 0.160 ** 1.736 0.041 0.040 ** 1.651 0.049 0.179 *** 2.367 0.009
2015 0.156 ** 1.700 0.045 0.045 ** 1.769 0.039 0.182 *** 2.409 0.008
2016 0.195 ** 2.058 0.020 0.057 ** 2.053 0.020 0.194 *** 2.546 0.005
2017 0.196 ** 2.066 0.019 0.056 ** 2.030 0.021 0.199 *** 2.596 0.005
2018 0.207 ** 2.166 0.015 0.059 ** 2.107 0.018 0.202 *** 2.628 0.004
2019 0.231 *** 2.388 0.008 0.072 *** 2.421 0.008 0.210 *** 2.727 0.003
2020 0.219 ** 2.274 0.012 0.072 *** 2.401 0.008 0.210 *** 2.722 0.003

Data source: Calculated by Matlab 2020a. ***, **, * indicate significant at 1%, 5%, and 10% levels, respectively.

4.1.2. Analysis of the Impact of Manufacturing Structure Optimization on Carbon
Emissions in Northeast China

The LM test, LR test, and Hausman test show that the fixed-effects variant of the spatial
Durbin model should be used for model estimation. Based on the principles of maximum
goodness of fit, maximum log-likelihood value, and minimum variance of the random
disturbance term, the dual fixed-effects model should be selected for model estimation.
Therefore, the spatial effect analysis of manufacturing structure optimization on carbon
emissions in Northeast China should use the dual fixed-effects spatial Durbin model. The
specific model selection process is shown in Appendix A. The results of the decomposition
for the spatial effects of manufacturing structure optimization on carbon emissions in
Northeast China from the technology and energy consumption perspectives are shown in
Tables 7 and 8, respectively.
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Table 7. Decomposition of the spatial effect of manufacturing structure optimization from the
technology perspective on carbon emissions.

ST L P EI ES TI ER

Direct effect 0.208 ** 0.114 *** 0.308 *** 0.502 *** −0.062 0.058 *** 0.131 *
(2.20) (4.49) (12.25) (13.36) (−0.44) (2.91) (1.74)

Indirect effect −1.064 *** 0.208 * −0.005 0.086 −2.560 ** 0.034 0.409
(−3.19) (1.66) (−0.04) (0.54) (−2.57) (0.36) (1.31)

Total effect −0.856 ** 0.323 ** 0.303 *** 0.588 *** −2.621 ** 0.092 0.540
(−2.42) (2.54) (2.64) (3.66) (−2.54) (0.93) (1.64)

Data source: Calculated by Stata 15. ***, **, * indicate significant at 1%, 5%, and 10% levels, respectively, t-values
in parentheses.

Table 8. Decomposition of the spatial effect of manufacturing structure optimization from the energy
consumption perspective on carbon emissions.

SE L P EI ES TI ER

Direct effect −0.358 *** 0.133 *** 0.305 *** 0.495 *** −0.221 0.032 0.164 **
(−3.49) (5.31) (12.09) (13.71) (−1.64) (1.58) (2.13)

Indirect effect 0.258 0.226 * 0.064 0.195 −2.385 ** 0.090 0.235
(0.54) (1.80) (0.56) (1.26) (−2.43) (0.95) (0.71)

Total effect −0.100 * 0.360 *** 0.369 *** 0.690 *** −2.606 ** 0.122 0.398
(−1.76) (2.84) (3.23) (4.51) (−2.55) (1.22) (1.13)

Data source: Calculated by Stata 15. ***, **, * indicate significant at 1%, 5%, and 10% levels, respectively, t-values
in parentheses.

The direct effect of manufacturing structure optimization from the technology per-
spective on carbon emissions was 0.208, significant at the 5% level, thus indicating that it
has a positive effect on carbon emissions in the region. The indirect effect of manufacturing
structure optimization from the technology perspective on carbon emissions was −1.064,
significant at the 1% level, thus indicating that it has a negative spatial spillover effect on
carbon emissions in neighboring regions, which is beneficial to inter-regional cooperation.
The total effect of manufacturing structure optimization from the technology perspective
on carbon emissions was −0.856, significant at the 5% level, thus indicating that it has a
negative effect on manufacturing carbon emissions, which is consistent with the previous
theoretical research that manufacturing structure optimization can reduce carbon emissions
through structural effects.

The direct effect of manufacturing structure optimization from the energy consumption
perspective on carbon emissions was −0.358, significant at the 1% level, thus indicating
that it has a negative effect on carbon emissions in the region and that manufacturing
structure optimization helps with carbon emission reduction. The indirect effect was not
statistically significant, indicating that the spatial spillover effect of manufacturing structure
optimization from the energy consumption perspective on carbon emissions in neighboring
regions was not significant. The total effect of manufacturing structure optimization from
the energy consumption perspective on manufacturing carbon emissions was −0.100,
significant at the 10% level, thus indicating that it has a negative effect on carbon emissions.
This also shows that manufacturing structure optimization can reduce carbon emissions
through structural effects.

We compared the results of the spatial effects of manufacturing structure optimization
on carbon emissions in Northeast China from the technology and energy consumption
perspectives. The results show that manufacturing structure optimization from the tech-
nology perspective has a positive direct effect and a negative spatial spillover effect on
carbon emissions; as such, the government can promote carbon emission reduction in neigh-
boring regions by improving manufacturing structure optimization from the technology
perspective. Manufacturing structure optimization from the energy consumption perspec-
tive had a negative direct effect on carbon emissions, and the spatial spillover effect was
not significant; as such, the government could promote carbon emission reduction in the
region by improving manufacturing structure optimization from the energy consumption
perspective.
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The number of manufacturing employees, manufacturing output value, and energy
intensity all had a positive effect on carbon emissions in a dual perspective, while the
energy structure had no significant effect on carbon emissions. The effect of environmental
regulation on carbon emissions is positive, generating a green paradox. Technological
innovation has an insignificant effect on carbon emissions under the role of manufacturing
structure optimization from the technology perspective, and a positive effect on carbon
emissions under the role of manufacturing structure optimization from the energy con-
sumption perspective, thus producing a rebound effect. In general, manufacturing structure
optimization is an important way to achieve carbon emission reduction. The role of the
technology perspective on carbon emission reduction is reflected in the spatial spillover
effect, while the role of the energy consumption perspective on carbon emission reduction
is mainly reflected in the direct effect. Both technological innovation and environmental
regulation do not show positive effects on manufacturing carbon emission reduction in
Northeast China.

4.2. Carbon Peak Scenario Simulation of Manufacturing Carbon Emissions from the Perspective of
Structure Optimization
4.2.1. Scenario Setting

Technological innovation and institutional innovation are important guarantees for
the transformation and upgrading of the manufacturing industry, as well as for the carbon
peak and carbon neutrality goals. Therefore, the baseline scenario, technological innova-
tion scenario, and institutional innovation scenario are set in this paper. Since there are
significant differences in the future impact of different political cycles, and the closer the
cycle is, the greater the impact [47], the average annual rate of change in manufacturing
structure optimization, the number of manufacturing employees, manufacturing capital
stock, manufacturing output, manufacturing energy consumption, manufacturing energy
structure, technological innovation, and environmental regulation in Northeast China from
2016 to 2020 were selected as the rate of change in the baseline scenario.

Compared with the baseline scenario, the level of technological innovation and the
energy structure will be significantly improved under the technological innovation scenario
during the carbon peak stage. Specifically, a maximum annual average rate of change in
technological innovation of 3.56% was selected as the new technological innovation rate
and a maximum annual average rate of change in energy structure of −1.98% was selected
as the new change in energy structure rate in Northeast China from 2016 to 2020. Com-
bined with the results of the carbon emission reduction path analysis of the technological
innovation required to guarantee manufacturing structure optimization, the corresponding
manufacturing structure optimization was measured. The specific process for this is shown
in Appendix B. The number of employees, capital stock, output value, energy consump-
tion, and environmental regulation were consistent with the baseline scenario. The same
parameter determination method is used for the institutional innovation scenario, with the
technological innovation indicator simply being replaced by the institutional innovation
indicator.

Table 9 shows the potential rates of change in factors influencing manufacturing carbon
emissions under the baseline scenario, technology innovation scenario, and institutional
innovation scenario in the simulation of manufacturing carbon emissions in Northeast
China during the carbon peak stage.
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Table 9. Potential rates of change in factors influencing manufacturing carbon emissions.

Variables Baseline Scenario Technology
Innovation Scenario

Institutional
Innovation Scenario

ST 4.60% 4.60% 4.89%
SE 1.78% 1.84% 2.26%
L −8.43% −8.43% −8.43%
K −2.43% −2.43% −2.43%
E −1.02% −1.02% −1.02%
P −3.78% −3.78% −3.78%

ES −1.04% −1.98% −1.98%
TI 0.47% 3.56% 0.47%
ER 1.77% 1.77% 4.11%

Data source: Compiled by the authors.

4.2.2. Scenario Simulation

The BP neural network model, support vector machine model, and random forest
model were constructed under the baseline scenario to simulate the future trend in manu-
facturing carbon emissions in Northeast China from 2021 to 2030. The results are shown
in Table 10. The BP neural network model was set as follows: 8 input neurons, 1 output
nerve, 1 hidden layer, number of neurons 5 BP neural networks, maximum number of
iterations 1000, error threshold 0.000001, and learning rate 0.01. The support vector ma-
chine model was set as follows: 8 input feature values and 1 output feature value, model
type e-SVR, kernel function radial basis function, and penalty factor 4.0. The random forest
model was set as follows: 8 input feature values and 1 output feature value, number of
decision trees 100, and minimum number of leaves 5.

Table 10. Simulation results of the three machine learning methods under the baseline scenario
(Unit: 109 kg).

Year BP Model SVM Model RF Model

2021 452.168 452.931 441.812
2022 446.848 449.870 441.812
2023 442.992 446.219 441.812
2024 440.045 442.979 441.006
2025 437.627 440.566 440.014
2026 435.466 438.898 439.395
2027 433.343 437.723 438.135
2028 431.062 436.831 436.113
2029 428.423 436.106 434.691
2030 425.201 435.522 434.691
R2 0.974 0.918 0.823

RMSE 1748.965 2304.506 4123.421
MEAP(%) 2.299 2.474 6.263

Data source: Calculated by Matlab 2020a.

In terms of model effects, the BP neural network model has the largest R2, the smallest
RMSE, and the smallest MEAP (less than 10%), which indicates that its simulation effect is
better than that of the support vector machine model and the random forest model, and it
is, therefore, the most suitable model. Therefore, this paper selects the BP neural network
model for use in simulating the carbon peak scenario for manufacturing carbon emissions
from the perspective of structure optimization in Northeast China.

The carbon emission simulation results of manufacturing structure optimization from
the technology perspective in Northeast China are shown in Figure 7. Under the baseline
scenario, technological innovation scenario, and institutional innovation scenario, the
manufacturing carbon emissions in Northeast China show a decreasing trend from 2021 to
2030, indicating that manufacturing carbon emissions in Northeast China will achieve a
carbon peak. However, the carbon emissions in 2030 were predicted to be 3.93× 1011 kg,
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3.99× 1011 kg, and 3.29× 1011 kg under the baseline scenario, technological innovation
scenario, and institutional innovation scenario, respectively, which represent decreases of
44.15%, 43.70%, and 53.53%, respectively, compared to 2005 levels. Thus, the three scenarios
are unable to achieve the goal of a 65% reduction in carbon emissions. In this period, the
level of manufacturing structure optimization from the technology perspective increased
by 12.76%.
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Figure 7. Carbon emissions simulation of manufacturing structure optimization from the technology
perspective in Northeast China.

The carbon emission simulation results of manufacturing structure optimization from
the energy consumption perspective in Northeast China are shown in Figure 8. Under the
baseline scenario, technological innovation scenario, and institutional innovation scenario,
the manufacturing carbon emissions in Northeast China show a decreasing trend from
2021 to 2030, which also indicates that manufacturing carbon emissions in Northeast China
will achieve a carbon peak. However, the carbon emissions in 2030 were predicted to be
3.93× 1011 kg, 4.05× 1011 kg, 2.48× 1011 kg under the baseline scenario, technological
innovation scenario, and institutional innovation scenario, respectively, which represent
decreases of 44.15%, 42.82%, and 65.01%, respectively, compared to 2005 levels. Only the
institutional innovation scenario can achieve the total amount and intensityof reduction re-
quirements needed to meet the carbon peak goals. In this period, the level of manufacturing
structure optimization from the energy consumption perspective increased by 50.42%.

According to the simulation results with the BP neural network model, the manufac-
turing carbon emissions in Northeast China will decrease during the carbon peak stage, and
the carbon emission reduction effect based on manufacturing structure optimization from
the energy consumption perspective was better than that based on manufacturing structure
optimization from the technology perspective. Only manufacturing structure optimization
from the energy consumption perspective can achieve the goal of decreasing the manufac-
turing carbon emission intensity by 65% in 2030 when compared with that value in 2005. At
the same time, the carbon emission reduction effect of the institutional innovation scenario
is better than that of the technological innovation scenario. Therefore, the carbon emission
reduction path of manufacturing structure optimization from the energy consumption
perspective based on institutional innovation is the optimal carbon emission reduction path
for Northeast China. In order to better achieve the carbon emission reduction goal from
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the manufacturing structure optimization perspective in Northeast China, manufacturing
structure optimization from both the technology and energy consumption perspectives
should be promoted, and success requires both technological innovation and institutional
innovation.
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Figure 8. Carbon emissions simulation of manufacturing structure optimization from the energy
consumption perspective in Northeast China.

In summary, research Hypothesis 1 was proved, while research Hypothesis 2 was
only partially proved. Manufacturing structure optimization can effectively promote
manufacturing carbon emission reduction. The carbon emission reduction effect of the
manufacturing industry in Northeast China under the institutional innovation scenario
is better than the baseline scenario. However, the carbon emission reduction effect of the
manufacturing industry in Northeast China under the technological innovation scenario is
not significantly different from the baseline scenario.

5. Discussion

Based on the results of the current research, we conduct a comparison with existing re-
search on the influencing factors of manufacturing carbon emissions and the prediction and
simulation of manufacturing carbon emissions. We then propose policy recommendations
for promoting manufacturing carbon emission reduction in Northeast China.

5.1. Comparison of Research on Influencing Factors of Manufacturing Carbon Emissions

The results of the current research indicate that manufacturing structure optimization
has a catalytic effect on carbon emission reduction in Northeast China, and it is also an
important means by which to achieve carbon emission reduction, which is consistent with
the results of most previous research [48]. As the production sector with the highest fossil
fuel energy consumption and carbon emissions in China, the manufacturing industry plays
an important role in emission reduction targets, and manufacturing structure optimization
has become an inevitable choice for the manufacturing industry to reach the goals of the
carbon peak policy. At the same time, the positive influence of the number of employees
and output value on manufacturing carbon emissions reflects the scale effect. Given
the important role of the manufacturing industry in the economy, manufacturing carbon
emissions cannot be reduced by reducing the scale. The positive influence of energy
intensity and energy structure on carbon emission reduction reflects the different effects of
energy types on carbon emissions, and the reduction in energy intensity and optimization
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of energy structure become more important means of manufacturing carbon emission
reduction [49–51].

The inhibitory effects of technological innovation and environmental regulation on
carbon emissions were not significant in the spatial econometric model, most likely because
of the unbalanced manufacturing structure, poor manufacturing development, low level
of technology, and high level of energy consumption in Northeast China. These factors
resulted in a rebound effect of technological innovation on manufacturing carbon emis-
sions, as well as the green paradox effect of environmental regulation on manufacturing
carbon emissions. In other words, the suppressive effect of technological innovation and
environmental regulation on carbon emissions cannot be significantly brought about due to
the promotion effect of manufacturing scale expansion. Therefore, technological innovation
and environmental regulation may suppress manufacturing carbon emissions through
manufacturing structure optimization, while the direct positive effect on carbon emission
reduction is not significant.

5.2. Comparison of Research on Prediction and Simulation of Manufacturing Carbon Emissions

In this paper, machine learning models were selected for the carbon peak scenario
simulation of manufacturing carbon emissions in Northeast China, which is consistent with
the basis of method selection for carbon emission predictions and simulations in existing
research [26,27]. This reflects the methodological superiority of machine learning models
compared with the macroeconomic operation mechanism method and the information
feedback system method. Moreover, by comparing the BP neural network model, support
vector machine model, and random forest model to screen the most suitable method, the
research conclusions were more scientific and the research results were more general,
which can provide a reference for other regions or countries to conduct carbon emission
simulations and predictions. In the context of high-quality economic development and the
construction of an ecological civilization, manufacturing structure optimization is given a
new connotation. The research results show that the carbon emission reduction effect of
manufacturing structure optimization from the energy consumption perspective is better
than that from the technology perspective, which is consistent with the new focus on energy
saving and emission reduction in manufacturing structure optimization. In view of the
differences between the technology level and energy consumption level of manufacturing
sub-sectors, when carrying out manufacturing carbon emission reduction through the
manufacturing structure optimization path, it is necessary to pay attention not only to
manufacturing structure optimization in terms of changing the technology level but also in
terms of changing the energy consumption level.

The effect of carbon emission reduction under the institutional innovation scenario
is better than that under the baseline scenario and the technological innovation scenario,
indicating that the carbon emission reduction path based on institutional innovation is an
important path for manufacturing carbon emission reduction in Northeast China, which
is consistent with the requirements of China’s carbon emission reduction strategy and
which reflects the positive effect of the carbon emissions trading mechanism [52]. The
insignificant effect of technological innovation on manufacturing carbon emission reduction
in Northeast China may be related to its significantly lower level of economic development
and technological innovation. From 2003 to 2020, the contribution of Northeast China to
the national economy decreased from 9.48% to 6.63%, indicating that the economic status
of Northeast China in the country is decreasing, and the average annual growth rate is
much lower than the national average. From the viewpoint of R&D expenditure, the R&D
expenditure in Northeast China in 2020 was only 33.19% of the national average, and from
the viewpoint of the number of patent applications, the number of patent applications in
Northeast China in 2020 was only 25.11% of the national average. In summary, the level
of economic development and technological innovation in Northeast China significantly
lags behind the national average and has a significant gap with the leading international
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level, resulting in the ineffectiveness of the carbon emission reduction pathway effect of
technological innovation.

5.3. Policy Recommendations to Promote Manufacturing Structure Optimization and Carbon
Emission Reduction

Excessive de-industrialization should be avoided in the process of high-quality eco-
nomic development [53], and the comprehensive effectiveness of manufacturing can be
effectively improved through manufacturing structure optimization, which can promote
carbon emission reduction. In response to the research results, the following policy recom-
mendations are proposed:

Manufacturing structure optimization is an important means by which to achieve
carbon emission reduction. This requires simultaneous attention to moving from low-
technology to high-technology and from high-energy consumption to low-energy con-
sumption, while the government should address the current situation of manufacturing
industry development in Northeast China, focusing on industries with a better foundation
and comparative advantages. The government should actively promote the development
of high-technology and low-energy consumption manufacturing, including automotive
manufacturing, special equipment manufacturing, electrical machinery and equipment
manufacturing, the metal products industry, the rubber and plastic products industry,
computer, communications, and other electronic equipment manufacturing, railroad, ship,
aerospace, and other transportation equipment manufacturing, instrumentation manu-
facturing, a total of eight industries. The government should exert strict control over the
expansion of medium-technology and high-energy-consumption, low-technology, and
medium-energy-consumption industries, including the oil, coal, and other fuel processing
industry, the agricultural and food processing industry, the ferrous metal smelting and
rolling processing industry, the non-metallic mineral products industry, the non-ferrous
metal smelting and rolling processing industry, food manufacturing, wood processing and
the wood, bamboo, rattan, palm, and grass products industry, the wine, beverage, and
refined tea manufacturing industry, a total of eight industries.

Technological innovation has not played a proper role in the process of carbon emis-
sion reduction from the perspective of structure optimization in Northeast China, but it is
an important intrinsic driving force for manufacturing structure optimization and carbon
emission reduction, and thus still needs to be effectively strengthened. This should be
conducted with a particular focus on low-carbon technology development, such as green
technology innovation and clean energy technology, and then by achieving the carbon
emission reduction goal through manufacturing structure optimization. Given that techno-
logical innovation requires a large amount of financial investment, and that the economic
development and technological innovation in Northeast China are particularly lagging,
there is an urgent need to increase financial support to strengthen technological innovation
and to promote manufacturing structure optimization and carbon emission reduction in
the region.

Institutional innovation plays a positive role in the process of carbon emission reduc-
tion via manufacturing structure optimization in Northeast China; however, the positive
effect of environmental regulation on carbon emission reduction from the spatial perspec-
tive is not significant, indicating that the institutional innovation mechanism is not perfect.
China’s carbon emission trading market is now open, and manufacturing enterprises in
Northeast China should actively participate in carbon emission trading and the carrying out
of useful exploration. In view of the development characteristics of heavy manufacturing
industries in Northeast China, the government should continue to promote carbon emis-
sion trading and aim to achieve carbon emission reduction through market mechanisms.
Therefore, it is necessary to further improve institutional innovation in order to promote
manufacturing structure optimization and carbon emission reduction in Northeast China.
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6. Conclusions

In this paper, a spatial econometric model and a machine learning model are used
to simulate the carbon peak scenario of the manufacturing industry in Northeast China
under the perspective of structural optimization. The conclusions that can be drawn are
as follows: Manufacturing structure optimization from both the technology perspective
and energy consumption perspective in Northeast China show an increasing trend, thus
indicating that the manufacturing structure has been optimized to a certain extent during
the research period. Manufacturing carbon emissions in Northeast China show a trend of
rising and then falling, and there are significant differences in the carbon emission levels
among different industries and regions. Manufacturing structure optimization and carbon
emissions in Northeast China both show a positive spatial correlation. The total effect of
manufacturing structure optimization from both the technology perspective and energy
consumption perspective on carbon emission reduction in Northeast China is significantly
positive, thus indicating that manufacturing structure optimization can effectively pro-
mote manufacturing carbon emission reduction. The carbon emission reduction effect of
manufacturing structure optimization from the energy consumption perspective is better
than that from the technological perspective. The carbon emission reduction effect under
the institutional innovation scenario is better than that under the technological innovation
scenario, and it meets the requirements of the carbon peak policy in terms of total amount
and scale of reduction. Therefore, the carbon emission reduction path of manufacturing
structure optimization from the energy consumption perspective based on institutional
innovation is the optimal path for achieving manufacturing carbon emission reduction in
Northeast China.

In recent years, the goal of low-carbon economic development has gradually replaced
the goal of maximizing economic efficiency, which leads to the traditional approach to
measuring manufacturing structure optimization showing certain limitations. Thus, this
paper measures manufacturing structure optimization from both the technology and the
energy consumption perspectives. Meanwhile, we have explored the impact of manufac-
turing structure optimization on carbon emission reduction by comparing three spatial
weight matrices, namely, geographic neighborhood, geographic distance, and economic
geographic distance, and comparing SLM, SXL, and SDM models. In addition, we select
the optimal method for the scenario simulation of manufacturing carbon emissions in
Northeast China by comparing the BP model, SVM model, and RF model to ensure the
scientificity of the research results and the validity of our conclusions.

As the world’s largest carbon emitter, China is under enormous pressure to reduce
carbon emissions. The manufacturing industry is the pillar industry of the national econ-
omy, and its efforts to reduce carbon emissions play an important role in achieving China’s
carbon peak and carbon neutrality targets. It is of great practical significance to clarify
the impact of manufacturing structure optimization on carbon emission reduction and
identify the optimal path to carbon emission reduction in Northeast China, which can
provide an empirical basis for the green and low-carbon transformation development of
the manufacturing industry and provide a boost to the construction of an ecological civi-
lization. Northeast China is a critical region for the revitalization of China’s old industrial
zones, and it is a key region for manufacturing structure optimization and carbon emission
reduction. The results show that the carbon emission reduction path of manufacturing
structure optimization from the perspective of energy consumption based on institutional
innovation is the optimal path to achieve carbon emission reduction in the manufacturing
industry in Northeast China. In order to better achieve the goal of manufacturing carbon
emission reduction in Northeast China, manufacturing structure optimization from both
the technology and the energy consumption perspectives should be promoted. In addition,
the goal of manufacturing carbon emission reduction needs to be guaranteed by both
technological innovation and institutional innovation approaches.

Since the economic development and carbon emission makeup of Northeast China are
relatively different from those of other regions, the results of the study are more applicable
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to other old industrial zones in China. Additionally, in this paper, the scenario simulation
of manufacturing carbon emissions in Northeast China only considers the carbon peak
target and lacks simulation and analysis of the carbon neutrality target. In a subsequent
study, we will strengthen our knowledge of carbon absorption and other related factors
and then further explore manufacturing carbon emission reduction in Northeast China
considering the carbon neutral target.
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Appendix A

For the determination of the specific form of the spatial econometric model, the
applicability of SEM and SLM is judged by LM and Robust LM tests. Whether SDM can
be degraded to SLM or SEM was determined by the LR test, and the applicability of the
random effects model and fixed effects model was assessed by the Hausman test. The
principles of maximum goodness of fit, maximum log-likelihood value, and minimum
variance in the random disturbance term were used to determine whether the regional fixed-
effects model, the time-fixed-effects model, or the dual fixed-effects model was superior.
Tables A1–A4 show the results of the determination of the specific model form of the spatial
effect manufacturing structure optimization on carbon emissions from the perspective of
technology. Tables A5–A8 show the results of the determination of the specific model form
of the spatial effect manufacturing structure optimization on carbon emissions from the
perspective of energy consumption.

Table A1. LM and Robust LM test results (ST to CE).

Spatial Weight Matrix Model Test Method Statistics p-Value

Geographic adjacency
SEM

Lagrange multiplier 1.717 0.190
Robust Lagrange multiplier 2.134 0.144

SLM
Lagrange multiplier 27.744 *** 0.000

Robust Lagrange multiplier 28.160 *** 0.000

Geographic distance
SEM

Lagrange multiplier 5.580 ** 0.018
Robust Lagrange multiplier 0.146 0.702

SLM
Lagrange multiplier 36.763 *** 0.000

Robust Lagrange multiplier 31.328 *** 0.000

Economic geographic distance
SEM

Lagrange multiplier 1.796 0.180
Robust Lagrange multiplier 2.116 0.146

SLM
Lagrange multiplier 23.144 *** 0.000

Robust Lagrange multiplier 23.464 *** 0.000

Data source: Calculated by Stata 15. *** and ** indicate significant at 1% and 5%levels.
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Table A2. LR test results (ST to CE).

Spatial Weight Matrix Model Comparison LR Statistics p-Value

Geographic adjacency SDM and SLM 32.810 *** 0.000
SDM and SEM 35.850 *** 0.000

Geographic distance SDM and SLM 32.600 *** 0.000
SDM and SEM 34.090 *** 0.000

Economic geographic distance SDM and SLM 28.620 *** 0.000
SDM and SEM 31.190 *** 0.000

Data source: Calculated by Stata 15. *** indicate significant at 1% level.

Table A3. Hausman test results (ST to CE).

Spatial Weight Matrix Chi-Square Statistics p-Value

Geographic adjacency −680.520 -
Geographic distance 339.890 *** 0.000

Economic geographic distance −19.290 -

Data source: Calculated by Stata 15. *** indicate significant at 1% level.

Table A4. Spatial econometric model estimation results (ST to CE).

Variables Regional Fixed Effects Time Fixed Effects Double Fixed Effects

ST 0.252 *** 0.721 *** 0.196 **
(2.79) (8.07) (2.12)

L 0.114 *** 0.215 *** 0.117 ***
(4.27) (10.79) (4.45)

P 0.313 *** 0.394 *** 0.305 ***
(11.87) (21.58) (11.67)

EI 0.530 *** 0.835 *** 0.501 ***
(14.60) (21.31) (13.31)

ES −0.063 −0.402 *** −0.084
(−0.45) (−5.33) (−0.57)

TI 0.050 ** 0.055 *** 0.057 ***
(2.48) (2.89) (2.83)

ER 0.102 0.417 *** 0.133 *
(1.39) (4.86) (1.81)

W × ST −0.294 1.093 ** −1.154 ***
(−1.04) (2.33) (−2.94)

W × L 0.116 −0.465 *** 0.240 *
(1.40) (−3.25) (1.65)

W × P 0.125 −0.594 *** 0.034
(1.50) (−4.21) (0.25)

W × EI 0.057 −0.688 *** 0.163
(0.43) (−2.76) (0.80)

W × ES −2.004 *** −8.772 *** −2.952 ***
(−2.79) (−14.70) (−2.69)

W × TI −0.078 ** 0.494 *** 0.053
(−2.13) (4.08) (0.49)

W × ER 0.315 1.471 *** 0.461
(1.49) (3.07) (1.41)

rho 0.457 *** −0.406 *** −0.161 **
(5.86) (−3.10) (−2.08)

sigma2_e 0.020 *** 0.064 *** 0.019 ***
(17.64) (19.32) (17.74)

R2 0.804 0.728 0.849
Log-L 333.774 −59.139 361.324

Data source: Calculated by Stata 15. ***, **, * indicate significant at 1%, 5%, and 10% levels, t-values in parentheses.
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Table A5. LM and Robust LM test results (SE to CE).

Spatial Weight Matrix Model Test Method Statistics p-Value

Geographic adjacency
SEM

Lagrange multiplier 4.033 *** 0.045
Robust Lagrange multiplier 0.298 0.585

SLM
Lagrange multiplier 24.801 *** 0.000

Robust Lagrange multiplier 21.066 *** 0.000

Geographic distance
SEM

Lagrange multiplier 7.657 *** 0.006
Robust Lagrange multiplier 0.100 0.752

SLM
Lagrange multiplier 31.109 *** 0.000

Robust Lagrange multiplier 23.553 *** 0.000

Economic geographic distance
SEM

Lagrange multiplier 1.820 0.177
Robust Lagrange multiplier 1.755 0.185

SLM
Lagrange multiplier 22.286 *** 0.000

Robust Lagrange multiplier 22.221 *** 0.000

Data source: Calculated by Stata 15. *** indicate significant at 1% level.

Table A6. LR test results (SE to CE).

Spatial Weight Matrix Model Comparison LR Statistics p-Value

Geographic adjacency SDM and SLM 32.970 *** 0.000
SDM and SEM 35.420 *** 0.000

Geographic distance SDM and SLM 20.770 *** 0.004
SDM and SEM 22.070 *** 0.003

Economic geographic distance SDM and SLM 13.070 *** 0.007
SDM and SEM 15.730 *** 0.003

Data source: Calculated by Stata 15. *** indicate significant at 1% level.

Table A7. Hausman test results (SE to CE).

Spatial Weight Matrix Chi-Square Statistics p-Value

Geographic adjacency −144.060 -
Geographic distance 119.160 *** 0.000

Economic geographic distance −48.910 -

Data source: Calculated by Stata 15. *** indicate significant at 1% level.

Table A8. Spatial econometric model estimation results (SE to CE).

Variables Regional Fixed Effects Time Fixed Effects Double Fixed Effects

SE −0.354 *** 0.520 *** −0.360 ***
(−3.47) (5.18) (−3.62)

L 0.123 *** 0.244 *** 0.136 ***
(4.70) (12.04) (5.25)

P 0.301 *** 0.419 *** 0.303 ***
(11.36) (21.52) (11.56)

EI 0.495 *** 0.830 *** 0.494 ***
(13.76) (19.62) (13.78)

ES −0.130 −0.575 *** −0.240 *
(−0.94) (−6.68) (−1.68)

TI 0.025 0.030 0.032
(1.23) (1.52) (1.55)

ER 0.153 ** 0.355 *** 0.164 **
(2.08) (3.80) (2.18)

W × SE 0.985 ** 0.295 0.261
(2.15) (0.44) (0.49)
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Table A8. Cont.

Variables Regional Fixed Effects Time Fixed Effects Double Fixed Effects

W × L 0.122 −0.455 *** 0.259 *
(1.55) (−2.86) (1.81)

W × P 0.105 −0.510 *** 0.106
(1.23) (−3.43) (0.78)

W × EI 0.055 −0.954 *** 0.276
(0.42) (−3.67) (1.41)

W × ES −1.340 * −8.000 *** −2.761 **
(−1.87) (−12.75) (−2.55)

W × TI −0.048 0.446 *** 0.110
(−1.31) (3.54) (1.03)

W × ER 0.337 1.178 ** 0.270
(1.53) (2.43) (0.79)

rho 0.449 *** −0.285 ** −0.124
(5.75) (−2.17) (−0.90)

sigma2_e 0.019 *** 0.070 *** 0.019 ***
(17.65) (18.80) (17.74)

R2 0.747 0.737 0.779
Log-L 336.609 −76.862 359.947

Data source: Calculated by Stata 15. ***, **, * indicate significant at 1%, 5%, and 10% levels, t-values in parentheses.

Appendix B

The mediating effect model was used to determine the effect of manufacturing struc-
ture optimization via technological innovation versus institutional innovation on car-
bon emissions. Tables A9 and A10 show the results of the carbon emission reduction
path analysis for technological-innovation-driven manufacturing structure optimization.
Tables A11 and A12 show the results of the carbon emission reduction path analysis for
institutional-innovation-driven manufacturing structure optimization.

Table A9. Estimation results of the mediating effect model of technological innovation on carbon
emissions (Mediating variable ST).

Variables Model 1 Model 2 Model 3

TI 0.098 *** −0.005 0.100 ***
(5.71) (−0.79) (5.85)

ST 0.350 ***
(3.09)

L 0.236 *** 0.047 *** 0.220 ***
(11.46) (6.46) (10.39)

P 0.533 *** 0.067 *** 0.510 ***
(24.64) (8.86) (22.35)

EI 0.833 *** 0.023 0.825 ***
(18.02) (1.44) (17.93)

ES −0.085 −0.107 *** −0.047
(−0.96) (−3.45) (−0.53)

ER −0.182 * 0.126 *** −0.225 **
(−1.70) (3.34) (−2.11)

Cons 2.191 *** −0.065 2.214 ***
(12.31) (−1.04) (12.51)

R2 0.848 0.503 0.851
Bootstrap test [−0.006, 0.003]

Data source: Calculated by Stata 15. ***, **, * indicate significant at 1%, 5%, and 10% levels, t-values in parentheses.
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Table A10. Estimation results of the mediating effect model of technological innovation on carbon
emissions (Mediating variable SE).

Variables Model 1 Model 2 Model 3

TI 0.098 *** 0.021 *** 0.087 ***
(5.71) (3.74) (5.06)

SE 0.549 ***
(4.62)

L 0.236 *** 0.044 *** 0.212 ***
(11.46) (6.40) (10.13)

P 0.533 *** 0.057 *** 0.502 ***
(24.64) (7.90) (22.48)

EI 0.833 *** 0.065 *** 0.797 ***
(18.02) (4.24) (17.28)

ES −0.085 0.313 *** −0.257 ***
(−0.96) (10.66) (−2.71)

ER −0.182 * 0.206 *** −0.295 ***
(−1.70) (5.81) (−2.73)

Cons 2.191 *** −0.630 *** 2.537 ***
(12.31) (−10.67) (13.32)

R2 0.848 0.512 0.853
Bootstrap test [0.006, 0.021]

Data source: Calculated by Stata 15. *** and * indicate significant at 1% and 10% levels, t-values in parentheses.

Table A11. Results of model estimation of mediating effects of institutional innovation on carbon
emissions (Mediating variable ST).

Variables Model 1 Model 2 Model 3

ER −0.182 * 0.126 *** −0.225 **
(−1.70) (3.34) (−2.11)

ST 0.350 ***
(3.09)

L 0.236 *** 0.047 *** 0.220 ***
(11.46) (6.46) (10.39)

P 0.533 *** 0.067 *** 0.510 ***
(24.64) (8.86) (22.35)

EI 0.833 *** 0.023 0.825 ***
(18.02) (1.44) (17.93)

ES −0.085 −0.107 *** −0.047
(−0.96) (−3.45) (−0.53)

TI 0.098 *** −0.005 0.100 ***
(5.71) (−0.79) (5.85)

Cons 2.191 *** −0.065 2.214 ***
(12.31) (−1.04) (12.51)

R2 0.848 0.503 0.851
Bootstrap test [0.011, 0.089]

Data source: Calculated by Stata 15. ***, **, * indicate significant at 1%, 5%, and 10% levels, t-values in parentheses.

Table A12. Results of model estimation of mediating effects of institutional innovation on carbon
emissions (Mediating variable SE).

Variables Model 1 Model 2 Model 3

ER −0.182 * 0.206 *** −0.295 ***
(−1.70) (5.81) (−2.73)

SE 0.549 ***
(4.62)

L 0.236 *** 0.044 *** 0.212 ***
(11.46) (6.40) (10.13)
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Table A12. Cont.

Variables Model 1 Model 2 Model 3

P 0.533 *** 0.057 *** 0.502 ***
(24.64) (7.90) (22.48)

EI 0.833 *** 0.065 *** 0.797 ***
(18.02) (4.24) (17.28)

ES −0.085 0.313 *** −0.257 ***
(−0.96) (10.66) (−2.71)

TI 0.098 *** 0.021 *** 0.087 ***
(5.71) (3.74) (5.06)

Cons 2.191 *** −0.630 *** 2.537 ***
(12.31) (−10.67) (13.32)

R2 0.848 0.512 0.853
Bootstrap test [0.053, 0.174]

Data source: Calculated by Stata 15. *** and * indicate significant at 1% and 10% levels, t-values in parentheses.
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