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Abstract: Dedicated equipment, which is widely used in many different types of vehicles, is the core
system that determines the combat capability of special vehicles. Therefore, assuring the normal
operation of dedicated equipment is crucial. With the increase in battlefield complexity, the demand
for equipment functions is increasing, and the complexity of dedicated equipment is also increasing.
To solve the problem of fault diagnosis of dedicated equipment, a fault diagnosis algorithm based
on CNN-LSTM was proposed in this paper. CNN and LSTM are used in the model adopted by
the algorithm to extract spatial and temporal features from the data. CBAM is used to enhance the
model’s accuracy in identifying faults for dedicated equipment. Data on dedicated equipment faults
were obtained from a hardware-in-loop simulation platform to verify the model. It is demonstrated
that the proposed fault diagnosis algorithm has high recognition ability for dedicated equipment by
comparing it to other neural network models.

Keywords: fault diagnosis; convolutional block attention module; deep learning; long short-term
memory; convolutional neural network

1. Introduction

The amount of intelligence and integration of industrial equipment is increasing as
information technology advances, which refines the composition structure of industrial
equipment. At the same time, this change also dramatically increases the difficulty regard-
ing fault diagnosis, making the disassembly fault diagnosis method challenging to apply to
the current situation. Currently, there are two types of fault diagnosis methods: one is to
use mechanism analysis, signal analysis, and so on; the other is to use machine learning
and other methods for fault diagnosis. The former method must depend on plenty of
prior knowledge for fault diagnosis, so this method has certain limitations in terms of fault
diagnosis [1–4]. For the latter, fault diagnosis is mostly completed via machine learning
and other methods. This method of fault diagnosis relies less on prior knowledge, or even
does not need prior knowledge.

The first fault diagnosis method mainly uses time–frequency analysis, and mechanism
analysis to analyze faults. In Ref. [5], Young et al. applied cepstrum technology to extract
bearing fault features and achieved an excellent anti-noise effect. In Ref. [6], Yang et al.
combined envelope spectrum analysis and empirical mode decomposition to propose a new
fault diagnosis method for rolling bearings. This method carried out envelope spectrum
analysis on components after empirical mode decomposition. In Ref. [7], Klausen et al.
proposed a fault diagnosis method based on automatic envelope spectrum analysis.

The second fault diagnosis method mainly adopts machine learning methods, such
as BP neural network, SVM, etc. In the study of fault diagnosis of dedicated equip-
ment, the fault diagnosis method combining rough set theory and DS evidence theory has
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produced impressive outcomes [8]. In the research of bearing fault diagnosis, a hybrid
framework based on multi-envelope teaching optimization combining variational mode
decomposition and support vector machine is proposed, which can achieve good results
in bearing fault classification [9]. Due to the poor processing effect of classical machine
learning algorithms in the face of processing large amounts of bearing data, a fault diag-
nosis model based on quantum least squares support vector machine was proposed by
Li et al. [10], which combined HHL algorithm in quantum computing with least squares
support vector machine algorithm to alleviate the problem effectively.

Machine learning algorithms work well in other areas too. Mansouri et al. [11] com-
bined the improved artificial butterfly optimization algorithm with SVM and applied it in
the fault diagnosis research of a wind energy conversion system. Cheng et al. [12] proposed
a hybrid intelligent diagnosis method based on improved sine cosine algorithms and BP
neural network (ISCA-BP), and experiments proved that the method has good applicability
in transformer fault classification. Hu et al. [13] introduced BP neural network into the
study of robot joint fault diagnosis. Li et al. [14] proposed a fault diagnosis model combin-
ing the decision tree and FCNN and used it to study the fault diagnosis of transformers.
Experiments demonstrate the generalizability of this method.

The use of machine learning for fault diagnosis decreases dependence on prior knowl-
edge to a certain extent, and it has made remarkable achievements in the study of fault
diagnosis. However, the traditional machine learning method also has certain limitations
in the face of complex models or large amounts of data.

The concept of deep learning was put forward in 2006. With the development of
information technology, the computing power of computers has increased tremendously,
and deep learning has effectively been utilized across many areas, gradually improving
people’s lives [15–17]. Common network structures in fault diagnosis include deep belief
networks (DBN), generative adversarial networks (GAN), recurrent neural networks (RNN),
convolutional neural networks (CNN), etc.

(1) Deep belief network

The DBN belongs to the probabilistic graph model, which is composed of multiple
limiting Boltzmann machine layers. Niu et al. [18] proposed an adaptive deep confidence
network based on principal component analysis and parameter correction linear element ac-
tivation layer. The method was used in the fault diagnosis for rolling bearing. Gao et al. [19]
studied bearing fault diagnosis using the DBN optimized by the salp swarm algorithm.
Tran et al. [20] proposed a fault diagnosis method combining Teager–Kaiser energy opera-
tion (TKEO) and the DBN for reciprocating compressor valves. The method used the TKEO
to estimate the amplitude envelope and wavelet transform to remove noise. DBN is used
to classify faults.

(2) Generative adversarial network

Generative adversarial network is a generative model that is applied to problems
such as data generation and is often used to solve the problem of less labeled training set
data. Zhou et al. [21] designed a generator and discriminator of a GAN for the impact
of unbalanced data problems on fault diagnosis results and applied them in the study
of bearing fault diagnosis. Pham et al. [22] proposed an effective GAN based on data
enhancement for the early low-speed fault diagnosis of rolling bearings and proved the
effectiveness of the network in the unbalanced composite dataset.

(3) Recurrent neural network

Different from artificial neural networks, recurrent neural networks can obtain time
sequence information in data and have better processing ability for data with strong
correlation. Han et al. [23] adopted the method combining a CNN and gated cycle unit
to classify faults and applied it to the study of bearing faults. Zhang et al. [24] designed
a fault diagnosis method for rotating machinery based on RNN. Firstly, the model input
is a two-dimensional image converted by a one-dimensional time series vibration signal.
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Then, the gated cycle unit is introduced, and the representative features contained in the
time sequence data are extracted by using the time information. Finally, the multi-layer
perceptron is used for fault identification. LSTM is a special cyclic neural network that
is suitable for processing long time sequence information. Jalayer et al. [25] proposed
a model combining fast Fourier transform and continuous wavelet transform to obtain
fault characteristics of rotating machinery fault information and then used the structure
combining CNN and LSTM to classify faults. Compared with the other 12 fault diagnosis
models, it is proved that this method has better fault diagnosis accuracy. LSTM has also
been applied to fault diagnosis research of wind turbines [26,27] and industrial devices [28].

(4) Convolutional neural network

Since the CNN was first proposed in 1989 [29], its theory has been developed rapidly.
Today, it has become one of the most common deep learning models. The convolu-
tional neural network can effectively extract data features and facilitate fault classification.
Sinitsin et al. [30] proposed the CNN-MLP hybrid model for rolling bearing fault diag-
nosis, which combined mixed input to carry out the fault diagnosis of rolling bearing.
Janssens et al. [31] proposed a feature learning method for state monitoring based on CNN
to research rotating machinery faults. Experiments proved that the proposed method was
superior to the method using manual engineering features and random forest classifiers.

The main contributions of this paper can be summarized as follows:

(1) Dedicated equipment is the core equipment that determines the normal operation of
special vehicles and is widely used in various types of vehicles. In previous studies,
due to the difficulty in data acquisition of dedicated equipment, classical machine
learning algorithms were mainly adopted. In this paper, fault data were obtained
through a simulation platform and the deep learning method was adopted for fault
diagnosis research of dedicated equipment.

(2) This paper presents a fault diagnosis model for dedicated equipment based on CNN-
LSTM. LSTM is added to the traditional CNN so that the spatial–temporal features
of the data can be extracted. In addition, CBAM is used to enhance the capability of
extracting critical features.

(3) In this paper, the model is trained and verified by using the data of the hardware-in-
loop simulation platform of dedicated equipment. By verifying the parameters of the
proposed model and analyzing the fault classification process, it is proved that the
fault diagnosis model has a good classification effect on the fault problems of dedicated
equipment. By comparing with different models, it is proved that the proposed method
is a potential solution to the fault diagnosis problem for dedicated equipment.

The rest of this paper is organized as follows: Section 2 briefly introduces CNN, CBAM,
and LSTM. Section 3 introduces the proposed model based on LSTM and the fault model
training process. In Section 4, the data sources used in this paper are introduced, and the
proposed model is analyzed and compared. Conclusions are summarized in Section 5.

2. Theoretical Introduction and Analysis
2.1. Convolutional Neural Network

Convolutional, pooling, and activation layers make up the majority of a CNN. The core
of the CNN is the convolutional layer, and the core part of the convolutional layer is the
convolution operation. The convolution operation is the inner product of different parts
of the data and filter matrix so as to extract the feature information in the data. Different
convolution kernels can extract different features from data, and the size of kernels also
has an important influence on feature extraction. The two are crucial factors to ensure the
convolution layer operates normally as a result.
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The mathematical expression of convolution operation is:

xγ
j = f

(
C−1

∑
i=0

xγ−1
i ∗ kγ

ij + bγ
j

)
(1)

γ is the number of the current layer of the neural network, xγ
j is the j th eigenmatrix of the

current layer, f (•) is the activation function, xγ−1
i is the data element of the γ− 1 layer,

and C is the number of kernels of input data. kγ
ij is the weight matrix of the corresponding

convolution kernel; bγ
j is the bias matrix.

By adjusting the filter on the input data and choosing the maximum or average value
of the data in the sliding window as the output of the pooling unit, the pooling layer can
implement the function of downsampling. The activation function ultimately determines
whether to send a signal and what to send to the next neuron. The Sigmoid, Tanh, and ReLU
activation functions are frequently used activation functions.

Sigmoid

f (x) =
1

1 + e−x (2)

Tanh

f (x) =
ex − e−x

ex+e−x =
2

1 + e−2x − 1 (3)

ReLU

f (x) =
{

max(0, x) , x ≥ 0
0 , x < 0

(4)

2.2. CBAM

CBAM is a lightweight attention module for designing CNN that can be integrated into
any CNN structure [32,33]. Compared with other attention mechanisms, CBAM adjusts
features by inferring attention weights from two dimensions: space and channel. Therefore,
CBAM calculates the attention diagram of the feature graph through two modules. The first
module is channel attention module (CAM), and the other is the spatial attention module
(SAM). The structure is shown in Figure 1.

The mathematical formula for CBAM’s attention mechanism is as follows:

F′ = MC(F)⊗ F
F′′ = MS(F′)⊗ F′

(5)

where F ∈ RC∗H∗W is the input of CBAM, MC(F) ∈ RC∗1∗1 is the output of CAM, and
MS(F′) ∈ R1∗H∗W is the output of SAM. The mathematical formula for CAM’s attention
mechanism is as follows:

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))
(6)

The mathematical formula for SAM’s attention mechanism is as follows:

MS(F) = σ( f ([AvgPool(F); MaxPool(F)]))

= σ
(

f
([

Fs
avg; Fs

max

])) (7)

where W0 ∈ RC/r∗C, W1 ∈ RC∗C/r, σ is the activation function, f is the convolution layer
whose convolution kernel is 7∗7.
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Figure 1. (a) Architecture of the CBAM (b) Architecture of the CAM (c) Architecture of the SAM.

2.3. LSTM

LSTM is a kind of RNN suitable for processing long time sequence information.
Compared with traditional RNN, LSTM can deal with long-term dependent data better by
adding gate mechanism and cell state. The LSTM’s structure is depicted in Figure 2.

Figure 2. Architecture of the LSTM.

By adding cell state Ct, LSTM can store important information for a long time, and this
information can be dynamically adjusted as the input changes. The operation of processing
information is carried out by the gate mechanism. In Figure 2, they are the memory gate,
input gate, and output gate from left to right.

The forgetting door can be calculated using the following formula:

ft = sigmoid
(

w f · [ht−1, xt] + b f

)
(8)

w f represents the weight matrix, b f represents the bias vector, ht−1 represents the output of
the previous unit, and xt represents the current input.

The specific formula of the first stage is shown as follows:

it = sigmoid(wi · [ht−1, xt] + bi)

Gt = tanh
(
wg · [ht−1, xt] + bg

) (9)
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where wg, wi are the weight matrix, and bi, bs is the bias vector. The purpose of this stage
is to select the information to be retained. The second stage is to update the cell state.
The formula is shown as follows:

Ct = Ct−1 ∗ ft + it ∗ Gt (10)

The formula for the output gate is shown as follows:

Ot = sigmoid(wo · [ht−1, xt] + bo)

ht = O ∗ tanh(Ct)
(11)

where wo and bo are weight matrix and bias vector, respectively.
Since LSTM can effectively process long time sequence information, it still has an

excellent solution to the problem of dependence between distant words in natural language
processing, except in fault diagnosis research.

3. Fault Diagnosis Model Based on CNN-LSTM
3.1. Fault Diagnosis Model Architecture Based on CNN-LSTM

Since there is a strong correlation between different signals of dedicated equipment
and the traditional CNN cannot extract the sequential features in the data, this paper adds
LSTM to the traditional CNN to enhance the feature extraction ability. The fault diagnosis
model based on CNN-LSTM for dedicated equipment proposed in this paper combines
the characteristics of CNN and LSTM to obtain the deep features in the data. Meanwhile,
CBAM is used to improve the fault classification effect of dedicated equipment.

The structure diagram of the proposed model is shown in Figure 3. It is primarily
separated into four components. Firstly, the convolution layer is used to process the data
and extract the features of the data. Then, the time complexity is reduced through the
processing of the pooling layer. After that, the spatial–temporal features of the data are
extracted through the second and third parts. At the same time, the CBAM mechanism
can encourage the model to pay attention to the critical information, which is helpful to
the subsequent information extraction and increases the classification accuracy. Finally,
the data flow to the last part is extracted by LSTM and expanded into a one-dimensional
vector, and then the data are classified by the full connection layer. The parameters of the
proposed model are shown in Table 1.

Table 1. Parameters of the fault diagnosis model.

Network Layer Kernel Size Number of Kernels Step Size

Cov 5 8 1
Pool 3 1

LSTM 16
Cov 5 16 1
Pool 3 1

LSTM 8
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Figure 3. Fault diagnosis model structure for dedicated equipment.

3.2. Fault Model Training Process

The training flow of dedicated equipment fault diagnosis is shown in Figure 4. Firstly,
validation data are obtained from the hardware-in-loop simulation platform of dedicated
equipment, and 23 kinds of faults are set using the platform’s fault injection system.
For each fault setting, users need to use the platform to perform corresponding operations,
such as launch and move commands, so that the collected data contain more comprehensive
fault characteristics. After setting a fault, users need to store data. Further, 80 samples were
selected for each fault type, and each sample contained 128 data and used all fault types as
one dataset. A total of three datasets are stored. After that, the fault data are generated into
a file in the specified form.

Then, the data are preprocessed, and 80% of the processed data are taken as the
training set and 20% as the test set. After that, the model was trained, and the cross-entropy
loss function was utilized to calculate the model’s output. The backpropagation algorithm
and Adam algorithm were used to update the parameters. The learning rate was 0.001,
the batch size was 32, and the epoch was 1000. Finally, the test set is used to verify the
model, including analyzing the classification process of the model, comparing with different
fault diagnosis models, etc. Through the verification results, it is judged whether the model
meets the requirements.
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Figure 4. Fault diagnosis training methods for dedicated equipment.

4. Analysis and Verification
4.1. Fault Data Acquisition and Preprocessing

This paper obtains the training and verification data of the proposed model by the
hardware-in-loop simulation platform of dedicated equipment. A physical image of the
platform is shown in Figure 5. The platform is used to set the required faults, and then
operations are performed according to the operational requirements of the dedicated
equipment, and the fault data are stored. The fault types studied in this paper are mainly
the open circuit of the signal channel of the dedicated equipment. The collected data
contain most of the signals received and sent by the dedicated equipment, and the collected
signals can contain all the characteristics of the required faults. At the same time, the three
datasets used in this paper are stored for the stable operation of the platform. There are
23 fault types studied in this paper, 80 samples were selected for each fault type, each
sample contained 128 data, and all fault types were used as one dataset.

Figure 6 shows the numerical changes of some other channel signals when the signal
channel of the 26V power pin of the dedicated equipment breaks down. As can be seen from
the operating mechanism of the device, when the signal of a channel disappears, the signal
of other channels will also change accordingly. As shown in Figure 6, the channel change
occurs in various fault types, so the data classification is relatively complicated. At the
same time, the data collected by the hardware-in-loop simulation platform are obtained
by the acquisition card and related programs. There will be the problem of information
distortion, so it is essential to conduct data preprocessing.

Data preprocessing includes removing incomplete and wrong data and screening the
data according to the operation mechanism of equipment components, signal characteristics,
etc. Some signals of the dedicated equipment are shown in Table 2, and the signal value
in Table 2 is the voltage range of the corresponding signal. If the collected signal value



Energies 2023, 16, 5230 9 of 16

is not within the range of the corresponding signal value, the corresponding data should
be deleted.

Figure 5. Physical diagram of hardware-in-loop simulation platform.

Figure 6. (a–c) Signal changes in 3 channels of dedicated equipment.

Table 2. I/0 signals.

Signal Signal Value/V

1 23.4–28.6
2 21.4–30.6
3 23.4–28.6
4 21.4–30.6
5 21.4–30.6
6 21.4–30.6
7 −4.5–5.5
8 23.4–28.6
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4.2. Result Analysis
4.2.1. Discussion of Model Parameters

A crucial parameter in the proposed model for dedicated equipment is the number of
kernels. The different number of kernels will make the fault diagnosis model remarkably
different in fault identification ability. Therefore, the proposed model is verified when the
size of the convolution kernel of the two convolution layers is 3-3, as shown in Table 3. The
recognition accuracy of fault diagnosis models indicates the number of samples for which
the fault is correctly identified divided by the total number of samples.

Table 3. The recognition accuracy of the proposed models with the different number of kernels.

Number of Kernels Dataset A Dataset B Dataset C

8-10-8 91.15% 90.89% 90.7%
8-10-16 88.1% 87.3% 87.8%
8-16-8 94.37% 93.98% 94.52%

8-16-32 3% 3% 3%
8-32-16 3% 3% 3%

The three numbers filled in the number of kernels in Table 3 are the number of kernels
in the first convolutional layer and two LSTM layers. The number of kernels in the second
convolutional layer is the same as that in the first LSTM layer. For each combination,
three datasets were used for verification, and the results of each verification group were
obtained by taking the mean of the results of multiple verifications. According to the
results, compared with the first two combinations, when the combination is 8-16-8, the fault
model has the highest fault recognition rate of the dedicated equipment. In the last two
combinations, when the number of kernels exceeds 16, the model cannot generally be
trained due to gradient vanishing. After adding the BN layer, some models with more than
16 kernels can be trained. Still, the accuracy of the fault diagnosis model with the BN layer
is lower than that without the BN layer.

The size of kernels also has a great influence on the fault recognition ability of the fault
diagnosis model. Dataset A is used for testing. As shown in Figure 7, convolution kernel
size contains the size of the kernel of two convolution layers.

Figure 7. The recognition accuracy of fault diagnosis models with different kernel size.

Figure 7 illustrates the shifting trend in model fault diagnosis accuracy, which first in-
creases and then declines as kernel size grows. When the kernel size reaches 16, the model’s
fault diagnosis accuracy decreases significantly. When the kernel size of two convolutional
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layers is set to 5-5, the correct rate of fault diagnosis is the highest. Therefore, the parameters
of the proposed model are shown in Table 1.

4.2.2. Verification of Model Results

Figure 8 shows the confusion matrix of this model, which uses the data of the test
set to test the model and selects nine faults from twenty-three kinds of faults for display.
The classification of each fault type by the fault diagnosis model is displayed using the
confusion matrix. It can be seen from Figure 8 that the failure type shown in Figure 8 is
above 0.9, and the accuracy rate of most fault types is 1. Therefore, it can be proved that the
model has excellent precision for all fault types.

Figure 8. Confusion matrix for testing data.

As shown in Figure 9, t-SNE is used to visualize the output of the four parts of the
fault diagnosis model, and seven fault types are shown. Visualization of the classification
process can clearly discover the classification of data by different structural layers so as
to facilitate the study of the model. As seen from Figure 9, data of different fault types
are relatively mixed after the convolution layer of the first part of the model. After the
spatial–temporal characteristics of the data are extracted through the second part of the
LSTM and the third part of the convolution layer, data of the same fault type are relatively
aggregated, and fault data of different fault types begin to disperse. The proposed model’s
output shows that the model has a decent classification effect for different fault types.
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Figure 9. Visualization of fault diagnosis model identification process.

4.2.3. Model Comparison

In order to verify the advantages of the proposed fault diagnosis model of dedicated
equipment, the three models are trained several times. As shown in Figure 10, the changing
trend of fault diagnosis accuracy rate of the models against the test set data during the
training is compared. The CNN structure is the structure of the proposed model without
LSTM, wherein the number of kernels of the two convolutional layers is 32. The structure
of the LSTM model is the first and fourth part of the proposed model. As can be seen
from Figure 10, compared with traditional CNN, adding LSTM can improve the feature
extraction ability of the model for dedicated equipment data. For the LSTM model with
single-layer LSTM, its fault diagnosis accuracy is not much improved compared with CNN,
but it dramatically reduces the training time of the model. Although the training time of
the proposed model is slightly longer than that of the LSTM model, the fault diagnosis
accuracy has been significantly increased. Therefore, it is demonstrable that the proposed
model has an excellent effect on the diagnosis of dedicated equipment faults.

Traditional fault diagnosis methods such as SVM were used in the past dedicated
equipment, such as fire control system in dedicated equipment [34–36]. Due to data and
other reasons, they did not obtain high accuracy of fault diagnosis, or they are not suitable
for fault diagnosis research with large amounts of data. Since this paper uses hardware-
on-loop simulation platform data for research, this paper uses neural network models
that are excellent in other fields for comparative research. Table 4 shows the accuracy
rates of different fault diagnosis models in dedicated equipment fault diagnosis. Model
1 is the proposed fault diagnosis model, model 2 is the model introduced above, and
model 3 is a fault diagnosis model composed of two continuous layers of LSTM and two
continuous layers of CNN [37]; this model uses two successive layers of LSTM to extract
features from the data. Model 4 is a fault diagnosis model based on CNN [38]; this model
is normalized by GN. Model 5 is the residual neural network model proposed in [1]; this
model uses two residual blocks for feature extraction. Model 6 uses WDCNN for fault
classification [39]; WDCNN uses wide convolution kernel to improve the classification of
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faults. As seen from Table 4, model 5 has the worst performance in fault identification.
The fault diagnosis accuracy of model 6 is also slightly lower. The accuracy of models 2, 3,
and 4 is not much different, but the accuracy of models 2 and 3 is higher than that of the
CNN model. The results show that the proposed model has a better effect compared with
other models.

Figure 10. The changing trend in fault diagnosis accuracy of different models in the test set.

Table 4. Comparison of fault diagnosis accuracy of different models.

Model Number Model Name Accuracy Rate

1 Proposed 95.9%
2 LSTM 93.0%
3 LSTM-CNN 92.2%
4 CNN 92.4%
5 ResNet 75.2%
6 WDCNN 90.1%

Figure 11 shows the output classification of the four models after t-SNE dimension
reduction. By reducing the dimensions of the output of different models, we can clearly
find the fault classification degree of different models so as to facilitate the further study of
the models.

Figure 11 shows seven fault types selected from twenty-three faults with a 100%
accuracy rate. Data from dataset C are also used to detect the trained model, and each color
represents a fault type. In Figure 11, (a) shows the output of model 4 in Table 4, (b) shows
the output of model 2 in Table 4, (c) shows the output of the proposed model, and (d) shows
the output of model 3 in Table 4. As observed from Figure 11, the output results of multiple
fault types in (a) are relatively mixed, and the boundaries between different fault types are
not obvious. The fault diagnosis model represented by (b) and (d) has a better classification
effect on some fault types among the seven selected fault types than (a), but there are still
some fault types with unclear classification boundaries. In contrast, the output results of
different fault types in (c) are clearly distinguished. Therefore, it can be concluded that
the proposed model based on CNN-LSTM has an excellent effect on the fault diagnosis of
dedicated equipment.
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Figure 11. t-SNE dimension reduction analysis of output results of fault diagnosis model of dedi-
cated equipment.

5. Conclusions

Dedicated equipment is an essential part of ensuring the combat ability of a vehicle,
and it is one of the most complex structures in the vehicle, so it is crucial to study the fault
diagnosis of the dedicated equipment. This paper proposes a fault diagnosis algorithm
based on CNN-LSTM to solve the problem of the fault diagnosis of dedicated equipment.
In this model, LSTM is added to the traditional CNN so that the spatial–temporal fea-
tures of the data can be extracted. Moreover, CBAM is incorporated into the model to
enhance the capability of extracting critical features, hence enhancing fault diagnosis. The
model is trained and tested with appropriate data obtained by a hardware-in-loop simula-
tion platform. The model is then contrasted with other neural network models, and the
findings demonstrate that the proposed algorithm has a strong capacity for dedicated
equipment faults.

The dedicated equipment fault diagnosis model based on CNN-LSTM has good
feature extraction and fault classification capabilities, which can provide potential solutions
for the fault diagnosis problems of dedicated equipment. In the future, the fault diagnosis
algorithm proposed in this paper will be validated using the data of actual vehicles.
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