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Abstract: Renewable energy power generation systems such as photovoltaic and wind power have
characteristics of intermittency and volatility, which can cause disturbances to the grid frequency.
The battery system of electric vehicles (EVs) is a mobile energy storage system that can participate in
bidirectional interactionwith the power grid and support the frequency stability of the grid. Lithium
iron phosphate (LiFePO4) battery systems, with their advantages of high safety and long cycle life,
are widely used in EVs and participate in frequency regulation (FR) services. Accurate assessment
of the state of charge (SOC) and remaining available energy (RAE) status in LiFePO4 batteries is cru‑
cial in formulating control strategies for battery systems. However, establishing an accurate voltage
model for LiFePO4 batteries is challenging due to the hysteresis of open circuit voltage and internal
temperature changes, making it difficult to accurately assess their SOC and RAE. To accurately eval‑
uate the SOC and RAE of LiFePO4 batteries in dynamic FR working conditions, a thermal‑electric‑
hysteresis coupled voltage model is built. Based on this model, closed‑loop optimal SOC estimation
is achieved using the extended Kalman filter algorithm to correct the initial value of SOC calculated
by ampere‑hour integration. Further, RAE is accurately estimated using a method based on future
voltage prediction. The research results demonstrate that the thermal‑electric‑hysteresis coupling
model exhibits high accuracy in simulating terminal voltage under a 48 h dynamic FR working con‑
dition, with a rootmean square error (RMSE) of only 18.7mV. The proposed state estimation strategy
can accurately assess the state of LiFePO4 batteries in dynamic FRworking conditions, with an RMSE
of 1.73% for SOC estimation and 2.13% for RAE estimation. This research has the potential to be ap‑
plied in battery management systems to achieve an accurate assessment of battery state and provide
support for the efficient and reliable operation of battery systems.

Keywords: frequency regulation; electric vehicles; remaining available energy; thermal‑electric‑
hysteresis coupling model; state of charge

1. Introduction
1.1. Background

To achieve carbon neutrality, the installed capacity and generation of renewable en‑
ergy systems such as solar photovoltaic and wind power are continuously increasing [1].
However, these renewable energy systems exhibit intermittency and variability, and the
direct integration of their generated electricity into the power grid can cause disturbances
to the grid frequency. In a high proportion of renewable energy power systems, to en‑
sure the stability of the power grid frequency, the dispatch center needs to monitor the
grid frequency deviation in real‑time and issue frequency regulation (FR) instructions to
the FR ancillary services market [2]. Lithium iron phosphate (LiFePO4) battery energy
storage systems used in electric vehicles (EVs), due to their long cycle life, low cost, and
high safety performance, have gradually gained favor from FR service providers, and their
market share continues to increase. The participation of energy storage systems in grid FR
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requires real‑time assessment of the battery system’s state of charge (SOC) and remaining
available energy (RAE) by the battery management system. Based on the current state of
the battery, corresponding control strategies are formulated to prevent overcharging and
over‑discharging of the battery [3], mitigate safety risks [4], andmaximize earnings. There‑
fore, accurately estimating the battery system’s SOC and remaining energy is crucial. The
SOC and RAE of a battery cannot be directly measured; instead, corresponding algorithms
need to be designed for estimation. Advanced battery management algorithms are based
on battery voltagemodels [5], and establishing an accurate voltagemodel is the foundation
for state estimation [6]. Under FR working conditions, the current exhibits bidirectional
high‑frequency pulses, causing a significant rise in internal temperature during the opera‑
tion of LiFePO4 batteries. The open‑circuit voltage (OCV) also exhibits complex hysteresis
characteristics, making accurate voltage modeling challenging. Therefore, it is of great re‑
search significance for FR working conditions to establish high‑precision voltage models
that consider multiple influencing factors and to establish accurate state estimation algo‑
rithms. These efforts are essential for ensuring precise control, reliable operation, and high
efficiency of energy storage systems.

1.2. Literature Review
1.2.1. Lithium‑Ion Battery Model

The voltagemodels for LiFePO4 batteries are divided into electrochemicalmechanism
models, simplified electrochemical mechanism models, equivalent circuit models (ECMs),
and neural network models (NNMs). Doyle et al. [7] used partial differential equations to
describe the solid‑phase and liquid‑phase potential distribution during the charge and dis‑
charge process of lithium‑ion batteries, as well as the diffusion of lithium ions in the solid
phase and the migration of lithium ions in the liquid phase. They proposed the pseudo‑
two‑dimensions (P2D) model. This model achieves high accuracy in terminal voltage sim‑
ulation but has numerous microscopic parameters, making parameter identification chal‑
lenging and requiring extensive computational resources. Simplifying the positive and
negative electrode active particles as single particles, the single particle (SP) model was
proposed [8], which simplifies the computational complexity of the P2D model. The SP
model exhibits higher simulation accuracy for the terminal voltage at low current rates,
but lower simulation accuracy for the terminal voltage at high current rates. Based on the
P2D model, a simplified pseudo‑two‑dimensions (SP2D) model was proposed by polyno‑
mial approximation of the lithium‑ion concentration in the electrolyte [9]. The P2D model
was linearized to develop the reduced‑ordermodel (ROM) for real‑world applications [10].
The ECM uses resistors, capacitors, and other components to simulate the electrochemical
reactions occurring inside the battery. It offers ideal terminal voltage simulation accuracy
while reducing computational time cost, and it has been widely applied in electric vehi‑
cles [11,12]. Hu et al. [13] compared the terminal voltage simulation accuracy of 12 dif‑
ferent ECMs for LiFePO4 batteries under automotive dynamic stress test conditions (DST)
and federal urban driving schedule (FUDS) working conditions. The results showed that
the optimal choice for LiFePO4 batteries is to use a first‑order RC equivalent circuit model
coupled with a single‑state hysteresis. The hysteresis phenomenon in LiFePO4 batteries
refers to the fact that different charging and discharging paths result in different OCV val‑
ues at the same SOC. LiFePO4 material has an olivine structure, and during the charge
and discharge process, it exhibits a coexistence of two phases: FePO4 and LiyFePO4. Dif‑
ferent lithium extraction and insertion pathways result in different OCVs [14]. The ther‑
modynamic explanation for the hysteresis phenomenon in LiFePO4 batteries is the non‑
monotonic variation of the single‑particle chemical potential [15]. The OCV of LiFePO4
batteries continuously changes under different charge and discharge paths, making accu‑
rate modeling of the terminal voltage challenging. However, Huria et al. [16] accurately
described the hysteresis voltage using a hysteresis voltage reconstruction equation. The
NNM is a black‑box model that typically takes features such as current, temperature, and
polarization as inputs [17]. It trains the neural network node parameters to construct a non‑
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linear mapping between the input features and the terminal voltage output. This method
requires a lot of experimental and real‑world data sets to train the model and may have
poor adaptability to new data.

Heat is generated during the operation of LiFePO4 batteries, leading to a continuous
increase in internal temperature. The battery’s temperature affects the polarization process
and is closely related to the variation of the terminal voltage. To achieve accurate termi‑
nal voltage modeling, the thermal‑electrical coupling characteristics of the battery need to
be considered. Battery thermal models can be classified into one‑dimensional (1D) mod‑
els, two‑dimensional (2D)models, three‑dimensional (3D)models, and lumped parameter
models [18]. Wang et al. [19] established a 1D electrochemical‑thermal couplingmodel that
considers electrode reactions, Joule heating, heat conduction, and convective heat transfer
effects. This model enables real‑time prediction of the battery’s temperature distribution
and voltage variation. Xu et al. [20] utilized a 2D electrochemical‑thermal coupling model
to simulate the temperature and current gradient distribution of LiFePO4 batteries in a two‑
dimensional space. Ghalkhani et al. [21] constructed a 3D electro‑thermal coupling model
and, based on the temperature field curve, discovered that heat accumulation is highest
around the positive electrode due to the non‑uniform distribution of current and local
variations in internal resistance within the battery. The models mentioned above consider
the spatial scale of the electrodes, which involves significant computational complexity.
Lumped thermal parameter models have been widely used to reduce the computational
cost of thermal models further. Lin et al. [22] and Dai et al. [23] abstracted the battery core
and surface into two points. They combined them with an ECM to achieve a real‑time es‑
timation of the terminal voltage and internal temperature with high accuracy. However,
current electric‑thermal coupling models often neglect the hysteresis phenomenon of the
OCV.Most research has focused on constant current charge/discharge operating scenarios,
where the overall current changes unidirectionally. Further validation is needed to assess
the accuracy of terminal voltage simulation under high‑frequency bidirectional current
variations in dynamic FR working conditions.

1.2.2. State‑of‑Charge and Remaining Available Energy Estimation Methods
The SOC of a battery cannot be directly measured. Common methods for SOC esti‑

mation include ampere‑hour integration, OCV lookup table method, feedback correction
algorithms based on voltage models, and neural network algorithms. Initial SOC and cur‑
rent measurement errors heavily influence the ampere‑hour integration method, resulting
in low estimation accuracy [24]. The OCV lookup table method requires the battery to
rest for a long time to obtain the OCV value, making it unsuitable for dynamic operating
conditions [25]. The feedback correction algorithm based on voltage models is a closed‑
loop SOC estimation algorithm, which mainly includes the sliding‑mode observer [26],
extended Kalman filter (EKF) [27], Kalman filter algorithm (KF) [28], particle filter algo‑
rithm (PF) [29], H∞ observer [30], etc. The EKF algorithm has advantages such as high
accuracy and robustness. It also has a moderate computational load, making it the most
widely used algorithm in recent years. The neural network method selects suitable input
features through feature engineering, designs and trains the network, and constructs a
nonlinear mapping relationship with SOC [31–33]. Due to the strong nonlinearity of the
input features, SOC estimation based on neural network methods may exhibit larger fluc‑
tuations [34,35].

The energy state of a battery (SOE) refers to the ratio between the available energy and
the maximum available energy of the battery [36]. Available energy can be divided into
remaining available energy (RAE) and theoretical remaining energy. RAE represents the
actual energy discharged by the battery under a specific operating condition until the cut‑
off voltage is reached. The remaining discharge energy is dependent on future operating
conditions. Theoretical remaining energy refers to the energy a battery can deliver when
discharged to zero charge under ideal conditions (with an infinitesimally small current).
The remaining theoretical energy only depends on the battery’s current state of charge
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(SOC) [37]. What directly affects the functionality of energy storage batteries is the RAE
rather than the remaining theoretical energy. Liu et al. [38] developed a coupled predic‑
tion algorithm based on the battery model to predict the RAE. This algorithm considers
the future current profiles and predicts the future sequences of terminal voltage, SOC, and
model parameters. The RAE is then estimated based on the predicted future terminal volt‑
age sequence. The algorithm considers the impact of future current profiles on the remain‑
ing discharge energy. However, it does not consider the influence of future temperature
variations and the uncertainty of future current profiles in practical situations.

1.2.3. Literature Review Summary
The literature rarely focuses on voltage modeling and state estimation under high‑

frequency bidirectional current operating conditions. The accuracy of voltage models and
state estimation algorithms in dynamic FR working conditions requires further validation.
The coupling effects of internal temperature variations and OCV hysteresis influence the
accuracy of the LiFePO4 battery model. Neglecting the coupling variations among various
characteristics can result in low accuracy in terminal voltage simulation. The mainstream
method for SOC estimation is the EKF algorithm based on voltage model feedback correc‑
tion. However, the accuracy of RAE estimation is significantly affected by future operating
conditions. Therefore, further research is needed to develop accurate estimation methods
for SOC and RAE under dynamic FR working conditions.

1.3. Contribution of This Research
The research process is depicted in Figure 1. Weutilized a commercial 120AhLiFePO4

battery and conducted various experiments to capture its thermal, electrical, and hysteresis
characteristics. Specifically, based on main hysteresis and minor hysteresis experiments,
we developed a hysteresis voltage reconstructionmodel (HVRM) that accurately describes
the hysteresis variations in the OCV. Based on the multi‑temperature and multi‑rate Hy‑
brid Pulse Power Characterization (HPPC) experimental data, the Particle Swarm Opti‑
mization (PSO) algorithm was utilized to identify and obtain the Multi‑Dimensional Pa‑
rameter (MAP) plot of a second‑order RC equivalent circuit model (SRCM). The battery’s
internal temperature was accurately estimated using a two‑state thermal model and an
EKF closed‑loop correction algorithm, calibrated by temperature measurements from the
surface thermocouple under various operating conditions. A thermal‑electric‑hysteresis
coupled model was constructed to estimate terminal voltage under dynamic FR operat‑
ing conditions accurately. Furthermore, the initial value of SOC was calculated using the
ampere‑hour integrationmethod. The error between the predicted andmeasured terminal
voltage values was used to provide feedback for SOC correction. By predicting the future
terminal voltage sequence and employing an RAE estimation algorithm, accurate estima‑
tion of SOC and RAE was achieved. This research focuses on the accurate modeling of
terminal voltage and precise assessment of the state of a LiFePO4 battery under dynamic
FR working conditions. It has the potential to be applied in EV battery management sys‑
tems, improving the accuracy of battery management and providing strong support for
the development of control strategies in automotive and energy storage systems.
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2. Thermal‑Electric‑Hysteresis Coupling Model
2.1. Battery Experiment

This research utilizes a 120 Ah commercial LiFePO4 battery. The typical parameters
of the battery are shown in Table 1.

Table 1. Typical parameters of the 120 Ah commercial LiFePO4 battery.

Item Specification

Cathode material LiFePO4
Anode material Graphite
Nominal capacity 120 Ah
Nominal voltage 3.2 V

Rated discharging power 190 W
Rated discharging energy 380 Wh

Operating voltage 2.5~3.65 V
Length × width × height 174 mm × 48 mm × 170.5 mm

Weight 2.86 kg

The experimental platformof the battery is illustrated in Figure 2. The charge/discharge
system used in this study is produced by Arbin Instruments, College Station, TX, USA. It
has a maximum testing current of 300 A and a maximummeasurement voltage of 5 V. The
charge/discharge unit is connected to the main control computer through controller area
network (CAN) communication. Various experimental procedures can be performed on
the battery by loading different test steps into the main control computer. The battery is
placed inside a Bell BE‑THK programmable temperature chamber to offer different envi‑
ronmental temperatures. The temperature chamber is manufactured by Bell Experiment
Equipment Co., Ltd. in Dongguan, China. A K‑type thermocouple is placed in the bat‑
tery to obtain internal temperature data. The temperature is collected using a HIOKI data
acquisition device. For detailed experimental procedures regarding the placement of the
internal thermocouple, please refer to Supplementary Material Figure S1.

To obtain the basic characteristics of the battery, various experiments are conducted.
The experimental content and main experimental steps are shown in Table 2. The battery
capacity experiment aims to obtain the battery’s standard capacity. The capacity experi‑
ment value at 25 ◦C is 127.64 Ah. Actually, we have also conducted capacity experiments
on the battery at 35 ◦C. The average capacity value from three 1/3C constant current dis‑
charges is 127.91 Ah, with a difference of only 0.2% compared to the capacity experiment
at 25 ◦C. The difference in capacity is minimal. In the subsequent studies, the battery op‑
erates between 25 ◦C and 35 ◦C. Therefore, we neglected the influence of temperature on
the capacity parameters. The HPPC tests are conducted at both 25 ◦C and 35 ◦C. Multiple‑
rate pulses of 1/3C, 1/2C, and 1C are applied. The transient voltage variations during the
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pulse segments support the identification of ECM parameters. In the HPPC experiments,
pulse tests are conducted at every 5% SOC, allowing for voltage responses of the battery
at more SOC points compared to tests conducted at every 10% SOC. Through parame‑
ter fitting methods, more densely distributed ECM parameters are obtained, resulting in
more accurate parameter interpolation. As a result, the battery’s characteristics are better
represented. To investigate the hysteresis characteristics of the battery, a main hysteresis
experiment and two minor hysteresis experiments are conducted at 25 ◦C and 35 ◦C. The
main hysteresis experiment aims to obtain the complete OCV hysteresis loop. The minor
hysteresis experiments set different SOC variation paths to simulate the repetitive changes
occurring in FR scenarios. We adjust the SOC by 5% by charging or discharging the bat‑
tery at a current of 1/3C for 9 min. After adjusting the SOC, we let the battery rest, during
which the current becomes zero. We measure the OCV value after a 3 h resting period.
To establish a thermal model for the battery, tests are conducted to measure the entropy
heat coefficient and multi‑rate constant current experiments with the internal thermocou‑
ple. The accuracy of the two‑state thermal model and the internal temperature estimation
method is validated using experimental data. Finally, we conducted experiments under
FR working conditions based on the FR commands from the Pennsylvania‑New Jersey‑
Maryland Interconnection (PJM) electricity market from 4 July to 5 July 2020. The original
FR commands range from−1 to 1. This value is multiplied by the battery’s rated power of
192 W and divided by the nominal voltage to obtain the dynamic current that the battery
needs to respond to under the FR command. It is worth noting that experimental item 5 in
Table 2 is conducted with the inserted thermocouple, while the other experiments are con‑
ducted without the inserted thermocouple. Before inserting the thermocouple, the battery
is discharged to 0% SOC, and its OCV is measured as 2.83 V. After inserting the thermo‑
couple, the battery is left to rest, and the OCV is measured again, resulting in the same
value of 2.83 V. Due to the thermocouple’s small diameter of only 0.5 mm, the insertion
of the thermocouple has no noticeable impact on the measurement of the OCV before and
after its installation. The experimental results of the HPPC experiment, main hysteresis
experiment, minor hysteresis experiment, and battery entropy heat experiment are shown
in Figure 3.
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Table 2. Battery experiment contents.

Item Main Experiment Steps

1. Battery capacity
experiment

¬ Discharge at a constant current (CC) of 1/3C at 25 ◦C until the cut‑off voltage of 2.5 V.
 Charge at a constant current and constant voltage (CCCV) of 1/3C at 25 ◦C, with a cut‑off current of 6
A (1/20C).
® Allow the battery to rest for two hours at 25 ◦C.
¯ Discharge at a CC of 1/3C at 25 ◦C until the cut‑off voltage of 2.5 V.
° Allow the battery to rest for two hours at 25 ◦C.
± Repeat steps  to ° three times and take the average of the discharge capacities obtained from the
three cycles.
Experimental result: 127.64 Ah

2. HPPC experiment

¬ Charge at a CCCV of 1/3C at 25 ◦C, with a cut‑off current of 6 A (1/20C).
 Perform SOC adjustment by discharging at 1/3C current and adjusting SOC by 0.05 at each step at
temperatures of 25 ◦C and 35 ◦C.
The SOC adjustment path:
1→ 0.95→ 0.9 . . . 0.1→ 0.05→ 0.
® Perform current pulse excitation at each SOC experimental point at temperatures of 25 ◦C and 35 ◦C:
• Discharge at 1/3C for 30 s, rest for 40 s, charge at 1/3C for 30 s, and rest for 10 min.
• Discharge at 1/2C for 30 s, rest for 40 s, charge at 1/2C for 30 s, and rest for 10 min.
• Discharge at 1C for 30 s, rest for 40 s, charge at 1C for 30 s, and rest for 10 min.
For SOC 1, only perform discharge pulses, and for SOC 0, only perform charge pulses.
Experimental results are shown in Figure 3a,b.

3.1. Main hysteresis
experiment

¬ Charge at a CCCV of 1/3C at 25 ◦C, with a cut‑off current of 6 A (1/20C).
 Adjust SOC by discharging at a current of 1/3C at temperatures of 25 ◦C and 35 ◦C, with each
adjustment being 0.05 SOC.
The SOC adjustment path is as follows:
1→ 0.95→ 0.9→ . . . → 0.1→ 0.05→ 0→ 0.05→ 0.1→ . . . → 0.95→ 1
® At temperatures of 25 ◦C and 35 ◦C, allow the battery to rest for 3 h after reaching each SOC node and
record the OCV value.
Experimental results are shown in Figure 3c.

3.2. Minor hysteresis
experiment‑I

¬ Charge at a CCCV of 1/3C at 25 ◦C, with a cut‑off current of 6 A (1/20C).
 Adjust SOC by discharging at a current of 1/3C at temperatures of 25 ◦C and 35 ◦C, with each
adjustment being 0.05 SOC.
The SOC adjustment path is as follows:
1→ 0.95→ . . . → 0.15→ 0.2→ 0.25→ . . . → 0.75→ 0.8→ 0.75→ . . . → 0.15→ 0.2→ 0.25→ . . . →
0.95→ 1
® At temperatures of 25 ◦C and 35 ◦C, allow the battery to rest for 3 h after reaching each SOC node.
Experimental results are shown in Figure 3d.

3.3. Minor hysteresis
experiment‑II

¬ Charge at a CCCV of 1/3C at 25 ◦C, with a cut‑off current of 6 A (1/20C).
 Adjust SOC by discharging at a current of 1/3C at temperatures of 25 ◦C and 35 ◦C, with each
adjustment being 0.05 SOC.
The SOC adjustment path is as follows:
1→ 0.95→ . . . → 0.35→ 0.4→ 0.45→ . . . → 0.55→ 0.6→ 0.55→ . . . → 0.35→ 0.4→ 0.45→ . . . →
0.95→ 1
® At temperatures of 25 ◦C and 35 ◦C, allow the battery to rest for 3 h after reaching each SOC node.
Experimental results are shown in Figure 3e.

4. Battery entropy
heat experiment.

¬ Charge at a CCCV of 1/3C at 25 ◦C, with a cut‑off current of 6 A (1/20C).
 Discharge at a current of 1/3C at 25 ◦C to adjust SOC, with each adjustment being 0.1. The SOC
adjustment path is as follows:
1→ 0.9→ . . . → 0.1→ 0
® At each SOC node, adjust the temperature of the thermal chamber. The temperature adjustment path
is as follows:
25 ◦C→ 35 ◦C→ 25 ◦C→ 15 ◦C→ 5 ◦C→ −5 ◦C
Rest for 5 h at 5 ◦C and −5 ◦C, and rest for 3 h at other temperature points.
Calculate the derivative of OCV to temperature.
Experimental results are shown in Figure 3f.
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Table 2. Cont.

Item Main Experiment Steps

5. Multi‑rate CC core
temperature
acquisition
experiment.

¬ Charge at a CC of 1/3C, 1/2C, and 1C at 25 ◦C until the upper cut‑off voltage of 3.65 V.
 Discharge at a CC of 1/3C, 1/2C, and 1C at 25 ◦C until the lower cut‑off voltage of 2.5 V.
Experimental results are shown in the Section 2.3.2.

6. FR working
condition
experiment

¬ Charge at a CCCV of 1/3C at 25 ◦C, with a cut‑off current of 6 A (1/20C).
 Simulate operating conditions using the processed FR instructions at 25 ◦C.
The experimental results are shown in the Section 2.4.
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④ Discharge at a CC of 1/3C at 25 °C until the cut-off voltage of 2.5 V. 
⑤ Allow the battery to rest for two hours at 25 °C. 
⑥ Repeat steps ② to ⑤ three times and take the average of the discharge capacities obtained 
from the three cycles. 
Experimental result: 127.64 Ah 

Figure 3. Battery experimental results (a) Multi‑rate HPPC experiment (b) Current‑voltage amplifi‑
cation at HPPC 0.9 SOC (c) Main hysteresis experiment (d) Minor hysteresis experiment‑I (e) Minor
hysteresis experiment‑II (f) Entropy heat coefficient.

2.2. Second‑Order RC Equivalent Circuit Model with Hysteresis Voltage Reconstruction
This study chose a second‑order RC equivalent circuit model (SRCM) for electrical

modeling. For hysteresis modeling, a hysteresis voltage reconstruction model (HVRM) is
selected to describe the hysteresis characteristics of the battery. The electrical‑hysteresis
coupling schematic diagram is shown in Figure 4.
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2.2.1. Hysteresis Voltage Reconstruction
The OCV of LiFePO4 batteries exhibits hysteresis characteristics related to the charg‑

ing and discharging paths. As shown in Figure 3c, when the battery’s SOC changes from
0 to 1 during a unidirectional charge, its OCV value is higher than when the SOC changes
from 1 to 0 during a unidirectional discharge. The area enclosed by the OCV curves during
charge and discharge represents the possible OCV values of the battery during other SOC
operating paths. Figure 3d shows the OCV of the battery with its SOC following the work‑
ing path of 1→0.2→0.8→0.2→1. When the battery undergoes unidirectional continuous
discharge from SOC 1 to 0.2 and 0.2 to 1, the OCV closely follows the main discharge hys‑
teresis voltage curve and the main charge hysteresis voltage curve, respectively. However,
when the battery undergoes bidirectional continuous charge and discharge from SOC 0.2
to 0.8 and back to 0.2, the OCV exhibits a loop‑like variation. Figure 3e represents the OCV
variation of the battery as the SOC changes along the path 1→0.4→0.6→0.4→1. The OCV
behavior follows a similar pattern in Figure 3d. Furthermore, at both 25 ◦C and 35 ◦C,
the OCV behavior during the hysteresis loop remains consistent, with slight variations in
the measured OCV values. It is worth noting that prior to conducting the 35 ◦C hystere‑
sis experiment, the battery is charged to full capacity at 25 ◦C using a CCCV method of
1/3C. Subsequently, the temperature box is adjusted to raise the temperature to 35 ◦C. This
adjustment takes into consideration both the transition time required for the temperature
box from 25 ◦C to 35 ◦C and the battery’s adaptation to the 35 ◦C environment. As a re‑
sult, we allocate a resting time of 5 h for 1 SOC at 35 ◦C, allowing sufficient time for the
battery to stabilize. The extended resting period at 35 ◦C leads to a lower OCV value for
1 SOC compared to the OCV value at 25 ◦C. The hysteresis OCV reconstruction equations
approximate the OCV to the main hysteresis charging voltage curve during charging and
the main hysteresis discharging voltage curve during discharging. These equations are
shown as Equations (1) and (2).

dOCVh
dz

=

{
dOCVc
dz + δ(OCVc −OCVh), dzdt > 0

dOCVdis
dz + δ(OCVh −OCVdis), dzdt ≤ 0

(1)

OCVh,t

=

{
OCVh,t−1 +OCVc,t −OCVc,t−1 + δ(OCVc,t−1 −OCVh,t−1)(zt − zt−1), dzdt > 0

OCVh,t−1 +OCVdis,t −OCVdis,t−1 + δ(OCVh,t−1 −OCVdis,t−1)(zt − zt−1), dzdt ≤ 0
(2)

where OCVh,t represents the hysteresis OCV, where the subscript h indicates hysteresis
and t represents time. OCVc represents the main hysteresis charging voltage, with the
subscript c indicating charging, while OCVdis represents the main hysteresis discharging
voltage, with the subscript dis indicating discharging. δ denotes the correction factor, and
z represents the state of charge (SOC).

The reference [16] had set the value of δ as 10. To determine the appropriate value
of δ in our study, we conduct a parameter scan with increments of 0.1 within the range
of 5 to 15. We find that the best fitting accuracy for the hysteresis OCV is achieved when
δ is set to 13.8, as shown in Figure 5. At 25 ◦C, the root mean square error (RMSE) on
minor hysteresis experiment‑I is 3.4 mV, and on minor hysteresis experiment‑II is 2.5 mV.
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At 35 ◦C, the RMSE on minor hysteresis experiment‑I is 8.5 mV, and on minor hysteresis
experiment‑II is 3.3 mV.

Energies 2023, 16, x FOR PEER REVIEW 10 of 30 
 

 

dOCVh
dz

= �

dOCVc
dz

+ 𝛿𝛿(OCVc − OCVh),
dz
d𝑡𝑡

> 0

dOCVdis
dz

+ 𝛿𝛿(OCVh − OCVdis),
dz
d𝑡𝑡

≤ 0
 (1) 

OCVh,𝑡𝑡

= �
OCVh,𝑡𝑡−1 + OCVc,𝑡𝑡 − OCVc,𝑡𝑡−1 + 𝛿𝛿(OCVc,𝑡𝑡−1 − OCVh,𝑡𝑡−1)(z𝑡𝑡 − z𝑡𝑡−1),

dz
d𝑡𝑡

> 0

OCVh,𝑡𝑡−1 + OCVdis,𝑡𝑡 − OCVdis,𝑡𝑡−1 + 𝛿𝛿�OCVh,𝑡𝑡−1 − OCVdis,𝑡𝑡−1�(z𝑡𝑡 − z𝑡𝑡−1),
dz
d𝑡𝑡

≤ 0
 (2) 

where OCVh,𝑡𝑡 represents the hysteresis OCV, where the subscript h indicates hysteresis 
and t represents time. OCVc represents the main hysteresis charging voltage, with the sub-
script c indicating charging, while OCVdis  represents the main hysteresis discharging 
voltage, with the subscript dis indicating discharging. 𝛿𝛿  denotes the correction factor, 
and z represents the state of charge (SOC). 

The reference [16] had set the value of 𝛿𝛿 as 10. To determine the appropriate value 
of 𝛿𝛿 in our study, we conduct a parameter scan with increments of 0.1 within the range 
of 5 to 15. We find that the best fitting accuracy for the hysteresis OCV is achieved when 
𝛿𝛿 is set to 13.8, as shown in Figure 5. At 25 °C, the root mean square error (RMSE) on 
minor hysteresis experiment-I is 3.4 mV, and on minor hysteresis experiment-II is 2.5 mV. 
At 35 °C, the RMSE on minor hysteresis experiment-I is 8.5 mV, and on minor hysteresis 
experiment-II is 3.3 mV. 

 
Figure 5. The simulation results of the hysteresis voltage reconstruction model: (a) minor Hysteresis 
Experiment-I at 25 °C (b) minor Hysteresis Experiment-II at 25 °C (c) minor Hysteresis Ex-
periment-I at 35 °C (d) minor Hysteresis Experiment-II at 35 °C. 

2.2.2. Second-Order RC Equivalent Circuit Model 
As shown in Figure 4, the polarization phenomenon of the battery is described using 

an SRCM. The ohmic resistance corresponds to the polarization of ion conduction in the 
electrolyte and electron conduction in the electrode material. The concentration and elec-
trochemical polarization during the charge and discharge processes are described using 

Figure 5. The simulation results of the hysteresis voltage reconstructionmodel: (a) minor Hysteresis
Experiment‑I at 25 ◦C (b) minor Hysteresis Experiment‑II at 25 ◦C (c) minor Hysteresis Experiment‑I
at 35 ◦C (d) minor Hysteresis Experiment‑II at 35 ◦C.

2.2.2. Second‑Order RC Equivalent Circuit Model
As shown in Figure 4, the polarization phenomenon of the battery is described using

an SRCM. The ohmic resistance corresponds to the polarization of ion conduction in the
electrolyte and electron conduction in the electrode material. The concentration and elec‑
trochemical polarization during the charge and discharge processes are described using
two parallel branches of resistors and capacitors. According to simulation results from
the literature [13], increasing the number of RC parallel networks beyond 2 does not sig‑
nificantly improve the accuracy of terminal voltage simulation. On the other hand, if the
number of RC parallel networks is less than 2, there is a significant decrease in the accuracy
of terminal voltage simulation. Therefore, in this study, we established an ECM with two
RC parallel networks. The voltage equations are shown as (3)–(5). Unlike the traditional
SRCM, the OCV is simulated using the above hysteresis voltage reconstruction equation.
The parameters in themodel varywith SOC, temperature, and current rate. To identify the
parameters in the SRCM, HPPC experiments are conducted at 25 ◦C and 35 ◦C. The HPPC
pulse rates chosen are 1/3C, 1/2C, and 1C, as shown in Figure 3a,b. Using the PSO algo‑
rithm [39], the parameters of the model, including the charge‑discharge ohmic resistance,
polarization capacitance, and time constant, are optimized tominimize the RMSE between
themodel’s simulated terminal voltage and themeasured pulse segment voltage, as shown
in Equation (6). The parameter identification results are illustrated in Figure 6. Temper‑
ature has a significant influence on the discharging ohmic resistance (Rdis) and charging
ohmic resistance (Rchar). As the temperature increases, the resistance decreases, while in
the low SOC region, the resistance significantly increases. The polarizing capacitance C1
and time constant τ1 do not exhibit a clear pattern with temperature variations. However,
the polarizing capacitance C2 and time constant τ2 increase with higher temperatures. The
identification result of τ2 is greater than τ1, indicating that the first parallel RC branch rep‑
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resents a faster electrochemical reaction polarization, while the second parallel RC branch
represents a slower concentration polarization.

Ui = IRi

[
1 − e(

−t
τi
)
]

, i = 1, 2 (3)

τi = Ri × Ci, i = 1, 2 (4)

Ut = OCVh,t + IR + U1 + U2 (5)

RMSE =

√√√√ 1
N

N

∑
t=1

(Ut − Um,t) (6)

where Ui represents the voltage across the i‑th parallel RC branch, I represents the current
(positive for charging), R is the Ohmic resistance, Ri is the polarization resistance, Ci is the
polarization capacitance, τi is the time constant of the parallel RC branch, Ut represents the
simulated voltage at time t,N is the number of voltage sampling data, and Um,t represents
the measured voltage.
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2.3. Estimation of Battery Core Temperature
2.3.1. Two‑State Thermal Model

During the charge and discharge process of LiFePO4 batteries, heat is generated due
to the polarization process, leading to an increase in internal temperature. The parameters
of the equivalent circuit model vary with temperature. To accurately sense the temper‑
ature rise inside the battery, a two‑state lumped parameter thermal model is constructed
considering both the surface temperature and internal core temperature of the battery. The
model is shown in Figure 7.
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The model assumes that the heat generation in the battery consists of two compo‑
nents: Joule heating and reaction heat, as shown in Equation (7). The first heat generation
component depends on the battery’s current and the hysteresis OCV. The second compo‑
nent depends on the current and the entropy potential. The entropy potential is calibrated
through experiments and obtained by calculating the derivative of the OCV to tempera‑
ture. The results are shown in Figure 3f. The heat transfer equation from the battery core
to the casing is represented by Equation (8). The internal thermal resistance is the paral‑
lel combination of three directional resistances, as shown in Equation (9). In this study,
the battery width is set as the w‑direction, the height as the h‑direction, and the length as
the l‑direction. The formulas for calculating the three directional thermal resistances are
given by Equations (10)–(12). The heat dissipation from the battery casing to the environ‑
ment is a convective heat transfer process, and the heat transfer is described by Equation
(13). The external thermal resistance of the battery is related to the convective heat transfer
coefficient, and its calculation formula is given by Equation (14). The thermal conductiv‑
ity, specific heat capacity, and other parameters are provided by the battery manufacturer,
and the main parameters in the thermal model are listed in Table 3. It is worth noting that
the battery’s participation in FR services should occur at an optimal temperature range to
prevent accelerated degradation in both low and excessively high temperature conditions.
Additionally, since the ambient temperature remains relatively close to the battery temper‑
ature, the development of the thermal model disregards the impact of thermal radiation.

Q = (OCVh,t − Ut)× I + ITabs
dOCVh,t

dT
(7)

Cin
∆Tin
∆t

= Q − Tin − Ts
Rin

(8)

where Q represents the heat generation in the battery core, Tabs is the absolute temperature,
dT is the temperature change, ∆Tin is the internal temperature change, ∆t is the data sam‑
pling time (1 s in this study), Cin is the specific heat capacity of the battery core, provided
by the manufacturer, and Rin is the internal thermal resistance.

Rin =
1

1
Rw

+ 1
Rh

+ 1
Rl

(9)
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Rw =
Lw

λwLlLh
(10)

Rh =
Lh

λhLlLw
(11)

Rl =
Ll

λlLhLw
(12)

where Rw, Rh, Rl represent the thermal resistances in the width, height, and length direc‑
tions, respectively. λw, λh, λl represent the thermal conductivity coefficients in the width,
height, and lengthdirections, respectively, which are provided by themanufacturer. Ll, Lw, Lh
denote the length, width, and height of the battery, respectively, with specific values listed
in Table 1.

Cs
∆Ts
∆t

=
Tin − Ts

Rin
− Ts − Tamb

Rs
(13)

Rs =
1

W × 2 × (LlLh + LlLw + LhLw)
(14)

where Cs represents the specific heat capacity of the casing, Ts is the surface temperature,
Tamb is the ambient temperature, Rs is the external thermal resistance, and W is the con‑
vective heat transfer coefficient.

Table 3. Thermal model parameters.

Item Symbol Specification

Heat conductivity coefficient (W/(m·K))
λw 7.5
λh 5
λl 1.5

Convective heat transfer coefficient (W/(m2·K)) W 5

Specific heat capacity (J/(kg·K)) Cin 880
Cs 880

The experimental environment of this study is the same as that of reference [17], and
the convective heat transfer coefficientW is set as 5 according to the setting of the reference.

2.3.2. Battery Core Temperature Estimation Based on the Extended Kalman Filter
(EKF) Algorithm

Using an embedded thermocouple to measure the internal temperature of a LiFePO4
battery is a destructive method that can compromise the internal structure of the battery.
To ensure the safety of battery operation, it is generally not allowed to implant the thermo‑
couple during the normal operation of the battery. Obtaining the internal temperature of
a LiFePO4 battery during normal operation is challenging. The two‑state thermal model
is discretized to estimate the internal temperature in real‑time, and a state‑space equation
is established, as shown in Equations (15)–(23). In the state equation, it is assumed that
both the process noise and sampling noise follow a normal distribution. Based on the es‑
tablished two‑state thermal model state equation, the Extended Kalman Filter (EKF) algo‑
rithm is used to correct the estimated internal temperature based on the error between the
battery’s simulated and measured surface temperatures. The EKF algorithm can achieve
optimality in the least squares sense and is widely used in modern control fields. The
algorithm flow is shown in Table 4.

xt = Axt−1 + But−1 + ωt−1 (15)

yt = Cxt + νt (16)
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xt = [Tin,t, Ts,t]
T (17)

ut−1 = Qt−1 (18)

A =

[
1 − 1

RinCin
1

RinCin
1

RinCs
1 − 1

RinCs
− 1

RoutCs

]
(19)

B = [
1

Cin
, 0]

T
(20)

C = [0 1] (21)

E
[
ωnωT

t

]
=

{
∑ ω, n = t

0, n ̸= t
(22)

E
[
vnvTt

]
=

{
∑ v, n = t

0, n ̸= t
(23)

where xt represents a two‑dimensional vector consisting of the internal temperature Tin,t
and the surface temperature Ts,t of the battery. yt represents the output of the battery’s
surface temperature. ut−1 is the input, which is the heat generation in the battery core. ωt−1
represents the process noise, assumed to follow a normal distribution with a covariance of
∑ ω. νt represents the sampling noise, also assumed to follow a normal distribution with
a covariance of ∑ v. A, B, C are state parameter transition matrices.

Table 4. EKF algorithm.

Item Mathematical Expression

Initialize state variables
and covariance matrix x0,P0, ∑ ω, ∑ v

Prior estimation x̂−t = Ax̂+t−1 + But−1 + ωt−1
Update covariance matrix P−

t = AP+
t−1A

T + ∑ ω

Calculate Kalman gain Kt = P−
t C

T
(
CP−

t C
T + ∑ v

)−1

Posterior estimation x̂+t = x̂−t +Kt(Ts,m − yt)
Update covariance matrix P+

t = P−
t −KtHP−

t

In the table, P0 represents the initial covariance matrix, x̂−t represents the prior es‑
timate of the state variable, x̂+t represents the posterior estimate of the state variable, Kt
represents the Kalman gain matrix, and Ts,m represents the measured surface temperature.

The covariance values are as follows:

P0 =

[
10−3 0

0 10−3

]
(24)

∑ ω =

[
10−3 0

0 5 × 10−3

]
(25)

∑ v = 10−2 (26)

At an ambient temperature of 25 ◦C, constant current charge and discharge tests are
conducted on the battery at current rates of 1/3C, 1/2C, and 1C to verify the accuracy of the
internal temperature estimation based on the EKF algorithm using the two‑state thermal
model. The results of the internal and surface temperatures of the battery are shown in
Figure 8. The RMSEs for the simulation of internal and surface temperatures are shown
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in Table 5. The measured internal temperature values are obtained using the embedded
thermocouple. The battery surface temperature estimation errors are all less than 0.01 ◦C
under the three operating conditions, indicating a very high estimation accuracy. This is
because the correction effect of the EKF algorithm relies on the error between the estimated
surface temperature and the measured value. When there is a large error in the estimated
surface temperature, a larger Kalman gain is generated to bring the estimated surface tem‑
perature closer to the true value. The estimation error of the internal temperature increases
with higher rates of charge/discharge. At a 1C rate, the RMSE of the internal temperature
estimation is 0.75 ◦C. At a 1/2C rate, the RMSE of the internal temperature estimation is
0.39 ◦C. At a 1/3C rate, the RMSE of the internal temperature estimation is 0.22 ◦C. The
temperature simulation error is less than 1 ◦C for all three operating conditions, indicating
the method has accuracy in estimating the internal temperature.

Table 5. RMSE of temperature simulation results.

Item 1/3C 1/2C 1C

Internal temperature simulation
RMSE (◦C) 0.22 0.39 0.75

Surface temperature simulation
RMSE (◦C) 0.007 0.008 0.01
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2.4. Terminal Voltage Simulation under Dynamic Frequency Regulation Working Conditions
Using the Thermal‑Electrochemical Coupling Model

To establish an accurate voltage model for LiFePO4 batteries, a coupled thermal‑
electric‑hysteresis model is constructed by incorporating OCV hysteresis and internal
temperature rise with the SRCM. This coupled model simulates the terminal voltage
under dynamic FR working conditions. Real FR commands from two selected days in the
PJM electricity market are chosen to verify the model’s accuracy. These commands are
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converted into current excitation by dividing the rated power of 192 W by the nominal
voltage. Under FR working conditions, the current exhibits complex variations, including
bidirectional pulses and high‑frequency fluctuations. The algorithm framework of the
thermal‑electric‑hysteresis coupled model is shown in Figure 9. Firstly, the current under
FR working conditions is obtained, as shown in Figure 10a. The reconstructed OCV is
calculated using the HVRM. This OCV is then input into the two‑state thermal model
to calculate the heat generation. The EKF algorithm is utilized to achieve an optimal
internal temperature estimation. The obtained internal temperature value, along with
the current rate interpolation, is used to obtain the parameters of the ECM. Finally, the
terminal voltage is calculated. The terminal voltage is fed back into the two‑state thermal
model, and the iteration process continues, enabling real‑time calculation of the internal
temperature, hysteresis OCV, and internal temperature. The voltage simulation results
of the thermal‑electric‑hysteresis coupled model under FR working conditions are shown
in Figure 10e, while the simulation error of the terminal voltage is shown in Figure 10f.
Under this operating condition, the battery’s internal temperature is approximately 2 ◦C
higher than the surface temperature, as shown in Figure 10b. The RMSE between the
simulated surface temperature of the battery and the estimated temperature is 0.0024 ◦C.
The high‑accuracy simulation is achieved due to the strong corrective effect of the EKF
algorithm, which utilizes surface temperature error information for robust correction.
The OCV repeatedly varies diagonally within the main hysteresis voltage curve, and a
single OCV curve alone cannot capture this variation, as shown in Figure 10c,d. Under
the nearly 48 h FR working condition, the RMSE of the voltage is only 18.7 mV, indicating
that the model has high simulation accuracy and can be used for subsequent SOC and
RAE estimation methods.

Energies 2023, 16, x FOR PEER REVIEW 17 of 30 
 

 

temperature, as shown in Figure 10b. The RMSE between the simulated surface tempera-
ture of the battery and the estimated temperature is 0.0024 °C. The high-accuracy simula-
tion is achieved due to the strong corrective effect of the EKF algorithm, which utilizes 
surface temperature error information for robust correction. The OCV repeatedly varies 
diagonally within the main hysteresis voltage curve, and a single OCV curve alone cannot 
capture this variation, as shown in Figure 10c,d. Under the nearly 48 h FR working condi-
tion, the RMSE of the voltage is only 18.7 mV, indicating that the model has high simula-
tion accuracy and can be used for subsequent SOC and RAE estimation methods. 

 
Figure 9. The flowchart of the thermal-electric-hysteresis coupling model calculation process. 

Figure 9. The flowchart of the thermal‑electric‑hysteresis coupling model calculation process.



Energies 2023, 16, 5239 17 of 28
Energies 2023, 16, x FOR PEER REVIEW 18 of 30 
 

 

 
Figure 10. (a) Frequency regulation current, (b) Surface temperature and internal temperature under 
frequency regulation working condition, (c) OCV-SOC curve under frequency regulation working 
condition, (d) OCV-SOC curve enlarged view, (e) Estimated and measured voltage, (f) Voltage sim-
ulation error of the thermal-electric-hysteresis hysteresis coupling model. 

3. SOC and RAE Estimation under Dynamic Frequency Regulation Working  
Condition 
3.1. SOC Estimation Based on the EKF Algorithm 

Using the ampere-hour integration method to calculate SOC, as shown in Equation 
(30), this method is affected by factors such as current sampling noise and inaccurate ini-
tial SOC, resulting in inaccurate SOC estimation. Therefore, the established thermal-elec-
tric-hysteresis voltage model is used to create a state equation, and the EKF algorithm is 
employed for closed-loop feedback correction of SOC obtained through the ampere-hour 
integration method. The state variables, state outputs, and state transition matrix are 
shown in Equations (31)–(35). The flowchart of estimating SOC using the EKF algorithm 
is shown in Figure 11. 

The covariance values are as follows: 

𝑷𝑷0 = �
10−5 0 0

0 0 0
0 0 0

� (27) 

∑𝝎𝝎 = �
2 × 10−10 0 0

0 0 0
0 0 0

� (28) 

Figure 10. (a) Frequency regulation current, (b) Surface temperature and internal temperature under
frequency regulation working condition, (c) OCV‑SOC curve under frequency regulation working
condition, (d) OCV‑SOC curve enlarged view, (e) Estimated and measured voltage, (f) Voltage sim‑
ulation error of the thermal‑electric‑hysteresis hysteresis coupling model.

3. SOC and RAE Estimation under Dynamic Frequency Regulation
Working Condition
3.1. SOC Estimation Based on the EKF Algorithm

Using the ampere‑hour integration method to calculate SOC, as shown in Equation
(30), this method is affected by factors such as current sampling noise and inaccurate initial
SOC, resulting in inaccurate SOC estimation. Therefore, the established thermal‑electric‑
hysteresis voltage model is used to create a state equation, and the EKF algorithm is em‑
ployed for closed‑loop feedback correction of SOC obtained through the ampere‑hour in‑
tegration method. The state variables, state outputs, and state transition matrix are shown
in Equations (31)–(35). The flowchart of estimating SOC using the EKF algorithm is shown
in Figure 11.

The covariance values are as follows:

P0 =

10−5 0 0
0 0 0
0 0 0

 (27)
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∑ ω =

2 × 10−10 0 0
0 0 0
0 0 0

 (28)

∑ v = 0.1 (29)

SOCah,t = SOC0 +
ϑI
Cb

∆t (30)

where SOCah,t represents the SOC value calculated through the ampere‑hour integration
method, SOC0 is the initial SOC value, which is set to 1 in this study. Cb represents the
battery’s rated capacity, which is 127.64 Ah. ϑ represents the Coulomb efficiency, which is
set to 1. ∆t represents the sampling time interval, which is 1 s in this study.

xt =
[
SOCah,t U1,t U2,t

]
(31)

yt = Ut (32)

A =

1 0 0

0 e
−∆t
τ1 0

0 0 e
−∆t
τ2

 (33)

B = [ −∆t
3600 × Cb R1(1 − e

−∆t
τ1 ) R2(1 − e

−∆t
τ2 ) ]

T
(34)

C = [dOCVh,t
dSOC −1 −1] (35)

where xt represents the state vector, and yt represents the output value. U1,t and U2,t rep‑
resent the polarization voltages of the two RC elements, and Ut represents the terminal
voltage output of the thermal‑electric‑hysteresis coupling model.
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It is worth noting that in this study, the OCV is calculated using the HVRM. In ma‑
trix C, the derivative of the hysteresis OCV to SOC is considered. This is different from
the EKF algorithm based on traditional ECM models. Meanwhile, the model parameters,
such as resistance, are interpolated based on internal temperature, which differs from the
traditional surface temperature interpolation method. Due to the high‑frequency varia‑
tions in the OCV under FR working conditions, significant Kalman gains are generated to
correct SOC estimation errors continuously. The true values of SOC are obtained through
the method of ampere‑hour integration, under the condition of high‑precision laboratory
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current sensing equipment and accurate initial SOC value settings. This algorithm exhibits
high SOC estimation accuracy under FR working conditions, as demonstrated by the SOC
estimation results in Figure 12a,b, with an RMSE of only 1.73%.
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3.2. RAE Estimation Algorithm Based on Future Voltage Sequence Prediction
Battery’s RAE prediction refers to estimating the actual energy that a battery can de‑

liver when discharged from its current state to the cutoff voltage under a specific oper‑
ational condition. In FR working conditions, the relevant factor affecting the functional
state of the battery is the RAE of the battery rather than the remaining theoretical energy.
Therefore, based on practical application requirements, the estimation of the battery’s RAE
is studied. The approach to studying this problem is illustrated in Figure 13. At a partic‑
ular moment in this operational condition (indicated by the green vertical line), the curve
on the left represents the variation of historical terminal voltages measured to SOC. On
the right side, there is a curve representing the predicted future terminal voltages. If the
area enclosed by the voltage curve and the x‑axis is divided into intervals based on cer‑
tain SOC increments, and for each ∆SOC interval, a future terminal voltage Upre,j is pre‑
dicted, then the RAE ∆E1 corresponding to the light orange region can be approximated as(
Upre,1 + Upre,2

)
/2 × ∆SOC× Cb. Therefore, the current remaining discharge energy can

be calculated using Equation (36).

ERAE ≈
n−1

∑
j=1

(
Upre,j + Upre,j+1

)
/2 × ∆SOC× Cb (36)

where ERAE represents the RAE at the current time, Upre,j represents the future terminal
voltage sequence, and n represents the discharge cutoff point.
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Based onEquation (36), it can be analyzed that the accurate estimation of RAE relies on
predicting the future terminal voltage sequence, which is influenced by future operational
conditions and changes in internal battery temperature. Therefore, based on known his‑
torical operating conditions and data such as current, voltage, and internal temperature,
it is necessary to predict future FR power and future internal battery temperature. On
this basis, the future voltage can be predicted based on the battery model. Since the bat‑
terymodel parameters are directly related to SOC and temperature, combining the current
SOC estimation and parameter identification results is necessary to couple predict the fu‑
ture SOC sequence, future internal battery temperature sequence, future model parameter
sequence, and future terminal voltage sequence. Finally, the remaining discharge energy
can be calculated by considering the determination of the discharge cutoff point. Specifi‑
cally, it includes the following three key steps: (1) Future operational condition prediction,
including future average power prediction and future internal battery temperature predic‑
tion; (2) Coupled prediction of future SOC sequence, future internal battery temperature
sequence, future terminal voltage sequence, and future parameter sequence; (3) Discharge
cutoff point determination and estimation of RAE.

3.2.1. Future Operational Condition Prediction Based on Historical Information
This research uses a schedule according to FR commandswith a rated power of 192W.

In practical scenarios, the battery’s power in FR conditions constantly varies. To mitigate
the impact of frequent fluctuations in instantaneous power on power predictions while
ensuring that the power predictions can track the changes in actual operating conditions,
a moving weighted average of historical power is computed as the prediction for future
power. This is represented by Equations (37) and (38).

Pt =
∫ t

t−1

Ut·It

∆t
dt (37)

Ppre,t = (1 − w)Ppre,t−1 + wPt (38)

where Pt represents the average power during the time interval from time t − 1 to t. The
calculation is assumed to be performed every time 12 Wh of energy is discharged. Ppre,t
denotes the predicted value of future average power. The weight factor w is introduced to
enhance the influence of the current moment on future operational conditions. FR work‑
ing conditions refer to operational scenarios characterized by bidirectional high‑frequency
variations. In these conditions, the battery state undergoes frequent changes at each mo‑
ment. Hence, we assign a higher weight to the current state to emphasize its impact on
future predictions. Therefore, the weight factor w is set to 0.9.

Due to factors such as the battery’s self‑heating and ambient temperature changes,
the internal temperature of the battery varies during future discharge processes. This will
further impact the magnitude of the RAE. Therefore, it is necessary to predict the future
temperature changes. Similar to the approach used for power prediction, historical tem‑
perature changes are employed to forecast future temperature changes, as shown in Equa‑
tions (39) and (40).

∆Tin,t = (Tin,t − Tin,t−1)/∆t (39)

∆Tin,pre,t = (1 − wT) ∆Tin,pre,t−1+ wT∆Tin,t (40)

where ∆Tin,t represents the average internal temperature change during the time interval
from time t − 1 to t. The calculation is assumed to be performed every time 12 Wh of
energy is discharged. ∆Tin,pre,t denotes the predicted value of future internal temperature.
The weight factor wT is introduced to enhance the influence of the current moment on
future temperature changes. In this research, wT is set to 0.9.
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3.2.2. Model‑Based Future Voltage Prediction
Based on the predicted future FR power values, it is possible to forecast future voltage

using the battery model. Since the model parameters are related to current, SOC, and
internal temperature, it is necessary to couple the prediction of future model parameters,
future SOC, and future internal temperature to obtain the future voltage sequence. Starting
from the current SOCt, the future discharge process is divided into segments with a certain
SOC interval. The future SOC sequence SOCpre,j is calculated according to Equation (41).
The interval ∆SOC can be set based on practical needs. A smaller ∆SOC leads to a denser
future voltage sequence and, theoretically, more accuracy. However, it also results in a
higher computational load. In this research, ∆SOC is set to 0.01.

SOCpre,j = SOCt − (j − 1)·∆SOC (41)

where SOCpre,j represents the future SOC sequence, where j denotes the index of the se‑
quence point.

If the current temperature of the battery is Tin,t and the predicted future temperature
change rate is ∆Tin,pre,t, then according to Equation (42), the future temperature change se‑
quence Tin,pre,j can be calculated. Here, Ipre,j−1 represents the predicted future current
value and the prediction method for the future current will be provided in the follow‑
ing context. {

Tin,pre,j = Tin,t, j = 1
Tin,pre,j = Tin,pre,j−1 + ∆Tin,pre,t·∆SOC·Cb

Ipre,j−1

(42)

where Tin,t represents the current temperature, ∆Tin,pre,t represents the predicted future
internal temperature change rate, and Ipre,j−1 represents the predicted future current value.

If we use an SRCM to predict future voltage, it will introduce significant computa‑
tional complexity. The output power is calculated based on the Rint model to reduce the
complexity of the model. Equations (43)–(46) show the future voltage prediction.

Ppre =
(
OCVh,j − Ipre,jRpre,j

)
Ipre,j (43)

Rpre,j I2
pre,j −OCVh,j Ipre,j + P

pre
= 0 (44)

Ipre,j =
OCVh,j −

√
OCV2

h,j − 4Rpre,jPpre
2Rpre,j

(45)

Upre,j = OCVh,j − Ipre,jRpre,j (46)

where Ppre represents the output power, OCVh,j represents the hysteresis OCV, Ipre,j rep‑
resents the predicted current value, and Rpre,j represents the predicted value of future in‑
ternal resistance parameters.

Considering that the SRCM is used in the SOC estimation algorithm of this research
and predicting future voltage based on the average power is already an approximate es‑
timation, there is no additional calibration of the Rint model parameters. The resistance
value in the Rint model is substituted with the ohmic resistance from the SRCM, as shown
in Equation (47). This resistance parameter is correlated with the future internal tempera‑
ture, current, and SOC.

Rpre,j = f
(
Tin,pre,j, Ipre,j, SOCpre,j

)
(47)

3.2.3. Determination of Discharge Cutoff Point and Estimation of RAE
To accurately estimate the RAE after obtaining the predicted future voltage sequence,

it is necessary to determine the battery’s discharge cutoff point. The battery discharge cut‑
off is determined based on two criteria: first, when the voltage reaches the lower cutoff
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voltage of 2.5 V, and second, when the battery reaches 0 SOC. With the predictions men‑
tioned above of future voltage and the determination of the discharge cutoff point, the
RAE of the battery can be estimated using Equation (48), where the determination of the
discharge cutoff point, denoted as ‘n’, satisfies Equation (49).

ERAE = ∑n−1
j=1

(
Upre,j + Upre,j+1

)
/2·∆SOC·Cb (48)

n = max
{

j丨Upre,j > Ulim ∩ SOCpre,j > SOClim
}

(49)

where ERAE represents the RAE at the current time, Upre,j is the predicted future voltage
sequence, n represents the discharge cutoff point, Ulim is the discharge cutoff voltage with
a value of 2.5, and SOClim is the cutoff SOC value of 0.

However, when using Equation (48) to predict the RAE, there may be some errors,
which mainly arise from the following sources:
(1) The use of the ohmic resistance value from the SRCM.
(2) The Rint model is relatively simple, and there may be errors when calculating future

voltage based on predicted future power values.
(3) Even if the voltage prediction is accurate, there is an inherent approximation error

in approximating the area of the light orange shaded region in Figure 13 using(
Upre,1 + Upre,2

)
/2 × ∆SOC× Cb.

It is important to be aware of these potential sources of error when using Equation (48)
for predicting the remaining discharge energy.

This research proposes a correctionmethod to improve the accuracy of estimating the
RAE, as shown in Figure 14. The correction approach is as follows: between time t1 and
t2, estimate the energy using the method proposed in this research, and then divide it by
the actual discharged energy to obtain the correction coefficient α. Taking into account
the correction coefficient, the final estimation of the RAE is calculated using Equation (50).
The complete process of estimating the RAE based on voltage prediction is illustrated in
Figure 15. In Figure 15, the blue region represents the predictionmethod for future current
and future internal temperature, as well as the calculation of correction factors. The green
region represents the prediction of future physical quantity sequences. The orange region
represents the calculation method for RAE.

ERAE =
1
α

n−1

∑
j=1

(
Upre,j + Upre,j+1

)
/2·∆SOC·Cb (50)

where α is correction coefficient.
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The estimation results of RAE in dynamic FR working conditions are shown in
Figure 16a,b. The error is defined as the predicted RAE subtracted from the real RAE,
divided by the maximum available energy, as shown in Equation (51). The real RAE is cal‑
culated by integrating the reverse power after the battery has been completely discharged.
The RMSE for the prediction of the RAE is 2.13%, which indicates that the algorithm has
a very high estimation accuracy.

et =
ERAE,t − ERAE,ture,t

max(ERAE,ture,t)
(51)

where et represents the estimation error of the RAE, where ERAE,t is the estimated RAE,
ERAE,ture,t is the true RAE obtained through reverse power integration after discharging,
and max(ERAE,ture,t) represents the maximum value of the remaining available energy.
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This research focuses on a 120 Ah commercial LiFePO4 battery and investigates its

performance under dynamic FR working conditions. The research addresses the issues of
poor voltage simulation accuracy due to neglecting hysteresis and internal temperature
coupling effects in the ECM, as well as inaccurate estimation of SOC and RAE. To address
these challenges, a novel method based on a thermal‑electric‑hysteresis model is proposed
to evaluate SOC and RAE accurately.

LiFePO4 batteries exhibit hysteresis characteristics in their OCV. An HVRM is con‑
structed based on main and minor hysteresis experimental data, accurately simulating the
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OCV values. The maximum RMSE of OCV simulation at 25 ◦C and 35 ◦C is 8.3 mV. A two‑
state thermal model considering surface and core temperatures is developed to estimate
internal temperature. The core temperature is estimated using the closed‑loop estimation
approach with the EKF algorithm. The RMSE of internal temperature estimation under
three constant current conditions is less than 1 ◦C. Based on the HPPC experiment data,
the parameters of an SRCM under various temperatures and current rates are obtained
using the PSO algorithm. A thermal‑electric‑hysteresis voltage simulation framework is
established. The RMSE of voltage simulation under a dynamic FRworking condition close
to 48 h is only 18.7 mV. The developed thermal‑electric‑hysteresis model exhibits a very
high level of accuracy.

Based on the thermal‑electric‑hysteresis model, the EKF algorithm is utilized to cor‑
rect the initial value of SOC calculated through the ampere‑hour integration method, en‑
abling accurate estimation of SOCunder FRworking conditions. Furthermore, by utilizing
future voltage predictionmethods, accurate estimation of RAEunder dynamic FRworking
conditions is achieved. The RMSE for SOC and RAE estimation is only 1.73% and 2.13%,
respectively, indicating a very high level of estimation accuracy.

However, in this study, the simulation accuracy of terminal voltage under low tem‑
perature and high current rates working conditions for the proposed model has not been
validated. Therefore, future research should consider further validation under these two
scenarios. In these situations, it may be beneficial to explore online identification of ECM
parameters or utilize an improved ECM to enhance the accuracy of terminal voltage sim‑
ulation. Moreover, we use the temperature at the center point of the front surface of the
battery casing to represent the variations in surface temperature. However, there are tem‑
perature gradients on the battery surface, and temperature sampling data from different
locations on the surface may exhibit differences. The impact of surface temperature vari‑
ations on battery state estimation needs further research and validation. Finally, the OCV
experiment is not conducted on batteries with inserted thermocouples. Future work needs
to further verify the consistency of OCV between batteries with inserted thermocouples
and batteries without inserted thermocouples within the 0–1 SOC range.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en16135239/s1, Figure S1: The detailed operating procedures of in‑
serting thermocouple into the battery. Figure S2: The variation of OCV over time. Figure S3: 1/3C
discharge voltage curve. Table S1. C1 parameter identification results @ 25 ◦C. Table S2. C1 parame‑
ter identification results @ 35 ◦C. Table S3. C2 parameter identification results @ 25 ◦C. Table S4. C2
parameter identification results @ 35 ◦C. Table S5. Rdis parameter identification results @ 25 ◦C. Ta‑
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@ 25 ◦C. Table S8. Rchar parameter identification results @ 35 ◦C. Table S9. τ1 parameter identifica‑
tion results @ 25 ◦C. Table S10. τ1 parameter identification results @ 35 ◦C. Table S11. τ2 parameter
identification results @ 25 ◦C. Table S12. τ2 parameter identification results @ 35 ◦C.
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Nomenclature

Abbreviations
Item Description
FR Frequency regulation
LiFePO4 Lithium iron phosphate
EVs Electric vehicles
SOC State of charge
RAE Remaining available energy
OCV Open‑circuit voltage
NNMs Neural network models
P2D Pseudo‑two‑dimensions
SP Single particle
SP2D Simplified pseudo‑two‑dimensions
ROM Reduced‑order model
FUDS Federal urban driving schedule
DST Dynamic stress test
1D One‑dimensional
2D Two‑dimensional
3D Three‑dimensional
EKF Extended Kalman filter
KF Kalman filter
PF Particle filter
SOE State of energy
HVRM Hysteresis voltage reconstruction model
HPPC Hybrid Pulse Power Characterization
PSO Particle Swarm Optimization
MAP Multi‑Dimensional Parameter
SRCM Second‑order RC equivalent circuit model
CAN Controller area network
PJM Pennsylvania‑New Jersey‑Maryland
CC Constant current
CCCV Constant current and constant voltage
RMSE Root mean square error
Symbols
Item Description Unit
OCVh Hysteretic open circuit voltage. V
OCVc Main hysteresis charging voltage. V
OCVdis Main hysteresis discharging voltage. V
δ Correction factor. /
z State of charge. /
Ui The voltage across the i‑th parallel RC branch, i = 1, 2. V
I Current (positive for charging). A
R Ohmic resistance. Ω
Ri Polarization resistance of the i‑th parallel RC branch, i = 1, 2. Ω
Ci Polarization capacitance of the i‑th parallel RC branch, i = 1, 2. Ω
τi Time constant of the i‑th parallel RC branch, i = 1, 2. s
Ut Simulated voltage at time t. V
N The number of voltage sampling data. /
Um,t Measured voltage. V
Q Heat generation in the battery core. W
Tabs Absolute temperature. ◦C
dT Temperature change. ◦C
∆Tin Internal temperature change. ◦C
∆t The data sampling time (1 s in this study). s
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Cin The specific heat capacity of the battery core. J/(kg·K)
Rin The internal thermal resistance. K/W
Rw The thermal resistances in the width direction. K/W
Rh The thermal resistances in the height direction. K/W
Rl The thermal resistances in the length direction. K/W
λw The thermal conductivity coefficients in the width direction. W/(m·K)
λh The thermal conductivity coefficients in the height direction. W/(m·K)
λl The thermal conductivity coefficients in the length direction. W/(m·K)
Ll The length of the battery. m
Lw The width of the battery. m
Lh The height of the battery. m
Cs The specific heat capacity of the casing. J/(kg·K)
Ts Surface temperature of the battery. ◦C
Tamb Ambient temperature. ◦C
Rs External thermal resistance. K/W
W Convective heat transfer coefficient. W/(m2·K)
xt The state vector of the state‑space equation. /
yt The output vector of the state‑space equation. /
ut−1 The input vector of the state‑space equation. /
ωt−1 Process noise. /
νt Sampling noise. /
A, B,C Parameter transition matrices. /
P0 Initial covariance matrix. /
x̂−t The prior estimate of the state variable. /
x̂+t The posterior estimate of the state variable. /
Kt Kalman gain matrix /
Ts,m The measured surface temperature. ◦C
SOCah,t SOC value calculated through the ampere‑hour integration method. /
SOC0 Initial SOC value. /
ϑ Coulomb efficiency. /
Cb The battery’s rated capacity. Ah
ERAE Remaining available energy. Wh

Upre,j
The future terminal voltage sequence. j denotes the index of the
sequence point. V

n The discharge cutoff point. /
Pt Average power during the time interval from time t − 1 to t. W
Ppre,t The predicted value of future average power. W
w Weight factor. /

∆Tin,t
The average internal temperature change during the time interval
from time t − 1 to t.

◦C

∆Tin,pre,t Predicted value of future internal temperature change. ◦C
wT Weight factor of temperature. /
SOCpre,j The future SOC sequence.
Tin,t The internal temperature at time t. ◦C
∆Tin,pre,t The predicted future internal temperature change. ◦C
Ipre,j−1 Predicted future current value. A
Ppre The predicted output power. Wh
Ipre,j The predicted current value. A
Rpre,j The predicted value of future internal resistance parameters. Ω
Upre,j The predicted future voltage sequence. V
Ulim The discharge cutoff voltage. V
SOClim The discharge cutoff SOC. /
α Correction coefficient. /
et The estimation error of the remaining available energy /
ERAE,t The estimated remaining available energy Wh

ERAE,ture,t
The true remaining available energy obtained through reverse power
integration after discharging Wh
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