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Abstract: Concerning the vision of achieving carbon neutral and peak carbon goals, wind energy is
extremely important as a renewable and clean energy source. However, existing research ignores
the implicit features of the data preprocessing technique and the role of the internal mechanism
of the optimization algorithm, making it difficult to achieve high-accuracy prediction. To fill this
gap, this study proposes a wind speed forecasting model that combines data denoising techniques,
optimization algorithms, and machine learning algorithms. The model discusses the important
parameters in the data decomposition technique, determines the best parameter values by comparing
the model’s performance, and then decomposes and reconstructs the wind speed time series. In
addition, a novel optimization algorithm is used to optimize the parameters of the machine learning
algorithm using a waiting strategy and an aggressive strategy to improve the effectiveness of the
model. Several control experiments were designed and implemented using 10-min wind speed data
from three sites in Penglai, Shandong Province. Based on the numerical comparison results and the
discussion of the proposed model, it is concluded that the developed model can obtain high accuracy
and reliability of wind speed prediction in the short term relative to other comparative models and
can have further applications in wind power plants.

Keywords: wind speed forecasting; selection of parameters; egret population optimization algorithm;
ensemble model

1. Introduction

The use of fossil fuels on earth not only leads to an imbalance between energy supply
and demand, but also increases the emission of harmful gases such as carbon dioxide
and sulfur dioxide, causing environmental pollution problems [1]. Humans are actively
exploring how to replace them with renewable and sustainable energy sources. Wind
energy has become a highly publicized alternative to nonrenewable energy sources [2].
Furthermore, wind energy is receiving more and more attention because it is crucial
for achieving carbon neutrality goals and transitioning to clean low-carbon energy [3].
However, the variability and intermittency of wind speed can lead to various issues,
including damage and voltage problems in wind power generation systems [4]. Therefore,
developing accurate wind speed prediction models is crucial for the energy sector. In past
research, scholars have proposed various prediction models [5], which can be classified
into physical models, standard statistical models, and artificial intelligence-based models.

The physical models are mainly based on numeric weather prediction (NWP) and usu-
ally consider physical properties such as temperature, pressure and density [6]. Pan et al.
proposed a method for solving the probability prediction problem in the wind speed do-
main, which is a hybrid NWP combining current and future predicted numerical weather
time series [7]. Zhao et al.’s optimized NWP data are used to forecast wind speed for the
coming day [8]. Although the short-term prediction result of the NMP model is poor, it has
strong long-term prediction ability [9].
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The statistical model makes full use of historical and future data to obtain forecasting
results [10], such as the autoregressive moving average (ARMA) [11], autoregressive inte-
grated moving average (ARIMA) [12], and the Kalman filter (KF) [13]. Lydia et al. proposed
two types of the AR model to solve the ten-minute and one-hour ahead wing speed fore-
casting shortcoming [14]. In North Dakota, a part of ARIMA was established to deal with
one-day and two-day advance wind speed forecasting problems [15]. Liu et al. proposed a
seasonal ARIMA model to apply to the offshore wind speed forecasting [16]. However, the
wind speed time series has nonlinear characteristics, and statistical models are constrained
by linear assumptions [17], making it difficult to capture suitable forecasting models.

Artificial intelligence methods have been used to capture nonlinear features to over-
come the limitations of statistical models [18]. Many researchers have started to apply these
methods for wind speed prediction. By using large amounts of historical data for training,
AI methods can effectively adapt to the complex nonlinearity and uncertainty of wind
speed time series [19]. Artificial intelligence (AI) methods have become the dominant and
superior wind speed prediction models and are classified into three types: single models,
hybrid models, and integrated models.

Common AI methods include artificial neural networks (ANN) [20], extreme learning
machines (ELM) [21], and the support vector machine (SVM) [22]. With the development of
neural networks, many neural networks with special structures have also been applied to
wind speed prediction [23], such as the adaptive wavelet neural network [24], Emmanuel
neural network (ENN) [21], and long and short term memory network (LSTM) [25]. Al-
though a single model outperforms physical and statistical models, wind speed predictions
from a single model are poor due to inherent drawbacks and the complex fluctuations in
wind speed data, where linear and nonlinear features are always present in the data [26].

The hybrid model can repair the defects of the single model and further improve the
forecasting model by combining the single model with an optimization algorithm [27].
Wang et al. proposed to tune the parameters in the support vector machine using the cuckoo
search and genetic algorithm to improve the predictive performance of the model [28].
Research data preprocessing techniques such as integrated empirical mode decomposi-
tion (EEMD) [29], variational mode decomposition (VMD), and singular spectral analysis
(SSA) [30] apply them to wind speed forecasting to improve the forecasting results of the
model. In [31], an improved atomic search optimization algorithm (IASO) was used to
search the extreme learning machine (ELM) to improve the wind speed prediction per-
formance of the basic version. Fu et al. combined a Volterra series model with the VMD
method to improve the beetle antenna search-based optimization algorithm and develop a
new hybrid wind speed forecasting method [32].

Due to the high correlation between hybrid models and the performance of a single
model, it is difficult for hybrid models to handle different time series, while ensemble
models have advantages in time series forecasting [33]. Therefore, ensemble models
have become the main method of wind speed forecasting. Wang et al. proposed an
integration method consisting of an ANN, multi-objective bat algorithm (MOBA), and SSA
to forecast wind speed [34]. Altan et al. proposed optimizing LSTM networks for wind
speed prediction based on the GWO algorithm, and the results showed that optimizing
LSTM using the GWO algorithm can be very competitive [35]. Wang et al. proposed an
integrated model comprising CEEMD, ENN, and a multi-objective whale optimization
algorithm (MOWOA) to predict short-term wind speeds [36]. Liu et al. proposed a
wind speed forecasting ensemble system based on a data decomposition method, optimal
subsequence predictor, and ensemble technology through multi-objective optimization [37].
Yang et al. adopted an integrated forecasting model based on decomposition technology
and an optimization algorithm for integrating subsequence forecasting results, which has
become an effective and promising method [38].

Based on the above analysis, a new ensemble forecast model is developed in this paper
in order to achieve higher forecast accuracy. Firstly, the best model is determined by the
comparison of single models. Secondly, the original wind speed series are decomposed and
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reconstructed by using data preprocessing techniques, and the single model is optimized
by using the egret population optimization algorithm to set the parameters in the appro-
priate threshold range and continuously update and iterate to achieve a more accurate
optimization effect and then make wind speed forecasts.

The main contributions of this paper are as follows: Firstly, the number of decom-
position layers in the variational modal decomposition technique is discussed, and the
optimal parameter values are determined by comparing the model performance, so that
the original wind speed time series can be decomposed, denoised, and reconstructed,
effectively improving the forecast accuracy of the model. Secondly, the definition domain
of the parameters of the egret population optimization algorithm is discussed, and the best
definition domain is determined by setting different definition domains for forecasting;
then, the support vector machine is optimized, and the optimized support vector machine
is further used to forecast the wind speed time series. The prediction accuracy is improved;
in addition, the proposed innovative integrated model is trained and tested based on wind
speed data from several sites of a large wind farm, and the results show that the model
outperforms the traditional model. Therefore, the model can be applied to wind speed
prediction in wind power plants.

The research content of this article is as follows: the second section introduces the
methods used in the model; the third section mainly introduces the test criterion; the fourth
section introduces data processing and analysis; the fifth section discusses the number of
layers of VMD, the definition domain of the egret population optimization algorithm, and
the DM test; and the sixth section is a summary.

2. Methodology

The methodology mainly contains an advanced data decomposition method, new
optimization algorithm, and the mentioned ensemble model.

2.1. Variational Mode Decomposition (VMD) Technique

During decomposition, VMD requires a minimum sum of the estimated bandwidths
for each modality. It is constrained by the fact that the sum of the decomposed modes
is equal to the original signal. Then, the corresponding constraint variational problem is
represented as 

min
{vk},{ωk}

{
k
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ vk(t)

]
∗ e−jωkt

∥∥∥2

2

}
s.t.

k
∑

k=1
vk = f (t)

(1)

where f (t) represents the initial signal, vk is all the modals, k is the number of modal
decomposition layers, t is the time, j is an imaginary number, ωk is the center frequency of
the kth component, and δ(t) is the Dirac distribution.

Lagrange multipliers are usually used to solve constrained problems. Therefore, in
variational problems, the weights can be implemented using augmented Lagrange quanti-
ties to achieve better convergence and finiteness. Assuming no constrained problems, the
VMD algorithm embeds quadratic penalties and Lagrange multipliers into the optimization
process to ensure a constrained strictly conditional environment using the following ex-
tended expressions, which in turn transforms the optimization problem mentioned above
into an unconstrained problem.

L({vk}, {wk}, λ) = α
K
∑

k=1

∥∥∥∂t

[
(δ(t) + j

πt ) ∗ vk(t)
]
e−jwkt

∥∥∥2

2

+

∥∥∥∥ f (t)−∑
k

vk(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)−

K
∑

k=1
vk(t)

〉
(2)
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where α represents the secondary penalty factor that reduces Gaussian noise interference,
and λ is the Lagrange multiplier. The variational problem described above is solved
using the alternating direction multiplier method (ADMM), and the optimization of the
unconstrained problem can be expressed as

v̂n+1
k (ω) =

f̂ (w)− ∑
j 6=k

v̂j(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k =

∫ ∞
0 ω|v̂k(ω)|2dω∫

∞
0 |v̂k(ω)|2dω

(4)

where v̂n+1
k (ω) represents the Wiener filter of f̂ (w) − ∑

j 6=k
v̂j(ω), and ωn+1

k indicates the

center of gravity of the power spectrum of the mode function.

2.2. Support Vector Machine

Support vector machines are usually used for data regression prediction. When dealing
with nonlinear problems, kernel functions can be introduced. To simplify the processing of
nonlinear problems, low-dimensional problems can be transformed into high-dimensional
linear problems, which are applicable to complex signal problems. Gaussian radial basis
function is a kernel function with strong localization ability, which can map samples to
high-dimensional space, with wide application, better performance, and less parameters
compared with other kernel functions.

K(x, y) = exp(−‖x− y‖2

2σ2 ) (5)

where σ is the width of kernel function. The optimization problem is transformed into the
following equation:

min
n
∑

i,j=1
(βi − β∗i )(β j − β∗j )K(xi, xj) + ε

n
∑

i=1
(βi + β∗i )−

n
∑

i=1
yi(βi − β∗i ) s.t.

n
∑

i=1
(βi − β∗i ) = 0

0 ≤ βi, β∗i ≤ D
(6)

where D is penalty factor. The most optimal nonlinear regression function can be obtained.

f (x) =
n

∑
i=1

(βi − β∗i )K(xi − x) + b (7)

2.3. Egret Swarm Optimization Algorithm

The egret population optimization algorithm has development, exploration, compre-
hensive performance, stability, and convergence, in addition to the excellent performance
and robustness of the ESOA algorithm in typical optimization applications [39]. ESOA
consists of three main components: The sit-and-wait strategy, the aggressive strategy, and
the discrimination condition. Each egret group is composed of n egret teams, with each
team consisting of three egrets. Egret A uses the waiting strategy, while Egret B and Egret C
use the random walk and surrounding mechanism of the aggressive strategy, respectively.

(1) Sit and wait strategy:

The observation equation of the ŷj = B(xj), yj is the true fitness obtained at each
iteration, the pseudo-gradient gj is the weight in the observation equation. The update
location for egret A is as follows:

Xa,j = xj + exp(−n/(0.1 ∗ nmax)) ∗ 0.1 ∗ hop ∗ gj (8)
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where n is the current iteration number; nmax is the maximum number of iterations and
hop is the range of feasible domains for arguments.

(2) Aggressive strategies: Egret B is a random walk, and then updated as follows:

Xb,j = xj +
tan(rb,j) ∗ hop

1 + n
(9)

rb,j is the random number between (−π
2 , π

2 ).
Egret C is an encirclement strategy, and the updated location is as follows:

Dh = xjbest − xj (10)

Dg = xgbest − xj (11)

xc,j = (1− rj − rh) ∗ xj + rh ∗ Dh + rg ∗ Dg (12)

where xjbest and xgbest are the optimal values for egret teams and egret populations, respec-
tively; rh and rg are random numbers between (0, 1).

(3) Discrimination condition: After each egret in the egret squad calculates the up-
dated position, it will jointly decide the update position of the egret squad, in the
form below:

xs,j = [xa,j, xb,j, xc,j] (13)

ys,j = [ya,j, yb,j, yc,j] (14)

cj = argmin(ys,j) (15)

xi =

{
xs,i/cj

i f ys,j

∣∣∣cj < yj or r < 0.3
xj else

(16)

If ys,j|cj
< yj, the egret squad chose to accept this option. Or if the random number

r ∈ (0, 1) is less than 0.3, this means that there is a 30% chance of accepting a worse plan.

2.4. Data Feature Analysis Method

In most cases, developing a forecasting model involves computationally large com-
plexity; so, in this article, we develop a suitable multiscale model to measure the complexity
of the input data.

The Lempel–Ziv method measures the complexity characteristics of a time series. The
smaller the Lempel–Ziv value of the sequence, the lower the complexity of the sequence,
which means that the sequence contains more periodic components, stronger regularity,
and less implicit frequency information. On the contrary, the larger the Lempel–Ziv value
of the sequence, the higher the complexity, the worse the regularity of the feature, and the
higher the frequency of the sequence. This article uses Lempel–Ziv algorithm to measure
the complexity of the pattern, thereby improving the performance of the forecasting model.

To measure the complexity of Lempel–Ziv, it is necessary to convert the data series
into a symbol sequence by comparing the data with a threshold, replacing a specific piece
of data with 0 if the sequence is less than the threshold, otherwise replacing it with 1, and
then analyzing the symbol sequence by identifying different quantities. When using the
VMD method, applying the Lempel–Ziv method to identify the components, it is possible
to select the optimal model for each component.
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2.5. The Proposed Multiscale for Wind Power System

We propose a hybrid model framework, as shown in Figure 1, which is mainly
composed of data decomposition technology, single model prediction, and an intelligent
optimization algorithm.
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Figure 1. The proposed predictive modeling framework.

Stage 1: The original wind speed time series is decomposed using variational model
decomposition technology to remove noise and random fluctuations, thus decomposing
into a set of IMF. To distinguish these components, the Lempel–Ziv algorithm is used to
calculate the complexity of these components, and each component is predicted based on
the identified data features.

Stage 2: Forecasting of single models. For single model prediction, ELM, ENN, naïve,
and SVM with high accuracy are used as single models for prediction in this study to
build the developed combined model. Therefore, the results of single model prediction are
shown in Figure 1.

Stage 3: Determine the optimal weight coefficient for the forecasting model. Egret
population optimization algorithm is used to continuously iteratively optimize the prepro-
cessed data until the maximum number of iterations is reached, and the SVM of a single
model is predicted according to the obtained model weight coefficient, so as to obtain the
final prediction result.

Stage 4: Considering the complex seasonality of wind speed, this study selected four
quarters of data to verify that the established model can solve the problem of wind speed
prediction in different seasons. By comparing the data from four quarters with different
models, the superiority of the developed model compared to the comparative model is
demonstrated from different perspectives.
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3. Test Criterion
3.1. The Performance Metric

In order to verify the superiority of the VMD-ESOA-SVM model more clearly and
accurately, the average absolute and percentage error (MAPE), root mean square error
(MAE), mean squared error (MSE), and average absolute scale error (MASE) were used
to quantitatively determine the model’s performance. These performance metrics are
calculated using the following equation:

MAPE =
1
n

n

∑
k=1

∣∣∣∣yk−ŷk
yk

∣∣∣∣× 100% (17)

MAE =
1
n

n

∑
k=1
|ŷk − yk| (18)

MSE =
1
n

n

∑
k=1

(ŷk − yk)
2 (19)

RMSE =

√√√√( 1
n

n

∑
k=1

(ŷk − yk)
2

)
(20)

where ŷk and yk are the predicted value and the actual value, respectively. ŷk− yk represents
the difference between the predicted value and actual value.

3.2. Diebold–Mariano Test

DM statistical tests can be used to compare the performance and effectiveness of two or
more predictive models, measuring differences in the prediction accuracy of these models
on new datasets based on DM statistics. The measurement process is as follows:

The actual value can be shown as

{yk; k = 1, . . . , n + m} (21)

The values of different models can be expressed as{
ŷ(1)k ; k = 1, . . . , n + m

}{
ŷ2

k ; k = 1, . . . , n + m
}

(22)

The forecast errors from different models can be expressed as

ε
(1)
n+h = yn+h − ŷ(1)n+h, h = 1, 2, . . . , m (23)

ε
(2)
n+h = yn+h − ŷ(2)n+h, h = 1, 2, . . . , m (24)

A loss function can measure each forecasting accuracy, expressed as L(ε(i)n+h) i = 1, 2.
There are two common loss functions, including absolute deviation error loss and square
error loss.

The square error loss is shown as

L(ε(i)n+h) = (ε
(i)
n+h)

2
(25)

Absolute deviation loss is shown as

L(ε(i)n+h) =
∣∣∣εi

n+h

∣∣∣ (26)
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DM statistical tests are used to evaluate forecasting performance according to arbitrary
loss function L(g).

DM =
∑m

h=1 (L(ε(1)n+h − L(ε(i)n+h))/m
√

S2/m
s2 (27)

where S2 is a variance estimator of dh = L
(

ε
(1)
n+h

)
− L(ε(2)n+h). The original hypothesis is

expressed as
H0 : E(dh) = 0∀n (28)

H1 : E(dh) 6= 0 (29)

The original assumption is Equation (28), an indication that the two forecasting models
have a certain degree of consistent forecasting accuracy. The alternative assumption
is Equation (29), indicating that the two forecasting models have different degrees of
forecasting accuracy. The DM statistical test is a normal distribution under the original
assumption of asymptotic criteria. If the DM test statistic falls outside, the acceptance is
rejection from −zα/2 to zα/2.

|DM| > zα/2 (30)

where zα/2 is a two-sided critical value for the standard normal distribution.

4. Data Processing and Analysis

This section introduces an empirical study using the time series of wind speed at
three sites. For further explanation and verification, the forecasting results, analysis, and
comparison are also presented.

4.1. Data Collection and Variable Selection

The data used in this study were obtained from the power sector of Shandong Province,
China. Penglai City, Shandong Province, located on the Shandong Peninsula, has good
geological conditions and available offshore wind resources with obvious geographical
advantages. Wind energy resources have a promising development prospect; therefore,
accurate prediction of wind speed in the region is important to improve the power supply
structure of the power grid and promote the development of the new energy industry.
Wind speed is strongly influenced by seasonality. Therefore, this dataset is taken from the
time series of wind speed for a representative month in each season. Figure 2 shows the
geographical location of Penglai, as well as the summary of information data and wind
speed characteristics for spring (1 May to 31 May), summer (1 July to 31 July), autumn
(1 October to 31 October), and winter (1 January to 31 January), with less fluctuation in July
and more fluctuation in October. By interpolating the anomalous and missing data, 10-min
data from three observation sites in the region were used as sample data, and the total
number of data points simulated for each month was 4464 figures, including 3570 training
data points and 894 test point data.

Table 1 shows the descriptive statistical analysis of the data, which shows the observa-
tions, mean, standard deviation, kurtosis, skewness, etc., for each quarter of the data for
different sites. The mean value reflects the central tendency of the observed values. The
standard deviation reflects the fluctuations of the wind speed time series. We added and
corrected anomalies and missing data. The average wind speed in January is significantly
higher than that in other months at the three sites, followed by a higher average partial
wind speed in May than in July and October, indicating that Shandong Province is rich in
wind resources in winter and spring. In terms of kurtosis, the data for Site 1, January, Site 2,
and Site 3 are all less than 3, indicating that the data for these four months have fine tail
characteristics, while the data for other months at each site show a fat tail.
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Figure 2. Description of original wind speed data.

Table 1. Descriptive statistics for wind speed data.

Site Quarter Observation Mean (m/s) Std (m/s) Cvar (m/s) Skewness Kurtosis

Site 1

January 4464 7.5557 2.7479 0.3637 0.4212 2.5279
May 4464 6.8263 3.5619 0.5218 0.7635 2.9790
June 4464 5.1870 2.4356 0.4696 0.8082 3.7712

October 4464 5.2607 2.8107 0.5343 1.2032 4.4673

Site 2

January 4464 8.7899 3.1945 0.3634 0.3980 2.5273
May 4464 6.2400 3.3065 0.5299 0.9218 3.6664
June 4464 4.7456 2.1140 0.4455 1.0970 3.0301

October 4464 4.7992 2.6013 0.5420 1.2032 4.4673

Site 3

January 4464 7.4970 2.7793 0.3707 0.6175 2.8661
May 4464 6.0770 3.2252 0.5307 0.8975 3.5141
June 4464 4.7039 2.0739 0.4409 0.8169 3.8336

October 4464 4.7463 2.5183 0.5306 1.4160 5.4144
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4.2. Decomposition Process Analysis

The decomposition time series method of VMD first needs to consider the number of
decomposition layers. For different measurement methods, if the number of layers and time
of K are different, this article sets K to 5. In other words, VMD decomposes the wind speed
time series into five submodes, and Figure 3 shows the decomposition results. Submode
0 exhibits a significant long-term trend, with submodes from mode 1 to mode 4 being
stationary or approximately stationary. However, whether the decomposition process can
effectively improve wind speed prediction performance remains to be discussed.
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In order to analyze the data characteristics, the complexity of modes was calculated,
and different components were identified. The computational complexity uses the sample
entropy. The larger the value, the more complex the time series is, but it cannot provide
accurate values for small samples. Compared with the sample entropy, Lempel–Ziv is
more robust and simple and can be identified using accurate forecasting models with low
complexity in model construction. In the process of designing model matching, using the
Lempel–Ziv method for component recognition has a high/low frequency and trend. The
complexity patterns we calculated are shown in Table 2. Taking January of Site 1 as an
example, η 0.3657, VM0 to VM1 are low-trend components, VM2 is a trend component, and
VM3 to VM4 are high-frequency components. Taking May of Site 2 as an example, η 0.325,
VM0 to VM2 show a low-frequency trend, while VM4 shows a high-frequency trend.

Through the analysis of modal complexity and the identification of different com-
ponents, the trend component and low-frequency component SVM model of 0–4 modes
can be predicted; the corresponding high-component wind speed time series using the
VMD-ESOA-SVM model and the respective predictions use different components, and the
predicted results are generated by summarizing all the predictions.
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Table 2. The Lempel–Ziv computational complexity index result.

Site Quarter VM0 VM1 VM2 VM3 VM4

Site 1

January 0.0380 0.1412 0.3341 0.4780 0.5867
May 0.0353 0.1222 0.2879 0.4210 0.5079
June 0.0353 0.1249 0.3151 0.4291 0.5422

October 0.0353 0.1249 0.3205 0.4427 0.5459

Site 2

January 0.0435 0.1168 0.3422 0.4834 0.5867
May 0.0380 0.1381 0.2906 0.4318 0.5405
June 0.0598 0.2444 0.4536 0.5133 0.4753

October 0.0380 0.1494 0.3531 0.4943 0.5595

Site 3

January 0.0489 0.1956 0.4047 0.5323 0.4889
May 0.0435 0.1086 0.2770 0.4128 0.5350
June 0.0407 0.1521 0.3096 0.4291 0.5215

October 0.0380 0.1385 0.3232 0.4699 0.5378

4.3. Analysis Results

The section introduces the forecasting results of the seven models compared, including
single mode (ELM, ENN, native, SVM), hybrid model (VMD-SVM, CEEMD-SVM), and
ensemble model (VMD-ESOA-SVM).

4.3.1. Comparison of Single Model Forecasting Result

As a benchmark model, we considered the native, ELM, ENN, and SVM models.
The native model is a special model of the moving average model. The ELM model
is constructed by determining the number of hidden layer neutrons and the activation
function of hidden layer neurons. The Elman neutral network has a multilayer structure
similar to multilayer feedforward network. In addition, a single support vector machine
was used in the proposed model, and the proposed model was verified. Tables 3–5 show
the wind speed data calculation results of MAE, MAPE, MSE, and RMSE of a single
model. In the comparison of these results, some useful information can be obtained. First,
among these results, the native model is the worst. Second, due to the robustness and
accuracy of the neural network model, the effect of the ENN model is average. Third,
comparing the predicted performance indicators of the July wind speed data of Site 1, ELM
performed to some extent better than SVM. However, SVM outperforms other models in
wind speed data prediction at Sites 2 and 3, and the processing of wind speed data by
variational mode decomposition technology improves the prediction performance of SVM.
Therefore, the SVM model is generally superior to other models, and SVM is chosen as the
benchmark model.

Table 3. Evaluation results of Site 1 single model predicted wind speed data.

Quarter Model ELM ENN NAIVE SVM

January MAE (m/s) 0.4581 0.4745 0.5732 0.4358
MAPE (%) 7.9795 8,3270 9.6524 7.3805
MSE (m/s) 0.3847 0.4126 0.6120 0.3383

RMSE (m/s) 0.6203 0.6424 0.7823 0.5816

May MAE (m/s) 0.5214 0.7068 0.3542 0.5088
MAPE (%) 11.1897 14.8360 12.5278 10.7653
MSE (m/s) 0.5089 0.9853 0.2227 0.4951

RMSE (m/s) 0.7134 0.9926 0.4719 0.7036

July MAE (m/s) 0.5261 0.5918 0.7378 0.5830
MAPE (%) 10.9802 11.2362 14.0424 10.5633
MSE (m/s) 0.7041 0.6510 1.0532 0.7467

RMSE (m/s) 0.8391 0.8061 1.0262 0.8641
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Table 3. Cont.

Quarter Model ELM ENN NAIVE SVM

October MAE (m/s) 0.2597 0.2906 0.3542 0.2872
MAPE (m/s) 9.1823 11.8149 12.5278 12.4397
MSE (m/s) 0.1138 0.1379 0.2227 0.1380

RMSE (m/s) 0.3373 0.3714 0.4719 0.3714

Table 4. Evaluation results of Site 2 single model predicted wind speed data.

Quarter Model ELM ENN NAIVE SVM

January MAE (m/s) 0.5559 0.8082 0.6412 0.4312
MAPE (%) 8.4844 13.6201 9.6524 7.2888
MSE (m/s) 0.5535 1.1685 0.7697 0.3342

RMSE (m/s) 0.7440 1.0810 0.8773 0.5781

May MAE (m/s) 0.5184 0.9452 0.7759 0.5163
MAPE (%) 11.6065 25.3435 17.1347 11.4785
MSE (m/s) 0.5090 1.4686 1.1671 0.5097

RMSE (m/s) 0.7134 1.2119 1.0803 0.7140

July MAE (m/s) 0.5929 0.6604 0.7701 0.5346
MAPE (%) 12.8811 14.3133 15.6331 11.1130
MSE (m/s) 0.6782 0.7924 1.1930 0.5435

RMSE (m/s) 0.8235 0.8902 1.0922 0.7372

October MAE (m/s) 0.2784 0.3252 0.3426 0.2825
MAPE (m/s) 12.0581 15.7908 13.0775 12.7003
MSE (m/s) 0.1298 0.1763 0.2058 0.1339

RMSE (m/s) 0.3603 0.4199 0.4536 0.3660

Table 5. Evaluation results of Site 3 single model predicted wind speed data.

Quarter Model ELM ENN NAIVE SVM

January MAE (m/s) 0.5515 0.6098 0.6298 0.44271
MAPE (%) 9.3581 10.4826 10.9273 8.2095
MSE (m/s) 0.5618 0.6598 0.7298 0.3312

RMSE (m/s) 0.7495 0.8123 0.8543 0.5755

May MAE (m/s) 0.5102 0.7233 0.6971 0.5037
MAPE (%) 11.6791 16.4352 15.9611 11.4336
MSE (m/s) 0.4985 0.9726 0.9277 0.4780

RMSE (m/s) 0.7060 0.9862 0.9632 0.6914

July MAE (m/s) 0.4993 0.5182 0.6834 0.5146
MAPE (%) 10.8072 10.8900 14.6324 10.6024
MSE (m/s) 0.4901 0.5535 1.0139 0.5916

RMSE (m/s) 0.7001 0.7440 1.0069 0.7292

October MAE (m/s) 0.2503 0.2497 0.3364 0.2519
MAPE (m/s) 9.5423 9.1076 12.4249 10.0926
MSE (m/s) 0.1149 0.1155 0.2048 0.1163

RMSE (m/s) 0.3390 0.3398 0.4526 0.3411

In Figure 4, it can be visually observed that in the histogram presented at Site 1, the
height of the SVM is lower than the other models, indicating that the values of MAE, MAP
E, MSE, and RMSE are low and thus the performance of its model is better, and the radar
plot at Site 2 can directly show the relative advantages and disadvantages of different
models, and the closer to the center of the radar plot, the better the performance of the
model is, and at Site 3, the smaller the area occupied in the area plot indicates the better
performance of the model, so the performance of the SVM in the single model comparison
is the best. At the same time, we can also observe in that the values of MAE, MAPE, MSE,
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and RMSE in January and October are smaller than the values of the other two months,
indicating that wind energy resources are abundant in January and October.
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4.3.2. Comparison of Hybrid and Ensemble Models’ Forecasting Results

For the hybrid and ensemble models, firstly, the VMD method is more suitable for
analyzing the wind speed time series decomposition process compared with the CEEMD
method, as shown in Tables 6–8. For four quarters of data from the three sites, the prediction
evaluation results of the VMD-SVM model are better than those of the CEEMD-SVM model.
For example, in the January evaluation results for Site 1, the MAE of CEEMD is 0.2842,
MAPE is 4.8684, MSE is 0.1409, and RMSE is 0.3754, while the values of the MAE, MAPE,
MSE, and RMSE of VMD-SVM are 0.2017, 3.4757, 0.0702, and 0.1649, respectively. This
further indicates that VMD is superior to the CEEMD technique. It may also be due to
the fact that the long-term prediction results of the CEEMD method are susceptible to
unexploited factors, leading to its unpredictability. The decomposition process of the VMD
method can effectively capture the internal patterns and better reconstruct multiple data for
noise reduction decomposition. Secondly, it can be observed in Figure 5 that the proposed
model outperforms the corresponding VMD-SVM-based multiscale hybrid model in terms
of MAE, MAPE, MSE, and RMSE values for the VMD-ESOA-SVM model and the VMD-
SVM model; the prediction performance of the former is better than the latter, indicating
that the proposed multiscale model considers the prediction effect on different components.

Table 6. Evaluation results of hybrid models for wind speed prediction at Site 1.

Quarter Model VMD-SVM CEEMD-SVM VMD-ESOA-VMD

January MAE (m/s) 0.2017 0.2842 0.1204
MAPE (%) 3.4757 4.8684 2.1164
MSE (m/s) 0.0702 0.1409 0.0269

RMSE (m/s) 0.2649 0.3754 0.1641

May MAE (m/s) 0.2709 0.3362 0.1008
MAPE (%) 4.7679 7.3896 2.0610
MSE (m/s) 0.1233 0.1966 0.0200

RMSE (m/s) 0.3511 0.4434 0.1413
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Table 6. Cont.

Quarter Model VMD-SVM CEEMD-SVM VMD-ESOA-VMD

July MAE (m/s) 0.2476 0.3526 0.1989
MAPE (%) 4.7489 6.5102 2.7455
MSE (m/s) 0.1150 0.3149 0.3821

RMSE (m/s) 0.3392 0.5612 0.6181

October MAE (m/s) 0.1209 0.1994 0.0788
MAPE (m/s) 4.3636 8.0397 4.5364
MSE (m/s) 0.0243 0.0647 0.0171

RMSE (m/s) 0.1559 0.2545 0.1308

Table 7. Evaluation results of hybrid models for wind speed prediction at Site 2.

Quarter Model VMD-SVM CEEMD-SVM VMD-ESOA-SVM

January MAE (m/s) 0.2081 0.3330 0.0359
MAPE (%) 3.8200 5.1387 2.1973
MSE (m/s) 0.0839 0.1998 0.0356

RMSE (m/s) 0.2897 0.4470 0.1886

May MAE (m/s) 0.2802 0.3174 0.1049
MAPE (%) 5.2315 7.3051 2.3198
MSE (m/s) 0.1376 0.1772 0.0194

RMSE (m/s) 0.3710 0.4210 0.1394

July MAE (m/s) 0.2834 0.3211 0.2046
MAPE (%) 5.9934 6.5565 3.8631
MSE (m/s) 0.1595 0.1995 0.1149

RMSE (m/s) 0.3993 0.4466 0.3390

October MAE (m/s) 0.1245 0.2066 0.0941
MAPE (m/s) 4.8853 9.5794 4.1096
MSE (m/s) 0.0259 0.0683 0.0246

RMSE (m/s) 0.1611 0.2613 0.1568

Table 8. Evaluation results of hybrid models for wind speed prediction at Site 3.

Quarter Model VMD-SVM CEEMD-SVM VMD-ESOA-SVM

January MAE (m/s) 0.1992 0.3092 0.1523
MAPE (%) 3.8186 5.5024 2.7347
MSE (m/s) 0.0699 0.1780 0.0435

RMSE (m/s) 0.2644 0.4219 0.2087

May MAE (m/s) 0.2805 0.3199 0.1006
MAPE (%) 5.6061 7.5843 2.2704
MSE (m/s) 0.1299 0.1734 0.0177

RMSE (m/s) 0.3605 0.4164 0.1330

July MAE (m/s) 0.2230 0.2980 0.1654
MAPE (%) 4.8147 6.1967 2.5930
MSE (m/s) 0.0909 0.1867 0.0314

RMSE (m/s) 0.3016 0.4321 0.1772

October MAE (m/s) 0.1176 0.1786 0.0867
MAPE (m/s) 4.5132 6.7879 6.1902
MSE (m/s) 0.0242 0.0538 0.0318

RMSE (m/s) 0.1557 0.2319 0.1784
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5. Discussion
5.1. Data Decomposition Analysis

An important parameter in variational modal decomposition techniques is the number
of decomposition layers, and the difference in the number of decomposition layers affects
the performance of the predictive model, so a more accurate decomposition layer needs to
be determined. As shown in Table 9, when k takes different values, the results of the test
model are also different, and the smaller the values of MAE, MAPE, MSE, and RMSE, the
more accurate the number of decomposition layers. Although the value of k = 4 for MAE
is slightly lower than the k = 5 value for MAE, it can be clearly observed in the table that
when the number of decomposition layers’ k is set to 5, the values of MAPE, MSE, and
RMSE are significantly lower than the other layers of k, so the number of decomposition
layers is set to 5.

Table 9. Predictive performance of the proposed framework under different parameter optimization
methods.

Site 1 MAE (m/s) MAPE (m/s) MSE (m/s) RMSE (m/s)

k = 4 0.2413 4.8134 0.1393 0.3733
k = 5 0.2594 4.3320 0.1255 0.3543
k = 6 0.3680 6.2444 0.2511 0.5011
k = 7 0.3691 6.2285 0.2534 0.5034
k = 8 0.4049 7.0062 0.3141 0.5604

5.2. Analysis Parameter of Egret Population Optimization Algorithm

In the egret population optimization algorithm, lb is the lower bound of the definition
domain and ub is the upper bound of the definition domain. We found that the difference in
the upper and lower bounds of the definition domain affects the predictive performance of
the proposed model, so we discussed the upper and lower values of the definition domain
in order to choose a better definition domain. In Table 7, we can observe that when lb is
set to 0.01 and ub is set to 2, the values of MAE, MAPE, MSE, and RMSE are significantly
lower than other values of ub; further subdividing the value of lb, setting lb to 0.001 and
0.1 for comparison, through Table 10 we can observe that when the value of lb is 0.001,
0.01, 0.1, and 1, the values of MAE, MAPE, MSE, RMSE do not change significantly. The
difference in the value of ub affects the performance of the model; therefore, we set the
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upper limit of the definition domain of the egret population optimization algorithm to 0.1
and the lower limit of the definition domain to 2.

Table 10. Different values of the definition domain of the egret population optimization algorithm.

Parameter MAE (m/s) MAPE (m/s) MSE (m/s) RMSE (m/s)

lb = 0.01 ub = 1 0.1539 2.8404 0.0456 0.2136
lb = 0.01 ub = 1.5 0. 1211 2.1468 0.0270 0.1644
lb = 0.01 ub = 2 0.1204 2.1170 0.0269 0.1642

lb = 0.01 ub = 2.5 0.1216 2.1322 0.0279 0.1670
Lb = 1 ub = 2 0.1204 2.1157 0.0269 0.1641

lb = 0. 1 ub = 2 0.1203 2.1157 0.0269 0.1641
lb = 0.001 ub = 2 0.1204 2.1164 0.0269 0.1641

5.3. DM Test

This study used the DM test to verify the effectiveness of the established model by
comparing single models, mixed models, and VMD-ESOA-SVM integrated models. Based
on the basic idea of the DM test, two hypotheses were proposed: the first hypothesis is that
there is no significant difference in predictive performance between two models, while the
second hypothesis is that there is a significant difference between two models. Table 11 lists
the DM test values of different models at three locations, and the results show that there is a
significant difference of 1% between the proposed VMD-ESOA-SVM integrated model and
other models, rejecting the original hypothesis, meanwhile leading to the conclusion that
the proposed VMD-ESOA-SVM integrated model is significantly better than other models.

Table 11. The values of DM tests of different models.

Site Model ELM ENN NAIVE SVM CEEMD-SVM VMD-SVM

Site 1

January 14.3071 * 14.9625 * 14.8990 * 14.7210 * 2.9405 * 9.6457 *
May 11.2756 * 12.9289 * 12.1116 * 12.1302 * 13.3440 * 10.1696 *
June 2.0504 ** 3.5568 * 5.7248 * 5.5924 * 2.4198 ** 2.5458 *

October 15.7204 * 16.2636 * 16.0923 * 19.4596 * 15.5613 * 4.4544 *

Site 2

January 14.8521 * 16.4252 * 14.1077 * 13.9161 * 12.1402 * 11.7077 *
May 13.2756 * 12.4972 12.6159 * 12.7612 * 14.8045 * 13.3255 *
June 12.1289 * 13.8208 * 13.6308 * 11.1556 * 3.2879 * 2.6548 *

October 13.0896 * 160762 * 12.8064 * 14.7308 * 10.8990 * 1.4133 ***

Site 3

January 11.0441 * 14.1368 * 13.6279 * 11.8376 * 11.4672 * 9.2341 *
May 13.7777 * 14.2897 * 13.5477 * 13.6060 * 15.7046 * 13.1152 *
June 4.2221 * 7.3272 * 4.9505 * 9.87701 * 2.4563 ** 2.3508 **

October 9.9518 * 12.3137 * 10.1168 * 8.7520 * 2.1480 ** 1.3556 ***

Note: * represents 1% significance level, z0.01/2 = 2.58; ** represents the 5% significance level, z0.05/2 = 1.96;
*** represents the 10% significance level, z0.10/2 = 1.64.

6. Conclusions

As an important part of green renewable energy, wind energy is widely used to
cope with environmental pollution and climate change. Therefore, high-precision and
high-efficiency wind speed forecasting methods are essential to improve the operational
efficiency of wind power generation systems. In this study, we successfully developed a
new ensemble model based on data denoising techniques, the egret optimization algorithm,
and a support vector machine. We also used the VMD method to decompose wind speed
time series into components with different features to improve prediction accuracy and
reduce noise interference. We compared our results with the CEEMD ensemble model
based on multiscale hybrid prediction and single models.

The relevant conclusions of the proposed ensemble model are as follows: Firstly,
the number of decomposition layers in the data decomposition technique was discussed
to determine the optimal parameter values by comparing the model performance such
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as MAE, MAPE, MSE, and RMSE to decompose, denoise, and reconstruct the original
wind speed time series, which effectively improved the forecast accuracy of the model.
Secondly, the definition domains of the parameters of the egret population optimization
algorithm were discussed, and the optimal definition domain was determined by setting
different definition domains for forecasting, the support vector machine was optimized,
and the optimized support vector machine was further used to forecast the wind speed time
series. The accuracy of the developed model was further demonstrated by comparing the
developed model with other models and by DM testing. Based on the various analyses in
this study, the developed ensemble model effectively improves the accuracy of wind speed
prediction and provides a more effective and accurate method for wind speed forecasting.

In the future, it is recommended to consider and construct common multiscale hy-
brid models using other univariate forecasting methods. To determine the usefulness of
multiscale models in time prediction, the accuracy of the proposed model parameters and
the sensitivity of the procedure should be considered when using data for forecasting. By
discovering more single and mixed models and conducting diversified comparisons, useful
insights can be provided on how to improve the predictive performance of multiscale
models and offer valuable recommendations.
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Abbreviations

AR Auto regression
MA Moving average
NAIVE Naïve Bayesian
ENN Elman neutral network
SVM Support vector machine
GMO Grey wolf optimization
NWP Numerical weather prediction
ARMA Autoregressive moving average
VMD Variational mode decomposition
LSTM Least square support vector machine
ARIMA Autoregressive integrated moving average model
ESOA Egret population optimization algorithm
CEEMD Complete ensemble empirical mode decomposition adaptive noise
MSE Mean square error
MAE Mean absolute error
RMSE Root mean square error
SSA Singular spectral analysis
ELM Extreme learning machine
MOBA Multi-objective bat algorithm
EMD Empirical mode decomposition
MAPE Mean absolute percentage error
IASO Improved atomic search algorithm
VMD-SVM SVM model based on VMD decomposition adaptive noise
MOWOA Multi-objective whale optimization algorithm
CEEMD-SVM SVM model based on CEEMD decomposition adaptive noise
VMD-ESOA-SVM SVM model based on ESOA and VMD decomposition adaptive noise
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