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Abstract: Due to the rapid advancement in the use of photovoltaic (PV) energy systems, it has become
critical to look for ways to improve the energy generated by them. The extracted power from the PV
modules is proportional to the output voltage. The relationship between output power and array
voltage has only one peak under uniform irradiance, whereas it has multiple peaks under partial
shade conditions (PSCs). There is only one global peak (GP) and many local peaks (LPs), where the
typical maximum power point trackers (MPPTs) may become locked in one of the LPs, significantly
reducing the PV system’s generated power and efficiency. The metaheuristic optimization algorithms
(MOAs) solved this problem, albeit at the expense of the convergence time, which is one of these
algorithms’ key shortcomings. Most MOAs attempt to lower the convergence time at the cost of
the failure rate and the accuracy of the findings because these two factors are interdependent. To
address these issues, this work introduces the dandelion optimization algorithm (DOA), a novel
optimization algorithm. The DOA’s convergence time and failure rate are compared to other modern
MOAs in critical scenarios of partial shade PV systems to demonstrate the DOA’s superiority. The
results obtained from this study showed substantial performance improvement compared to other
MOAs, where the convergence time was reduced to 0.4 s with zero failure rate compared to 0.9 s,
1.25 s, and 0.43 s for other MOAs under study. The optimal number of search agents in the swarm,
the best initialization of search agents, and the optimal design of the dc–dc converter are introduced
for optimal MPPT performance.

Keywords: photovoltaic; MPPT; partial shading conditions; convergence time; failure rate;
metaheuristic; dandelion optimization algorithm (DOA)

1. Introduction

With the continuous increase in the need for electrical energy, the continuous shortage
of fossil fuels, the impact of geopolitical problems on energy supplies, and the environmen-
tal impact of excessive use, the need for renewable energies, especially the energy generated
from PV cells, has increased. Most of the world’s nations realize this problem and have
started ambitious programs to completely rely on renewable energy sources by 2050 [1].
Statistics indicate a significant rise in the use of PV in the production of electric energy, as
the worldwide capacity of PV cells increased to 1300 megawatts, exceeding the capacity
generated from wind energy by 400 megawatts [2]. With the rapid progress in modern
energy storage systems (ESS) and smart grid systems [3,4], the problem of intermittency in
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the generated power as a result of climate change has been overcome. The ESS can save
the extra energy greater than the load needs and serve this stored energy when there is a
deficiency in the extracted power from renewable energy sources (RES) compared to the
power of the load. Moreover, the smart grid system can control the loads using different
smart grid concepts to a level near the available generation from RES.

The PV systems are used to generate electricity directly from sunlight. The extracted
power from the PV array is directly proportional to the light intensity, operating tempera-
ture, and output voltage of the PV array. Connecting many modules in series and parallel
are required to increase the voltage and current of the PV array. The relation between
the generated power and the terminal voltage is nonlinear, and it has only one peak at
about 0.8 of the open circuit voltage (Voc) of the PV array in cases of uniform irradiance.
In the case of non-uniform irradiance falling on the PV modules, different amounts of
generated power will be generated from these PV modules. Partial shading occurs due to
the shadow of different objects such as buildings, trees, clouds, or dust. For extracting the
maximum power from these modules, each module should work with its optimal voltage
and current, which is not the case in real PV systems because modules are connected in
series and parallel. This means that the current in each series branch is the same in all series
modules, while the terminal voltage of each module is different. A negative voltage may
be generated at the terminal of some modules in some severe partial shading conditions
(PSCs). The negative voltage of shaded modules occurs when these modules act as a load
on other modules due to PSCs. The occurrence of negative voltage on some of the shaded
modules generates heat inside the module, which may destroy it. This phenomenon is
called the hot-spot phenomenon [5]. For this reason, a bypass diode should be added in
parallel with each module for hotspot protection. When the shunt diode is activated, the
generated power from these modules is wasted, and the PV system loses this quantity of
energy. Due to the PSCs and shunt diodes, the P-V characteristics of the PV array will be
fewer than or equal to the number of series modules in the PV array that have varying
irradiances.

The global peak (GP) has the highest power among these peaks, whereas the other
local peaks (LPs) have lower power than the GP. Several ways have been developed to track
the maximum power point (MPP) during real-time operation with various PSCs. Several
strategies have been introduced to track the MPP during their real-time operation with
different PSCs. As a result, a dc–dc converter was utilized to track the MPP of PV systems
by manipulating the power electronics switches with logic created by maximum power
point tracker (MPPT) approaches. As illustrated in Figure 1, MPPT techniques are utilized
to extract the maximum power provided by a PV system by managing the on/off times
of power electronic switch/switches. Some typical procedures employ the incremental
change in voltage to track the MPP, such as hill climbing (HC), perturb and observe (P&O),
and incremental conductance (In.Con.) [6]. Other smart techniques, such as using fuzzy
logic controllers [7] and artificial neural networks [8], have been used as MPPTs of PV
systems, but all of these strategies fall into the conventional strategies category because
they cannot track the GP and they may stick at one of the LPs in the event of PSCs. As a
result, typical MPPT techniques are not suggested for use with PSC-equipped PV systems.

The metaheuristic optimization algorithms (MOAs) can follow the GP and prevent the
PV system from becoming caught in one of the LPs. Several MOA techniques, including
particle swarm optimization (PSO) [9], bat algorithm (BA) [10], grey wolf optimization
(GWO) [11], and musical chairs algorithm (MCA) [12], among others, have been employed
as MPPTs of PV systems. All of these MOAs have several problems, including extended
convergence times, premature convergence, and particle stagnation at one of the LPs.
The majority of recent studies on this subject have proposed ways to overcome these
challenges [13–18]. Still, additional efforts are needed in this sector to lower convergence
time while maintaining GP tracking accuracy.
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Figure 1. Grid-connected PV energy system with MPPT.

Various strategies have been used in the literature to overcome the long convergence
time problem. The majority of these studies are centered on making changes to current
MOAs to capture the GP quicker [13–18]. To overcome the random aspect of the PSO in
tracking the MPP of PV systems, a deterministic approach was used to modify it [13,14].
The fundamental concept behind this approach is to replace the random values with those
that should be multiplied by the acceleration factors to estimate particle velocity. The
accelerated parameters are replaced by 1.0 in this investigation, and the random numbers
are deleted. As a result, just the inertia weight parameter has to be adjusted. This strategy
has been compared with conventional PSO and shows better performance [13]. The main
shortcoming of this optimization algorithm is the random initialization, which may cause
premature convergence to one of the LPs and a long convergence time that can be avoided
with better initialization algorithms [19,20]. The strategy used in [14] improved the random
initialization of particles by initializing these particles at the predicted position of peaks.
Moreover, it reduced the swarm size to reduce the convergence time. This strategy reduces
the convergence time, but it should be trained for different operating voltages due to the
particles using the terminal voltage, not the duty ratio [14]. The predicted positions of peaks
used in this strategy are based on the anticipated peaks placed at 0.8 Voc, which needs to
be more accurate, as has been discussed in [20]. Another technique employed a linear drop
in inertia weight value from 0.9 to 0.4 to increase global search at the start of optimization
and improve local search at the end [21]. This method lowers the convergence time and
steady-state oscillations, but it still has to be improved. Another strategy suggested varying
the inertia weight from 0.8 to 0.1 [15] for the same purpose.

Some other studies introduced a dynamic inertia weight in which the value of the
inertial weight changes based on the convergence performance [16–18]. Another approach
for linearly adjusting the acceleration parameters and inertia weight is provided [22,23].
All these modifications are implemented based on trial-and-error without an optimal de-
termination of the MOAs’ control parameters. To circumvent the use of trial-and-error
procedures in obtaining the control parameters of MOAs, an intriguing strategy for cal-
culating these optimal control parameters for PSO [9] and BA [24] is presented. In this
technique, two nested optimization loops are used. The inner one is to track the MPP of
the PV system, and the outer one is to optimize the control parameters for the internal
one for the shortest time of convergence and zero failure rate. These MOAs have been
used with photovoltaic systems with varying numbers of peaks to identify the ideal swarm
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size, inertia weight, and acceleration parameters. These strategies significantly enhance
performance while maintaining a quick time of convergence and great accuracy.

The success of catching the GP and the convergence time will rise as the number of
particles increases, and vice versa. This suggests that the time of convergence and failure
rate are related to the swarm size. As a result, it is critical to choose the number of particles
that provides the quickest time of convergence and a zero failure rate. Some solutions
employed three search agents [25,26], five search agents [27], and six search agents [28],
among others. Other algorithms calculated the appropriate number of particles based on
the number of peaks for the shortest time of convergence and zero failure rate [28].

Another strategy is used to reduce the time of convergence while maintaining a zero
failure rate using hybrid MPPT techniques (HMTs) [29–35]. The idea behind the use of
HMTs is to use an effective GP searching strategy to determine its position at the beginning
of the optimization, then use the fast local search and low ripple technique to accurately
capture the GP. Some hybrid strategies use MOA at the beginning of optimization and
conventional MPPT after that [29–33]. There are other HMTs that use two MOAs, such
as [34,35]. A detailed discussion of the HMT techniques is introduced in [36].

In terms of the time of convergence and failure rate, the MPPT’s success depends on
the initial placements of search agents in all MOAs. For the search agents, the majority
of the MOAs employed random position initialization [13]. Random initialization raises
the failure rate and increases the time of convergence and should be avoided in MPPT
applications. Several strategies are used to replace the random initialization by dividing
the search area (voltage or duty ratio) into equal distances and initializing the search agents
at these distances [19]. This strategy is better than random initialization, but still, the
convergence time can be further reduced using initialization at predicated positions of
peaks [20]. This strategy has the fastest time of convergence and the lowest rate of failure
compared to random initialization, but the swarm size should be equal to the number of
peaks, which may limit the flexibility of the MPPT algorithms. This point can be avoided
by selecting a swarm size equal to the peaks, and the rest of the particles can be randomly
distributed.

Another strategy using the skipping model algorithm to reduce the time of conver-
gence while maintaining a zero failure rate is introduced [37–41]. The idea of this strategy
is to avoid searching within certain values and concentrate on other areas that probably
contain the GP. This strategy reduced the convergence time, but it increased the calculation
time, which may limit the operating frequency and sampling time, which consequently
increases the convergence time. A detailed discussion of these algorithms is shown in [42].

Another issue that all MOAs have when utilized as an MPPT of a PV system is termed
search agent stagnation in one of the local peaks. This issue was resolved by initializing the
search agents whenever the change in extracted power exceeded the present tolerance, as
stated in Equation (1). The high value of the predefined tolerance may cause the system to
be insensitive to critical changes in shading patterns and leave the search agents at one of
the LPs and lose the GP, especially in gradual changes in shading patterns. Meanwhile, a
low value of the specified tolerance may lead the system to reinitialize without necessity,
increasing the oscillations of the PV system waveforms. The predefined tolerance is between
5% [43] and 10% [44]. Some strategies avoid the dependency of re-initialization based on
Equation (1) by re-initialization of the search agents every certain time [45] or by using
scanning search agents re-initialization at certain periods [46,47].∣∣∣∣Pi − Pi−1

Pi−1

∣∣∣∣ > ε (1)

where Pi and Pi−1 are the extracted power from the photovoltaic system at iterations i and
i − 1, respectively, and ε is a predetermined tolerance.
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1.1. Motivation

The problem of partial shading can cause a lot of problems for PV systems, such as
hot spots [48]. The partial shading also causes the P-V characteristics of the photovoltaic
array to have several peaks, which require smart MPPT techniques such as MOAs. Because
of the long convergence time associated with the usage of MOAs in MPPT photovoltaic
energy system applications, researchers sought to employ novel MOAs or improve current
ones. Nonetheless, the long time of convergence and high rate of failure necessitate greater
work due to their relevance to PV system functioning. As a result, it is critical to assess and
compare some of the most current MOAs in MPPT PV system applications with previous
ones. Due to this, the dandelion optimization algorithm (DOA), a recently developed
and promising optimization algorithm [49], is introduced in this paper to evaluate its
performance compared to superior MOAs used before for this purpose, such as PSO [9],
GWO [11], and MCA [12]. Moreover, the best initialization, optimal design of the dc–dc
converter, best swarm size, and avoidance of search agent stagnation in LPs are tactics used
to optimize the performance of MOAs when employed as an MPPT of PV systems.

1.2. Innovation and Contribution

Several MOAs have been employed in PV system MPPT applications. Several of these
MOAs have shown greater performance, but additional efforts should be made to test
novel MOAs to further reduce the time of convergence and rate of failure, which may
be translated into an improvement in the extracted power and efficiency of photovoltaic
systems. As a result, the recently developed dandelion optimization algorithm (DOA) [49]
has been employed for the first time in the MPPT of PV systems. This research also provides
a unique strategy for significantly reducing convergence time and avoiding search agent
stagnation in LPs. The innovation and contribution involved in this paper are listed below.

• Evaluation of the application of the DOA in a photovoltaic MPPT as a function of
conversion time and failure rate.

• Calculate the best swarm size to achieve the shortest time of convergence while
maintaining a zero failure rate.

• Evaluating the performance of the MPPT with different initialization strategies.
• Using a novel strategy for avoiding the stagnation of search agents in LPs.

1.3. Paper Outlines

The remainder of this study provides a full discussion of the PV array modeling in
Section 2. Section 3 gives a full overview of the DOA and how it may be employed in the
MPPT of photovoltaic energy applications. Section 4 introduces the simulation experiments
that were performed to compare the proposed DOA MPPT algorithm to alternative MOA
techniques. Section 5 introduces the experimental work performed to validate the simulated
results. Section 6 introduces the findings of this investigation.

2. PV Array Modelling

The photovoltaic cell, which is composed of two semiconductor layers (P–N layers), is
the smallest component of the PV array. The sunlight falls on the N-layer, which has free
electrons in its atom’s outer layer that can be easily moved from its atom if it has enough
energy to move. The photon energy has adequate energy to give this free electron the
energy to move from the N-layer to the P-layer, which has a free hole. The N-layer atoms
turn into positive ions as the electron goes from the N-layer to the P-layer, while the P-layer
atoms turn into negative ions, which might result in a voltage difference.

The energy produced by the PV cell may be transmitted from the PV cell to the load
after the load is linked between the P and N-layers. The PV cells should be arranged in
parallel and series to obtain the required current and voltage for the PV modules. For the
same objective, the modules should also be linked in parallel and in series. The simplest
photovoltaic cell model is called the single diode model (SDM), which is the simplest way
to represent the PV cell’s performance. It is depicted in Figure 2 [50], which is used to
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represent the PV cell used in this study. Another model with higher accuracy is when
more than one diode shunts to the first diode to well represent the charge diffusion and
recombination components of the PV cell [51]. Some other studies recommend using three
diodes in the PV cell model to obtain more accurate results [52].
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The main problem is that increasing the number of diodes will increase the calculation
burden of the model without a substantial improvement in accuracy compared to the
SDM [53]. The SDM provides adequate accuracy with a reasonable calculation burden, and
for this reason, it is used in the modeling of this study.

From the above discussion, the PV cell can be modeled as a current generator in a
shunt with a diode. The PV cell output current can be obtained from Equation (2) [53].

I = Ig − I0

(
e

q(V+Rs I)
aKT − 1

)
− V + Rs I

Rsh
(2)

where Ig is the current source value, K is the Boltzmann constant, a is the diode ideality
constant (a = 0.95194), and T is the temperature of PV cells (◦K). I and V are the terminal
current and voltage of the PV modules, respectively, and Rsh and Rs are the shunt and series
resistances of the photovoltaic cell model, respectively.

The current used to represent one PV cell shown in Equation (2) should be modified
to model the current in the PV array as expressed in Equation (3).

I = Np Ig − Np I0

e
q(V+Rs( Ns

Np
)I)

Ns aKT − 1

− V +
(

Ns
Np

)
Rs I(

Ns
Np

)
Rsh

(3)

where Np and Ns are the number of PV cells in each branch and the number of series PV
cells in each branch, respectively.

The current of the source current is directly proportional to the solar irradiation and
also functions in the operating temperature of the PV cell, as shown in Equation (4).

Ig =
(

Ign + KI(T − Tn)
) G

Gn
(4)

where Ign is the light-generated current, Tn and Gn are the standard test temperature (25 ◦C)
and standard solar irradiance (1000 W/m2), respectively, and KI is the current temperature
coefficient (0.12499%/◦C).

The diode saturation current I0 can be obtained from Equation (5).

I0 = I0n

(
Tn

T

)3
e(

qEg
aK ( 1

Tn −
1
T )) (5)
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where Eg is the semiconductor’s band-gap energy and I0n is the rated saturation current at
standard test conditions, which can be obtained from Equation (6).

I0n = Iscn/ e(
qVocn
aKT −1) (6)

where Iscn is the saturation current at standard test conditions, and Vocn is the open circuit
voltage.

From Equations (5) and (6), the diode saturation current can be obtained from
Equation (7).

I0 = (Iscn + KI .∆T)/ e(
q(Vocn+KV ∆T)

aKT −1) (7)

where KV is the voltage temperature coefficient (−0.349%/◦C), and ∆T is the difference
between the current temperature and the rated temperature of the PV cells.

3. Dandelion Optimization Algorithm

Modern optimization methods must be utilized in conjunction with the PV system and
MPPT to precisely predict the GP in a short time. The dandelion optimization algorithm
(DOA) has been utilized in several applications, including Extreme Learning Machine
(ELM) for many real-world applications [49,54], traffic flow prediction [55], parameter
estimation of PEMFCs’ models [56], the speed reducer problem of a mechanical device [57],
AVR–LFC architecture for several sections of power systems employing hybrid fractional-
order PI and PIDD controllers [58], reactive power dispatch optimization with DG unit
uncertainty [59], and credit card fraud detection [60].

Because the DOA performs well in these applications, it has been employed in the
MPPT of photovoltaic energy systems in this research. The DOA, which was launched in
2017, was inspired by the life cycles of dandelion plants [49]. The dandelion seeds can be
spread over a long distance by the wind. The structure of the seed enables it to travel with
the wind that can carry the seeds due to the vortexes above it, which can lift the dandelion
seeds (DSs) in the rising stage. Once the rain occurs or the humidity increases, the DSs gain
more weight and land in different locations. Some of the landed seeds may be able to be
planted again, while others cannot. The plants can be planted again and will be used to
generate a new generation. The same concept may be used to track the best solution to
many optimization challenges. The DOA is divided into three stages: ascending, mutation,
and selection. The objective is to model these three steps and apply them to find optimum
solutions to optimization issues, as detailed in the following subsections. As indicated in
Equation (8), the optimization technique is utilized to maximize the power supplied by the
photovoltaic system by regulating the dc–dc converter’s duty ratio.

dopt = max(P(d)) (8)

where dopt is the duty ratio corresponding to maximum power, d is the duty ratio, and P is
the extracted power from the photovoltaic energy system.

Dandelions are classified into two categories: core dandelions (CDs) and assistant
dandelions (ADs). The CD has the greatest amount of power (Pmax), while the ADs are the
rest of the dandelions.

The mathematical modeling for the breeding cycle of the DSs is shown in the following
subsections.

3.1. Rising Stage

Due to the vortices above the DSs, a lift force is created, which carries the seeds for a
distance depending on the wind speed and the humidity. The radius of the sowing of the
CD represents the radius of the dandelions, and it can be obtained from Equation (9).
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RCDt
i =


(U − L)/2

RCt−1
i . e

RCt−1
i . g

t = 1
a = 1
a 6= 1

(9)

where U and L are the upper and lower duty ratio values, respectively, and e and g are the
fade and growth factors, respectively, and a is a factor termed the cross trend that may be
calculated from Equation (10) [60].

a =
Pt

max + ε

Pt−1
max + ε

(10)

where Pt−1
max and Pt

max are the maximum power at previous and current iterations, respec-
tively. Meanwhile, ε is a specified tolerance to prevent a denominator value of zero.

The sowing radius of the DAs is given in Equation (11).

RADt
i =

{
(U − L)/2 t = 1

ω . RADt−1
i +

∥∥dt
CD

∥∥− ∥∥dt
AD

∥∥ Elsewhere
(11)

where dt
CD and dt

AD are the positions of CD and AD of search agent i at iteration t, respec-
tively. ω is the weight factor used to enhance the stability of the search agents, and it can
be obtained from Equation (12) [60].

ω = 1− PE
PEmax

(12)

where PE is the ratio of the number of calls to the goal function to the total number of calls,
and PEmax is the total number of calls to the global function at the end of optimization
iterations. The total number of calls to the objective function is not known since the
optimization continuously works in real time. For this reason, similar values are used
in [49]. The value of the inertia factor is shown in Equation (12), which starts with 1.0 and is
gradually reduced to zero when PE = PEmax and stays at zero till the end of the simulation.
The re-initialization of search agents in the optimization algorithm involves setting the
inertia factor to 1.0 again and reducing it again with the progress of the optimization. The
inertia factor enhances the effect of the previous radius of the ADs on the current radius,
gradually reduces this effect, and makes it depend on the difference between the positions
of the CD and AD, as shown in Equation (11).

3.2. Mutation Sowing

The AD search particles will move toward the CD search agent, which will search
for GP during their journey. A mutation approach should be employed with the CD to
prevent early convergence or the ability of the search agents to become caught in one of
the local peaks. This mutation strategy is performed based on the Levy flight, as shown in
Equation (13).

dt
CD = dt

CD(1 + Levy()) (13)

where Levy() is a random duty ratio value derived from the Levy flight distribution with
β = 1.5 [60].

3.3. Selection Stage

The search agents should be evaluated in terms of their fitness values in comparison
to the other search agents’ fitness values. Based on this assessment, a selection strategy is
used to select the seeds (search agents) that will be used in the next iteration, and the seeds
will be removed from the search agents’ swarm size. The probability of the fitness value of
a certain search agent compared to the other search agents is shown in Equation (14), or it
can be calculated from the difference between the fitness value and the average value as
shown in Equation (15).
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pt
i = Pt

i

/ SSt

∑
n=1

Pt
n (14)

Pt
i =

∣∣∣Pt
i − Pt

avg

∣∣∣ (15)

Reference [49] proposes selecting search agents with low and high probabilities and
removing search agents with medium probabilities to improve the DOA’s exploration
performance and avoid becoming caught in one of the local peaks. This technique is
extremely effective at the beginning of the optimization to improve exploration, but after
capturing the position of the GP, it should eliminate the search agent with a low probability
to improve the exploitation of the DOA utilized in this study.

3.4. Improved DOA for MPPT of PV Systems

The suggested approach in this study is designed to improve DOA exploration and ex-
ploitation. Several solutions have been proposed in the literature to increase the exploitation
performance of MOAs, including the following points.

1. Reducing the swarm size gradually [61–63], where the MOA is started with a high
number of search agents to increase exploration and gradually reduces the search
agents to enhance exploitation.

2. Enhancing local search pressure, in which an adaptive scale factor for local search is
introduced to enhance the differential evaluation’s local search [64,65].

3. Hybrid optimization methods utilize MOAs with high exploration at the start of the
optimization and MOAs with strong exploitation at the end to improve exploitation
performance. This method has been used with differential evolution [55,66,67].

4. Dynamic variation of the control parameter, where the control parameters change
during the optimization iterations [9,21,24,68–70].

The above improvement strategies were used with a modified strategy called a guided
probability-based DOA (GDOA [55]). In this strategy, a learning factor is introduced to
learn from the CD based on the fitness value, and the highest fitness value will obtain
a higher enhanced learning factor to enhance the exploitation performance of the DOA.
Moreover, the middle search agents will be removed at the start of the optimization to
improve exploration; however, after each iteration, the worst AD search agent (the one
with the lowest generated power) will be removed from the swarm size in each iteration to
improve the proposed algorithm’s exploitation performance. The swarm size that started
the simulation is called SSmax, and the minimum value of the swarm size is called SSmin.
The logic used in the proposed algorithm is shown in Figure 3. The position of each search
agent should be selected, and the fitness values of these search agents will be determined.
Moreover, the best power generated from the PV system should be compared with the
previous one based on Equation (1). In the event that the condition shown in Equation (1)
is validated, the DOA should be reinitialized and the optimization started again due to the
substantial change (ε > 0.1) in the shading patterns. Meanwhile, if the condition shown in
Equation (1) is not verified, the search agents’ positions should be adjusted depending on
the fitness values given by the previous iteration.

The swarm size changes throughout optimization, and it can be calculated using
Equation (16).

SSt =

[
SSmax. Pt

max−Pt
min+ε

Pmax−Pmin+ε SSt > SSmin

SSmin SSt ≤ SSmin
(16)

where SSt is the swarm size during the current iteration, SSmax, SSmin are the maximum and
minimum allowable swarm sizes, respectively; Pmax, Pmin are the maximum and minimum
power during the operation of the DOA algorithm, respectively, and Pt

max and Pt
min are

the maximum and minimum power during the current iteration of the DOA algorithm,
respectively.
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4. Simulation Work

The simulation of this study is performed using Matlab/Simulink software with an
array having four modules in series and three branches. The module used in the simulation
and experimental study is SOLTON Power SPI-185 M, with performance parameters shown
in Figure 4. The available modules in the lab were selected to be similar to the ones in the
simulation to ease the comparison between the simulation and experimental results.
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4.1. Optimal Design of the Boost Converter

The design of the dc–dc converter is critical to the MPPT’s performance. This converter
should handle the MPPT instructions (duty ratios) quickly and accurately. The time it takes
the dc–dc converter to achieve the steady-state condition should be used to calculate the
sampling time. So, the steady-state time should be shortened as much as we can. The
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boost converter’s steady-state time is determined by its inductance, capacitance, switching
frequency, and processed current. The boost converter is the ideal solution since it increases
the dc-link voltage rather than the PV array’s terminal voltage. Many studies have been
conducted to design the boost converter for a shorter steady-state time and, consequently,
a shorter sampling time [62].

In this work, the optimum design technique utilized to develop the boost converter
described in [62] is applied. Equations (17) and (18) may be used to calculate the capacitance
and inductance of a boost converter with a switching frequency of 20 kHz. The average
duty ratio is chosen to be 0.5, and the Vdc = 220 V. With a 1% ripple factor, Vr, based on
Equation (17), the capacitor of the boost converter is calculated (C = 5.5 mF). The maximum
dc-current (Idc) is obtained by dividing the rated power of the PV array (185×2 = 2220 W)
by the dc-link voltage (220 V) = 10.1 A. The inductance of the boost converter conductor
can be obtained from Equation (18), which is equal to 68.1 µH.

C =
d
fs

.
Vdc
Vr

(17)

L =
d(1− d)2

2 fs
.

Vdc
Idc

(18)

where d is the duty ratio, fs is the switching frequency, Vdc and Idc are the dc-link voltage
and current, respectively, and Vr is the voltage ripple factor.

The three-phase inverter is linked to the grid using a space vector control
approach [47,71,72] to keep the dc-link voltage constant at 220 V and to decouple ac-
tive and reactive power regulation. In the computational and experimental investigations
indicated in Table 1, three distinct shading patterns were employed, where G1 to G4 are
the solar irradiance levels that fall on various modules in W/m2. The simulation technique
employs three distinct shading patterns: Sp-1, SP-2, and SP-3. The PV array’s P-V and P-d
characteristics for the aforementioned SPs are depicted in Figure 5a,b, respectively.

Table 1. The specifications of the shading patterns under study.

Name
Solar Irradiances (W/m2) GP Parameters

G1 G2 G3 G4 d V (V) P (W)

SP-1 1000 900 400 200 0.6613 74.51140 1001.4
SP-2 1000 700 500 300 0.4740 115.7296 897.32
SP-3 900 700 600 500 0.2912 155.9261 1205.8
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Three different simulation studies are performed in this article. The first simulation
study is to select the best initial position (duty ratio) of search agents among three different
strategies. The second simulation study is to estimate the optimal swarm size for DOA.
The third simulation study is to compare the simulation performances of the DOA with
those of the MCA, PSO, and GWO. The control parameters used with these metaheuristic
algorithms are shown in Table 2. These studies are discussed in the following subsections.

Table 2. The control parameters used with these metaheuristic algorithms are shown.

MPPT Control Paramters

MCA [12] Pa = 0.25, β = 1.5, α = 0.8

PSO [9] ω = 0.7298, cl = 1.4962, cg = 1.49618

GWO [11] A = 2→0, r1 = r2 = random [0, 1]

DOA [60] β = 1.5, ω = 1.0

4.2. The Best Initialization

In this study, three distinct initialization procedures are explored to determine which
one will be used in the final simulation study. The time of convergence and rate of failure
are used to assess each initialization approach. To prevent the random character of the
MOAs, each approach runs 100 times with random amounts of soalr irradiance to estimate
the rate of failure and average time of convergence. The swarm size utilized in this study is
six search agents.

The first study is performed using random positions (duty ratios) of the search agents
limited between 0.2 and 0.9, as indicated in Figure 5b. Table 3 displays the average time
of convergence and rate of failure. The data in Table 3 reveal that this approach has the
longest convergence time and is the only method with a failure rate larger than zero. For
these reasons, it is not recommended to use this strategy in the initialization of any MOA.

Table 3. Comparison between each initialization strategy used with the DOA.

Initialization Strategy Convergence Time (s) Failure Rate (%)

Random Duty Ratio 0.49 2
Equal Distance 0.41 0

Anticipated Position of the
Peaks 0.40 0

The second strategy is performed by using equal distance for the initial position of
search agents between 0.2 and 0.9, where these values are 0.20, 0.34, 0.48, 0.62, 0.76, and
0.90, which can be obtained from Equation (19). The results obtained from this strategy
showed that the convergence time is 0.41 s with a zero failure rate, which is substantially
better than the random initialization strategy.

The third technique involves starting the search agents at the expected peak location,
which may be calculated using Equation (20). This technique produced somewhat shorter
convergence times with a 0% failure rate than initialization with equal distance. This
technique is the best based on the convergence time and success rate, but it has no flexibility
to adjust the swarm size since it must equal the number of peaks; so, the second study will
be employed in further simulation and experimental research.

d0
k = dmin + k.(dmax − dmin)/(SS− 1) (19)

dk = 1− (SS− k + 1) kv

SS
Voc

Vdc
(20)

where k is the search agent order inside the swarm, and kV is a constant equal to 0.79 [20].
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4.3. Optimal Swarm Size

The swarm size has a substantial influence on the MPPT performance of the pho-
tovoltaic energy system regarding the time of convergence and the rate of failure. The
larger the swarm size, the longer the time of convergence and the lower the rate of failure;
conversely, the smaller the swarm size, the faster the time of convergence and the higher
the rate of failure. As a result, it is advised to choose the ideal swarm size by setting their
values to zero failure rate and the shortest time of convergence. This study is performed
by selecting several search agents varying between ten and three with initialization at
equal distance strategy, as explained above in Section 4.2. To prevent the random nature
of the outcomes of these optimization methods, this initialization technique is performed
1000 times for the DOA, MCA [12], PSO [9], and GWO [11]. Table 4 depicts the relationship
between swarm size, time of convergence, and failure rate for several optimization tech-
niques. This table clearly shows that the time of convergence increases with the swarm size
in all MOAs under consideration. Meanwhile, as the size of the swarm grows, the rate of
failure decreases. The most interesting result from this table is that all the MOAs under
study have a zero failure rate when the swarm size is above or equal to six. Moreover,
the best time of convergence is associated with the DOA and MCA, with 0.41 s and 0.43 s
convergence times, respectively. So, it is recommended to use the DOA with six search
agents in the swarm for the shortest conversion time at a zero failure rate.

Table 4. The performance of each MOA under study for different swarm sizes.

Swarm Size
Convergence Time (s) Failure Rate (%)

DOA MCA PSO GWO DOA MCA PSO GWO

3 0.35 0.38 0.68 0.49 6.5 8.1 11.7 8.8
4 0.39 0.40 0.82 0.61 3.3 4.5 5.8 4.5
5 0.40 0.41 1.07 0.78 1.1 2.1 3.5 2.2
6 0.41 0.43 1.25 0.92 0 0 0 0
7 0.48 0.51 1.36 1.06 0 0 0 0
8 0.57 0.57 1.44 1.15 0 0 0 0
9 0.62 0.61 1.52 1.21 0 0 0 0
10 0.65 0.62 1.58 1.29 0 0 0 0

4.4. Real-Time Simulation Results

This study’s simulation is carried out using Matlab/Simulink for the three distinct
shading patterns presented in Table 1 and Figure 5 for 6 s, where each shading pattern is
used for 2 s. Based on the recommended value from the study shown above in Section 4.3,
the swarm size used in this study is six for the shortest time of convergence and zero failure
rate. The initial position of search agents for DOA used in this study is based on an equal
distance between each search agent from 0.2 to 0.9 duty ratio, with duty ratios equal to 0.20,
0.34, 0.48, 0.62, 0.76, and 0.90 using Equation (19). The simulation is performed with the
use of re-initialization based on Equation (1), as shown in Figures 6–9 for DOA, MCA, PSO,
and GWO, respectively. This image clearly shows that the DOA recorded the GP of the first
shading pattern (SP-1) in a short amount of time (0.4 s). Meanwhile, the MCA, PSO, and
GWO won the GP in 0.43 s, 1.2 s, and 0.9 s, respectively. This demonstrates the DOA’s and
MCA’s advantages over the other MOAs employed in this study.

In the case of shading pattern changes, the search agents will be stagnated around the
previous GP and will not have the ability to escape from this position in all the optimization
algorithms unless reinitialization occurs based on the condition shown in Equation (1). This
critical condition aids in avoiding the stalling of search agents at one of the LPs, which can
result in a significant increase in extracted power and system efficiency of the photovoltaic
energy systems.
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5. Experimental Work

To validate the simulation results, the identical configuration as described in the
simulation study is used in the lab. The system is divided into three branches, each
with four series modules. As illustrated in Figure 10, the radiation is regulated by an
automatic, controllable light source. The PV system includes a boost converter with the
same specifications as presented in the simulation study, as well as a three-phase inverter
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controlled by sliding mode control to keep the dc-link voltage constant at 220 V under
various operating situations.
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The dc–dc converter (boost converter) is controlled using different MPPT algorithms
with a 20 kHz switching frequency and 0.01 s sampling time. The switching signal gen-
erated from Matlab/Simulink is interfaced with the boost converter through the dSPACE
MicroLabBox. The waveforms are collected through Control Desk Graphical Interface
(CDGI) software, as shown in Figure 10. Six search agents are used in all MOAs.

The hardware used for all MOAs used for MPPT of photovoltaic systems implemented
in this study is the same for all these optimization algorithms. The only difference is in the
code used for the tracking of the GP. The calculation time consumed in each iteration is
measured from the time that the code received the corresponding power for all the duty
ratios that were sent in the previous iteration until calculating the new duty ratios. This
time is different from one study to another, and it should be lower than the sampling
time (0.01 s). The calculation time consumed in each iteration is measured in Matlab code,
where it was 0.14, 0.07, 0.11, and 0.13 ms for the DOA, MCA, PSO, and GWO algorithms,
respectively. These calculation periods for each iteration reflect the complexity of the
calculation burden for each optimization algorithm, where DOA is the most complex one
and MCA is the simplest one. These calculation periods are substantially lower than the
sampling rate (0.01 s), which means that they will not affect the normal operation of the
MPPT using these optimization algorithms.

The experimental PV power and duty ratio results are displayed in Figures 11–14
for the DOA, MCA, PSO, and GWO algorithms, respectively. These results (shown in
Figures 11–14) show that all of the MOAs employed in this investigation caught the
GP for all shading patterns at varying times of convergence. Meanwhile, the times of
convergence for DOA, MCA, PSO, and GWO are 0.4, 0.43, 1.2, and 0.9 s, respectively. The
practical findings are quite close to the same values obtained from simulation, validating
the improved performance of the DOA when utilized as an MPPT for PV systems compared
to alternative optimization techniques used in this study.
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6. Conclusions

The P-V properties of the PV array exhibit nonlinear relationships. In the event of
uniform irradiance, this connection has just one peak, making traditional maximum power
point tracker (MPPT) approaches suitable for tracking their maximum power. In the
meantime, in the situation of non-uniform irradiance (partial shade), this relation has extra
peaks, which may lead traditional MPPT approaches to become stuck at one of the local
peaks. To address this issue, metaheuristic optimization algorithms (MOAs) are a better
choice. The primary disadvantages of these algorithms are their long convergence times
and sometimes high failure rates. As a result, a recently developed dandelion optimization
algorithm (DOA) is employed to lower the time of convergence and failure rate of PV
system MPPT. When compared to other MOAs such as MCA, PSO, and GWO, the DOA
has the quickest time of convergence of 0.4 s compared to 1.2 s for PSO. Furthermore,
using an identical distance between the search agents’ beginning positions significantly
lowered the convergence time. Due to the cross-relationship between swarm size and
time of convergence and failure rate, an optimal swarm size determination for all MOAs
under consideration is provided, in which six search agents in the swarm are chosen.
These superior findings demonstrated the DOA’s supremacy in MPPT of PV systems when
compared to other optimization techniques.

The cost estimation for the MPPT used with different optimization algorithms is very
important to be determined and compared for different algorithms. For this reason, it is
recommended to obtain further work in the cost estimation of the MPPT for different sizes
of PV systems as a future work of this study.
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