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Abstract: The launch of the national carbon emissions trading (CET) market has resulted in a closer
relationship between China’s CET market and its electricity market, making it easy for risks to transfer
between markets. This paper utilizes data from China’s CET market and electric power companies
between 2017 and 2023 to construct the spillover index model of Diebold and Yilmaz, the frequency-
domain spillover approach developed by Barun’ik and Křehl’ik, and a minimum spanning tree model.
The comparison is made before and after the launch of the national CET market. Subsequently, this
paper examines the market spillover effects, as well as the static and dynamic properties of network
structures, considering both the time domain and frequency-domain perspectives. The research
findings suggest the following: (1) There is a strong risk spillover effect between China’s CET market
and the stock prices of electric power companies; (2) There is asymmetry in the paired spillover
effects between carbon trading pilot markets and the national CET market, and differences exist in the
impact of risk spillovers from power companies between the two; (3) The results of the MST model
indicate that the risk contagion efficiency is higher in the regional CET pilot stage compared to the
national CET market launch stage, with significant changes occurring in key nodes before and after
the launch of the national CET market; (4) Both the dynamic spillover index and the standardized
tree length results demonstrate that crisis events can worsen the risk contagion between markets.
Besides offering a theoretical foundation and empirical evidence for the development of China’s CET
and electricity markets, the findings of this paper can provide recommendations for financial market
participants as well.

Keywords: China’s CET market; electric power companies; spillover index model; connectivity
network; minimum spanning tree model

1. Introduction

The 21st century has seen an increase in extreme weather events and natural disasters
due to the significant rise in greenhouse gas emissions. In order to reduce carbon emissions,
countries around the world are taking steps to reduce the emissions of greenhouse gases
such as carbon dioxide [1]. Numerous countries have signed international agreements such
as the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto
Protocol, and the Paris Agreement. Carbon emission trading is a crucial market-based
mechanism for reducing carbon emissions [2]. The European carbon emissions trading
(EU CET) market has emerged as the world’s largest and most active market for trading
carbon emissions, and it has been implemented in four stages. Currently, the EU CET
is in the fourth stage of stable operation [3]. Consequently, numerous scholars choose
the EU CET as their research focus to analyze the interaction between the carbon market
and other markets at various stages of development [4,5]. In contrast, China’s carbon
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market is relatively young, still in its initial stage of development, and its construction
is not yet mature. As a result, significant differences exist between the Chinese and EU
carbon markets, resulting in limited research on China’s carbon market. However, China,
as the world’s largest consumer of energy and greenhouse gas emitter, recorded carbon
dioxide emissions of 10.524 billion tons in 2021, accounting for 45 percent of the global
total. Meanwhile, driven by China’s large industries, China’s energy demand has increased
rapidly in recent years. Faced with the dual pressure of meeting international carbon
emission reduction goals and achieving sustainable development of the domestic economy
and environment, China has actively developed a carbon emission trading market. China
also declared its carbon peaking and carbon neutrality goals at the 75th United Nations
General Assembly in 2020, with the aim of reaching a carbon peak by 2030 and achieving
carbon neutrality by 2060. The development of the CET market in China consists of two
stages, with the regional CET pilot stage being the first stage. Starting from 2013, China
has successfully implemented carbon trading pilots in eight provinces and cities, namely
Shenzhen, Shanghai, Beijing, Guangdong, Tianjin, Hubei, Chongqing, and Fujian. In 2017,
the development of the national CET market was formally launched. Furthermore, 16 July
2021 marked a significant turning point for the power sector as the national CET market was
officially launched. China’s carbon emission trading market has experienced significant
success in recent years. Some scholars believe it has become the world’s second-largest
carbon trading market, surpassed only by the European Union’s carbon trading market [6],
and plays an important role in the international energy trading market. China’s carbon
market has developed and matured over time with the strong support of various policies.
Thus, studying China’s carbon market at different stages of its development is of great
practical significance.

Electric power companies, especially those involved in thermal power production,
have consistently been major contributors to China’s carbon emissions [7]. In 2021, the
national thermal power generation capacity reached 5770.27 billion kWh, accounting for
over 71% of the total power generation capacity. The electric power sector accounted
for approximately 41% of the total carbon dioxide emissions. Meanwhile, China’s power
sector has shown significant potential for emission reduction. Between 2006 and 2021, the
domestic power sector reduced carbon dioxide emissions by 21.51 billion tons. Promoting
decarbonization growth in the power sector is a crucial step towards mitigating climate
change and achieving the goals of carbon peaking and carbon neutrality. Furthermore, the
power sector is the country’s primary energy provider. The demand for electricity in China
will continue to increase alongside the country’s ongoing economic expansion, leading
to a higher share of electricity in total energy consumption. Consequently, electric power
companies have emerged as the primary targets for emission control in the CET market.
China has included the electric power industry, along with over 20 other industries such as
steel and cement, as a key emission unit for performance management in the pilot market.
In 2017, the “Construction Plan for the National Carbon Emission Trading Market (Power
Generation Industry)” was issued, clearly identifying the power generation industry as
the first sector to be included in the national CET market. It included over 1700 power
companies with emissions exceeding 3 billion tons.

There is a close interaction between the CET market and the electric power market. On
one hand, thermal power companies participate in both the electric power market and the
CET market, and their decisions regarding electricity generation and investment behavior
are influenced by carbon emission limitations. Conversely, electricity and energy prices
are the primary factors influencing carbon price fluctuations. Thermal power companies
internalize the “negative externalities” through the purchase of carbon emission rights.
Therefore, carbon price fluctuations impact power companies’ stock prices by influencing
power generation costs and cash flow fluctuations. Fluctuations in the electricity market
impact the carbon price, resulting in a mutually beneficial relationship between the CET
market price and the stock price of electric power companies [8]. The Linkage Effect
Theory states that if there is a linkage mechanism between markets, changing one market
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parameter will cause changes in one or more other relevant market parameters, creating
an interactive linkage between markets [9]. Given the mutual penetration and integration
of the CET market and the electricity market, analyzing the interactions between the CET
market and the stock market of electric power companies at different stages in China is of
utmost importance.

Recent academic research has focused on the relationship between the CET market
and the electricity market, with insightful findings. However, most of the relevant research
has primarily focused on the cost of electricity or the performance of all electric power
companies [10–14]. But researchers have found that the impact of carbon prices varies
across different businesses [12]. Some literature has explored the relationship between
different power companies and the CET market at the enterprise level, considering that
variations among power companies prevent the unified price index from reflecting the
unique characteristics of companies and the real market situation [7,8]. However, these
articles have some limitations. For example, they rely solely on a single spillover index
model, which fails to accurately capture the network structure characteristics and significant
risk transmission nodes of carbon power systems. Moreover, current research on the
CET market in China predominantly focuses on a specific stage of market development,
particularly regional CET markets. However, as a policy-driven market, the CET market is
significantly influenced by institutional policies and regulations [15]. China’s CET market
has experienced several policy changes during the regional CET pilot stage and the national
CET market launch stage, resulting in significant differences in the market structure and
mechanism compared to carbon trading pilots. Therefore, it is crucial to integrate it into
the research framework. This paper supplements existing literature by focusing on three
perspectives: segmentation of research objects into several listed thermal power generation
enterprises, a comparative study of the development stages of different carbon markets
in China, and the comprehensive application of the spillover index model and minimum
spanning tree model.

Considering the aforementioned variables, the research raises key questions. What is
the extent and transmission path of risk contagion between China’s CET market and thermal
power companies, as well as the structural characteristics of the carbon power system
network? What are the differences in performance among the various power companies in
the system? How does the relationship between carbon prices and the stock prices of power
companies evolve as China’s national CET market matures? Therefore, this paper examines
the spillover effects of volatility and the network structure characteristics between China’s
CET market and the stock prices of power companies. Based on the DY and BK spillover
index models and the MST model, this paper focuses on the regional CET pilot stage from
2017 to 2021 and the ongoing national CET market launch stage from 2021 to the present.

This paper contributes to the existing literature from three perspectives. Firstly, the
paper examines thermal power generation companies among listed power companies
in China. It selects an adequate number of corporate samples to specifically study the
correlation between carbon prices and the stock prices of 20 A-share listed thermal power
companies. Secondly, the paper utilizes DY and BK spillover index models and connec-
tivity methods to examine the time–frequency domain and dynamic volatility spillover
relationships among different indicators. Additionally, the minimum spanning tree (MST)
model is employed to analyze the structural characteristics of the system network, as well
as the central characteristics of the CET market and various power companies. Finally,
the paper compares and analyzes the differences in the interaction between the regional
CET pilot stage in China and the operational stage of the national CET market, taking a
comparative perspective before and after the launch of the national CET market.

The remainder of the paper is organized as follows. Section 2 is a literature review.
Section 3 introduces the spillover index model and the minimum spanning tree model.
Section 4 describes the basic characteristics of data selection and indicators. Section 5 is the
empirical analysis results of this paper. Section 6 discusses conclusions and recommenda-
tions based on these results.
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2. Literature Review

In recent years, there has been a gradual enrichment of articles on the interaction
between CET markets and electricity markets. Among them, some scholars focus on the
electricity price index. For example, Ref. [16] employed bivariate empirical mode decom-
position (BEMD), linear and nonlinear Granger causality tests to investigate the dynamic
multiscale interactions between CET and electricity markets in Europe. The study covered
phases I (2005–2007), II (2008–2012), and ongoing III (2013–2016) and found a significant
but asymmetric causal relationship between the markets, and the nonlinear interaction in-
creased in significance from insignificance to significance during the three phases. Ref. [17]
employed the bidimensional empirical mode decomposition-based conditional value at risk
approach to examine the spillover effects between the CET market and electricity prices.
The study discovered that the risks of high-frequency modes are higher than those of inter-
mediate and low-frequency modes. The CET market exhibits a positive risk spillover on
the electricity market, while the electricity market exhibits a negative risk spillover on the
CET market. Ref. [18] examined the role of peak–valley prices and idiosyncratic factors in
the information spillover mechanism between electricity prices and CET markets in Europe.
The study employed a systematic approach. The results indicate that electricity demand
plays a crucial role in the idiosyncratic information spillover channel, particularly in the
risk spillover channel. Ref. [19] examined the return and volatility spillover effects between
the European CET market and six electricity market electricity price indices using the vector
autoregressive (VAR), Baba–Engle–Kraft–Kroner (BEKK), and generalized autoregressive
conditional heteroskedasticity (GARCH) model. The findings indicate that the impact
between the CET market and the electricity market primarily involves the transmission of
price fluctuations rather than the direct impact of returns. Additionally, some researchers
have examined the price index of electric power companies. Ref. [20] employed a multifac-
tor market model specification and a panel quantile regression approach to investigate the
impact of EU carbon prices on stock returns in carbon-intensive industries, including the
power sector. The study demonstrated a long-term positive correlation between carbon
prices and the stock price index of the power sector. Ref. [11] employed a multifactor market
model to examine the impact and extent of carbon trading pilot price indices in Shanghai,
Guangdong, Beijing, Shenzhen, and Hubei on the price indices of 10 listed Chinese electric
power companies. The results indicated that carbon prices have a significant negative
impact on the stock value of the entire sample of power companies, and the impact of
different carbon trading pilots varies. Ref. [10] employed a multifactor market model and
a panel data econometric technique to investigate the long-run relationship between EU
CET market prices and the stock price index of European power companies. The study
found that EU carbon prices have a statistically significant and positive long-run impact
on the electric power markets of six European countries. The literature on the correlation
between the CET market and the electricity market has garnered increasing attention, and
some relatively mature research results have been obtained.

However, the aforementioned literature primarily employs the unified price index
as a proxy variable for the overall electric power market. Only a limited number of
scholars have investigated the interaction between the CET market and individual electric
power companies from an enterprise perspective. Ref. [8] utilized the newly developed
connectivity method proposed by Diebold and Yilmaz to examine the static, dynamic, and
asymmetric information spillover effects between the returns of EU carbon prices and
the stock returns of 18 leading European electricity companies from 2005 to 2018. The
research findings reveal a strong information interdependence between carbon price returns
and electricity stock returns. Moreover, large electric power companies tend to serve as
prominent information transmitters and exert a more substantial influence on carbon power
systems compared to small companies. Ref. [7] employed a connectedness network and
a rolling window approach to systematically investigate the static and dynamic spillover
effects between China’s local carbon emissions trading pilot market and 10 listed electric
power companies from 2014 to 2019. The study demonstrates that there is typically only
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a weak spillover effect between China’s CET market and electric power companies, and
the interaction between them may be linked to the power generation capacity or energy
mix of the companies. Based on the above literature, research on the relationship between
CET markets and power companies has predominantly relied on a single sample interval.
Specifically, studies on China’s CET market have mainly focused on the carbon trading pilot
markets, and there is a lack of literature differentiating between the regional CET pilot stage
and the national CET market launch stage, which presents notable research opportunities.

Furthermore, certain scholars have explored the relationship between different markets
by employing both the minimum spanning tree model and the spillover index model. For
instance, Ref. [21] constructed a static dependency network and dynamic spillover change
graph to examine the spillover effects between markets. They analyzed the minimum
spanning tree and central indicators to investigate the dependency structure between metal
and mining companies in the United States and Europe. Additionally, they conducted a
subsample analysis during the European sovereign debt crisis and the epidemic lockdown
period to explore the changes in companies’ risk output efficiency under varying market
conditions. Similarly, Ref. [22] utilized the minimum spanning tree (MST) approach and
the connectedness method to examine the risk transmission among energy futures in
China. Based on the aforementioned, it can be concluded that the spillover index model is
capable of reflecting the intensity and path of risk spillovers between markets. On the other
hand, the minimum spanning tree model can capture the simplest and most fundamental
relationship between variables through information filtering. Nevertheless, to date, no
scholars have employed both methods to investigate the correlation between the CET
market and the electricity market.

In response to the aforementioned gaps in existing research, three key areas are
identified. Firstly, while existing research on China’s CET market and electricity market
has yielded significant findings, the majority of studies focus on electricity prices or use a
unified electricity company price index as the research object. In contrast, limited research
explores the relationship between carbon prices and the stock prices of different electricity
companies. Moreover, the electric power sector is one of the most significant sectors
within the CET market, with electric power companies, particularly those engaged in
thermal power generation, making up the bulk of the market. Consequently, it is crucial
to investigate the interaction between the CET market and thermal power companies.
Secondly, existing research often employs econometric models or focuses solely on a
single spillover index model to analyze the correlation between markets, overlooking the
examination of the network structure and key risk transmission nodes within carbon power
systems. However, investor behavior in the market can be influenced by factors such as
information dissemination and investor sentiment. Therefore, constructing networks using
correlation coefficients to intuitively depict the relationships between individuals and the
overall structure and nature of the network holds significant importance. Lastly, there is
limited research on comparing the regional CET pilot stage with the national CET market
launch stage, with most studies on China’s CET market primarily centered around carbon
trading pilot markets. Given the series of policy adjustments before and after the launch of
the national CET market, resulting in differences in system design and pilot markets across
various aspects such as coverage, access thresholds, and quota allocation, it is crucial to
conduct research that encompasses different stages, considering the dynamic evolution of
the interaction between the CET market and the electricity market.

3. Method and Model
3.1. Model Selection Basis

First of all, this paper utilizes the DY spillover index model, which is based on the
prediction error variance decomposition method proposed by Diebold and Yilmaz. The
empirical results are measured using static spillover index tables and dynamic spillover
index graphs. The aim is to analyze the spillover effect between different markets [23–25].
The DY spillover index model has several advantages compared to traditional models.
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Firstly, it eliminates the dependence of results on the order of delay. Secondly, it can
reflect the intensity and path of information spillovers among multidimensional variables,
identify the net disseminators of spillovers, and determine the mechanism of various
assets in the process of market information transmission. Additionally, by incorporating
rolling window technology, the model can generate a dynamic spillover index to track the
changing dynamics of market spillover effects. Therefore, the DY spillover index model
is employed in this paper to assess the risk spillover effect among variables in the carbon
power system and elucidate the extent to which price fluctuations in one market affect
other markets.

Secondly, during the investment process, market participants frequently focus on the
cyclical factors in their investment portfolios. They assess the value of assets using expected
utility, which results in heterogeneous impacts on the market’s cyclical factors. This, in turn,
leads to short-term and long-term systemic spillover effects. Therefore, utilizing the DY
spillover index model as a foundation, the study employs the BK spillover index model to
examine the spillover effects between markets in various frequency domains. This allows
for the identification of differences in the extent of short-term and long-term spillovers [26].
Specifically, short-term spillovers refer to situations where market information undergoes
rapid processing, resulting in short-term impacts from spillover shocks between markets.
On the other hand, long-term spillovers indicate that related shocks may arise from funda-
mental changes in investor expectations, thereby influencing systemic spillover effects over
an extended timeframe.

Lastly, building upon the spillover index model, this paper employs the minimum
spanning tree (MST) method to construct the central network, capturing the core-periphery
structure of the system. MST refers to the weighted cost and minimum spanning tree
among all edges in the connected graph network [27], simplifying the network’s complexity
to the fullest extent [28]. By applying specific filtering rules, the MST method can reveal
the most basic core relationships among variables in the system, as well as the overall
structure and characteristics of the network [29]. It identifies a group of variables that
play a crucial connecting role in the system and unveils potential risk transmission paths.
Typically, financial risk transmission occurs from the affected market to the most closely
associated market, signifying the shortest and swiftest transmission path for risk within
the network [30]. Therefore, the MST method finds extensive application in the network
analysis of financial market data [31–33].

3.2. DY Spillover Index Model

Taking the volatility as an example, the construction of the DY spillover index model
can be divided into the following three steps:

The first step is to build a VAR model. The following p-order VAR model is constructed
for the volatility of n markets:

Yt = ∑
p
i=1 ϕiYt−i + εt, (1)

where Yt is an N-dimensional column vector of market volatility, ϕi is an N×N-dimensional
coefficient matrix, and εt is an N-dimensional random perturbation column vector, which
satisfies the basic assumption that there is no sequence correlation, zero mean, and inde-
pendent identically distributed. ∑ is an autoregressive matrix, and time t = 1, . . . , T. The
moving average form of VAR(p) is further obtained as follows:

Yt = ∑∞
t=1 Aiεt−i, (2)

Ai = φ1 Ai−1 + φ2 Ai−2 + · · ·+ φp Ai−p, (3)

where Equation (2) is the moving average form of AVR(p) , and A0 is the N × N identity
matrix. When i < 0, Ai = 0, and when i > 0, it follows the recursive form of Equation (3).

The second step is to use the generalized variance decomposition method to deal with
the impact of the predicted residual terms. In order to make the variance decomposition



Energies 2023, 16, 5578 7 of 27

independent of variable ordering, consider the forward H-step prediction error variance
decomposition to obtain the prediction error variance decomposition matrix, as follows:

θH
i←j =

σ−1
ii ∑H

h=0(e
′
i Ah ∑ ej)

2

∑H
h=0(e

′
i Ah ∑ Ahej)

, (4)

where Equation (4) indicates that the prediction error variance of the i-th market yield is
derived from the proportion of the j-th market yield, ∑ is the covariance matrix of the error
vector ε, and σii is the standard error sequence of ε . ei is an N-dimensional selection vector,
with the i-th element being 1 and the remaining elements being 0. At this point, for variable
θH

i←j, the sum of the contributions of other variables to its prediction error variance is not
equal to 1, so it is standardized as follows:

θ̄H
i←j =

θH
i←j

∑H
j=1 θH

i←j
, (5)

∑N
i,j=1 θH

i←j = N, ∑N
j=1 θH

i←j = 1. (6)

Therefore, we can obtain the paired spillover relationship between market and market
under the H-step size.

The third step is to calculate the total spillover index, directional spillover index, and
net spillover index.

(i) The total spillover index represents the contribution of mutual spillovers between N
variables to the total prediction error variance. The nondiagonal elements of the prediction
error variance decomposition matrix are summed and averaged as follows:

S∗(H) = 100×
∑N

i,j=1,i 6=jθ
∗H
ij (H)

∑N
i,j θ̃
∗H
ij (H)

= 100× 1
N
×∑N

i,j=1,i 6=j θ̃∗H
ij (H). (7)

(ii) The directional spillover index measures the directional spillover of the market’s
impact on all other variables, and measures the directional spillover of the market’s impact
on all other variables, as follows:

Sto = 100×
∑N

j=1,i 6=jθ
∗H
ij (H)

∑N
i,j=1θ̃∗H

ij (H)
= 100× 1

N
×∑N

j=1,i 6=j θ̃∗H
ij (H), (8)

S f rom = 100×
∑N

j=1,i 6=jθ
∗H
ji (H)

∑N
i,j=1θ̃∗H

ji (H)
= 100× 1

N
×∑N

j=1,i 6=j θ̃∗H
ji (H). (9)

(iii) The net spillover index, which measures the net spillover size of market to all
other markets, is as follows:

Snet = Sto − S f rom. (10)

3.3. BK Spillover Index Model

The specific steps for building a BK spillover index model can be divided into
four steps:

The first step is to construct spectral density. First, construct a frequency-response
function as follows:

ϕ(e−iω) = ∑he−iω ϕh. (11)

Based on Equation (12), the spectral density SX(ω) of Xt at frequency ω is constructed
as follows:

SX(ω) = ∑∞
h=−∞E(XtX

′
t−h)e

−iω = ϕ(e−iω)∑ ϕ
′
(e+iω), (12)
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where ϕ(e−iω) is obtained by the Fourier transform of ϕh. SX(ω) is a parameter that
describes the specific distribution of the variance of on frequency i. It is a key parameter
for understanding frequency dynamics.

The second step is to define a generalized causal spectrum. The generalized causal
spectrum can be defined as:

[ f (ω)]j,k =
σ−1

kk |[ϕ(e
−iω)∑]j,k|2

[ϕ(e−iω)∑ ϕ
′(e−iω)]j,j

, (13)

where [ f (ω)]j,k represents a portion of the spectrum of variable caused by the impact of
variable at a certain frequency ω. [ f (ω)]j,k can be understood as a causal relationship
within the frequency.

The third step is to build a weight function. The frequency share of the variance of
variable is introduced as a weight function:

τj(ω) =
[ϕ(e−iω ∑ ϕ

′
(e+iω))]j,j

1
2π

∫ π
−π [ϕ

′(e−iω)∑ ϕ(e−iω)]dλ
j,j

, (14)

where τj(ω) represents the power of variable j at a given frequency.
In the fourth step, the generalized variance decomposition is used to construct the

frequency-domain overflow index for different frequency bands. The generalized variance
decomposition over the entire frequency band (−π, π) is defined as:

(θ∞)j,k =
1

2π

∫ π

−π
τj(ω)[ f (ω)]j,kdω. (15)

The generalized variance decomposition over frequency band d = (a, b), a, b ∈ (−π, π),
a < b is defined as:

(θd)j,k =
1

2π

∫ b

a
τj(ω)[ f (ω)]j,kdω. (16)

The generalized variance decomposition after standardization is defined as:

(θ̃d)j,k =
(θd)j,k

∑N
k=1(θ∞)j,k

. (17)

The frequency-domain overflow effect on frequency band d is:

CF
d = 100×

∑j,k=1,j 6=k(θ̃d)j,k

∑N
j,k=1(θ̃∞)j,k

. (18)

3.4. Network Analysis Method
3.4.1. Minimum Spanning Tree Model

Currently, articles that explore securities market networks primarily rely on Pearson
linear correlation coefficients or enhancements thereof. Nevertheless, Pearson correlation
coefficients are solely suitable for variables with a normal or elliptical distribution, and
they solely capture linear correlation, making them inadequate for assessing nonlinear
correlation. In reality, the distribution of financial asset returns is frequently nonlinear,
time-varying, and uncertain. The copula function surpasses the constraints of the conven-
tional Pearson linear correlation coefficient and provides a more accurate depiction of the
dependency relationship among different variables. Hence, this article utilizes the copula
correlation coefficient to assess the dependency structure between the CET market and
various power companies.

The network analysis method provides an intuitive description of the relationships
among individuals and the overall structure and properties of the network. A network
consists of vertices and edges. In this case, the CET markets and power companies are
treated as vertices, while the edges represent the interrelationships between them. In graph
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theory, trees refer to connected undirected graphs that do not contain loops. The minimum
spanning tree is a tree with the lowest sum of weights among the connected edges in
a graph. Constructing a financial market network using the MST method involves the
following steps:

The first step is to calculate the correlation coefficient ρij between nodes and obtain a
N × N correlation coefficient matrix C of order (N represents the number of nodes).

The second step is to perform metric distance processing on the correlation coeffi-
cient to make it conform to the three axioms of European distance: if and only if i = j;
dij = dji; dij ≤ dik + dkj, dij = 0. The European distance, also known as the “Euclidean
distance”, represents the true distance between two points in M-dimensional space, which
connects the various markets in the MST network by converting the correlation matrix into
a distance matrix [34], and is calculated as follows:

Euclidean distance, also known as the “Euclidean metric”, represents the true distance
between two points in M-dimensional space, which connects the various markets in the
MST network by converting the correlation matrix into a distance matrix, and its calculation
formula is as follows

dij =
√

2(1− ρij), (19)

where dij is the relative distance between node i and node j, and the distance matrix D is
obtained. Using the distance matrix D as the adjacency matrix, a distance network graph is
generated, and an initial network graph is constructed.

The third step is to generate a minimum spanning tree using the Kruskal algorithm.
The main purpose of the minimum spanning tree is to filter redundant links in the network
and extract important link information in the financial market while maintaining the
simplest structure of the financial market network [34]. Considering the time complexity of
the algorithm, this paper chooses the Kruskal algorithm [35] to construct MST, which has
the advantage that it only needs to sort the distance once to construct MST. At present, the
Kruskal algorithm is widely used in related research [36–38], and its algorithm is as follows:

(i) We sort the elements of the distance matrix D in descending order and decompose
them into a sequence d;

(ii) Based on the ordering of the elements of the sequence d, we select the two nodes
with the smallest distance, and use line segments to connect the two nodes (not
forming a ring);

(iii) Repeat Step 2 until the number of edges selected is 1 less than the number of nodes,
and a minimal connected subgraph, the minimum spanning tree (MST), is obtained.

In addition, in order to better study the structure of MST, we have also used stan-
dardized tree lengths to measure the degree of market integration. It is calculated as the
reciprocal of the sum of all edge distances in the network:

L =
1

N − 1 ∑dij, (20)

where dij represents the distance between node i and node j.

3.4.2. Network Topology

For the constructed association network, three topological indicators, namely, degree
centrality, closeness centrality, and betweenness centrality, will be used to determine node
importance. The construction method of the three centrality indicators is as follows:

(i) Degree centrality. Degree centrality is the most direct metric for characterizing node
centrality in network analysis. The greater the node degree of a node, the higher the
degree centrality of the node, and the more important the node is in the network. The
specific expression for degree centrality is as follows:

CD(i) =
ki

N − 1
, (21)
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where CD(i) represents the degree centrality of node i, ki represents the degree of node
i, and N − 1 represents the maximum possible degree.

(ii) Closeness centrality. Closeness centrality reflects the proximity between a node and
other nodes. A smaller value of this indicator means that the node does not need
to rely on others to disseminate information. The specific expression for tightness
centrality is as follows:

CC(i) = ∑i 6=jRij, (22)

where Rij is the shortest path from node i to node j in the MST.

(iii) Betweenness centrality. The betweenness centrality of node i refers to the normalized
medium of node i, which refers to the proportion of the shortest paths between node j
and node k that pass through node i to all the shortest paths between node j and node
k. The higher the betweenness centrality, the more able it is to control other nodes,
that is, nodes with a high betweenness centrality must be important nodes, playing a
“bridge” role in the entire network diagram. The specific expression for the centrality
of the intermediate number is as follows:

CB(i) =
2

N(N − 1)∑i 6=j
Rjk(i)
Rjk

, i 6= j 6= k, (23)

where Rjk(i) is the shortest path from j to k through i, and Rjk is the shortest path from
j to k.

4. Data
4.1. Index Selection

The study period for this paper spans from 3 January 2017 to 13 January 2023 and is
divided into two distinct stages: the regional CET pilot stage (3 January 2017 to 16 July 2021)
and the national CET market launch stage (16 July 2021 to 13 January 2023). A total of
1463 sample observations were collected for analysis. Our empirical research relies on
daily price data. Daily data are preferred over weekly or monthly data as they capture
short-term fluctuations that may be missed in longer intervals. The dataset was sourced
from Wind Information Co., Ltd., (WIND) (Wind Information Co., Ltd. is a leading provider
of financial information services in Shanghai, China, https://www.wind.com.cn, accessed
on 18 April 2023). The yield series was derived by calculating the logarithmic yield based
on the original data. Subsequently, the GARCH model was employed to calculate the
volatility series.

Regarding China’s CET market, the country has established eight carbon trading
pilots and one national CET market. Each market operates at different times, with varying
levels of market activity and information liquidity. For this study, we have selected five
representative CET markets: Hubei, Guangdong, Shenzhen, Shanghai, and Beijing. This
decision is based on the following reasons. Firstly, an analysis of the cumulative carbon
quota trading volume from 2015 to 2022 reveals that Chongqing and Tianjin have lower
total carbon quota trading volumes compared to other carbon trading pilots, particularly
before the national CET market was launched. Furthermore, these two markets have
significantly fewer effective trading days, often experiencing zero trading on most days.
This indicates limited market liquidity and insufficient representativeness. Secondly, an
examination of the daily closing prices of carbon emission rights from 2017 to the present
highlights notable differences in price volatility among the carbon trading pilots. These
differences primarily arise from variations in trading activity, mechanisms, and related
policies within each CET market. Notably, Hubei, Guangdong, Shenzhen, Shanghai, and
Beijing demonstrate relatively higher daily closing prices. Additionally, due to the late
establishment of the Fujian CET market, data consistency with other CET markets cannot be
maintained, and therefore, it is not considered in our analysis. Consequently, we construct a
carbon price weighted index (CARBON1) using the daily trading volume of carbon trading
pilots in Hubei, Guangdong, Shenzhen, Shanghai, and Beijing as weights. Furthermore,

https://www.wind.com.cn
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after the launch of the national CET market, the daily trading prices of national emissions
permits are utilized as the proxy variable for the national CET market (CARBON2).

For electric power companies, considering that thermal power generation currently
accounts for the largest proportion of total power generation in China, we have targeted
the research object to thermal power generation companies. Based on their ranking for
2021 power generation among China’s 27 listed thermal power generation companies,
we chose the 20 with the largest power generation capacity, including Guodian Electric
Power Development Co., Ltd. (GDDL), Huaneng International Power Co., Ltd. (HNGJ),
Datang International Power Generation Co., Ltd. (DTFD), Huadian International Power
Co., Ltd. (HDGJ), Zhejiang Zheneng Electric Power Co., Ltd. (ZNDL), Guangdong Electric
Power Development Co., Ltd.. (YDL), Beijing Jingneng Electric Power Co., Ltd. (JNDL),
Jiangsu Guoxin Co., Ltd. (JSGX), Shanghai Electric Power Co., Ltd. (SHDL), Inner Mongolia
Mengdian Huanneng Thermoelectric Co., Ltd. (NMHD), Shenzhen Energy Group Co., Ltd.
(SZNY), Sheneng Co., Ltd. (SNGF), Jinneng Holding Shanxi Electric Power Co., Ltd. (JKDL),
Jointo Energy Investment Co., Ltd.Hebei (JTNY), An Hui Wenergy Co., Ltd. (WNDL),
National Energy Group Changyuan Power Co., Ltd. (CYDL), Henan Yuneng Holdings
Co., Ltd. (YNKG), Guangzhou Hengyun Enterprises Holding Ltd. (SHY), Datang Huayin
Electric Power Co., Ltd. (HYDL), Guangzhou Development Group Co., Ltd. (GZFZ). The
basic information of the enterprise is shown in Table 1. This paper selects the daily closing
price of each company’s stock as the proxy variable for electric power companies.

Table 1. The basic information of listed electric power enterprises.

Name Stock Code Electricity Generation (2021) Abbreviation

Guodian Electric Power Development Co., Ltd. 600795 4640.96 GDDL
Huaneng International Power Co., Ltd. 600011 4573 HNGJ

Datang International Power Generation Co., Ltd. 601991 2729.25 DTFD
Huadian International Power Co., Ltd. 600027 2328.01 HDGJ

Zhejiang Zheneng Electric Power Co., Ltd. 600023 1469.73 ZNDL
Guangdong Electric Power Development Co., Ltd. 000539 1198.69 YDL

Beijing Jingneng Electric Power Co., Ltd. 600578 721.38 JNDL
Jiangsu Guoxin Co., Ltd. 002608 608.15 JSGX

Shanghai Electric Power Co., Ltd. 600021 597.42 SHDL
Inner Mongolia Mengdian Huanneng Thermoelectric Co., Ltd. 600863 572.12 NMHD

Shenzhen Energy Group Co., Ltd. 000027 535.3 SZNY
Sheneng Co., Ltd. 600642 484.77 SNGF

Jinneng Holding Shanxi Electric Power Co., Ltd. 000767 427.96 JKDL
Jointo Energy Investment Co., Ltd. Hebei 000600 389.92 JTNY

Wanneng Electric Power Co., Ltd. 000543 365.68 WNDL
National Energy Group Changyuan Power Co., Ltd. 000966 316.86 CYDL

An Hui Wenergy Co., Ltd. 001896 257.18 YNKG
Guangzhou Hengyun Enterprises Holding Ltd. 000531 233.26 SHY

Datang Huayin Electric Power Co., Ltd. 600744 232.2 HYDL
Guangzhou Development Group Co., Ltd. 600098 215.75 GZFZ

4.2. Exponential Trend

Figure A1 illustrates the changes in the weighted value index of China’s carbon
trading pilots market, the national CET market price index, and the stock price index of
electric power companies. Over time, all carbon markets and electricity company prices
exhibit fluctuations. Comparing them to the national carbon price, which only experiences
fluctuations during the early stage of the national CET market launch and remains relatively
stable afterward, the weighted prices of regional CET markets display significant volatility.
This indicates greater uncertainty in the regional CET market. Moreover, in July 2021,
the price of regional CET markets also exhibited substantial volatility, maintaining a high
price level after the increase in volatility. This can be attributed to the price stability at
40–60 yuan since the national CET market’s launch, which is twice the average price of the
previous regional CET market. The participants in regional CET market trading activities
are influenced by these significant price differences, leading to higher expectations for
regional carbon prices. Consequently, the launch of the national CET market triggered a
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notable increase in regional carbon prices. Although the local and national CET markets are
decoupled in terms of control objects, the correlation of carbon price signals is inevitable.
Additionally, the majority of power company share prices demonstrate a significant upward
trend, peaking in 2021. This can be attributed to the gradual mitigation of the impact of
the COVID-19 pandemic in 2021 and the recovery of industrial and residential electricity
demand. Furthermore, in July of the same year, the online trading of China’s CET market
was launched, with the electric power industry being the first sector included in the national
CET market. This further stimulated the stock prices of electric power companies.

4.3. Descriptive Statistics

Table A1 presents the descriptive statistical results of volatility for various indicators
during the regional CET pilot stage and the national CET market launch stage. Prior to
the national CET market launch, the average volatility of the regional CET market was
significantly higher compared to that of electric power companies. This indicates that
power company prices were relatively stable, with the smallest fluctuations observed in
the stock prices of GDDL. Furthermore, the standard deviation of volatility in the regional
CET market was notably the largest, suggesting substantial changes in volatility and higher
market risk. After the national CET market was launched, the average volatility and
standard deviation of the regional CET market remained significantly higher than other
indicators. Conversely, the average volatility of the national CET market was the smallest,
further supporting the earlier conclusion that local carbon price volatility exceeded that of
the national CET market. Moreover, in terms of normality testing, the Jarque-Bera statistic
was significant at the 1% level for all market return series, indicating the rejection of the
original hypothesis of “following a normal distribution”. Regarding stationarity testing,
the ADF statistics indicated that all sequences rejected the original assumption of “unit
roots existence” at a 1% significance level, confirming that all market yield sequences were
stationary time series. Finally, using the AIC criterion, the optimal lag order of the VAR
model for volatility spillover effects was determined to be the first order, as it minimized
the amount of information.

5. Empirical Analysis
5.1. Static Spillover Connectedness

By constructing a total static spillover index table, this paper analyzes the static
volatility spillover effects between the national regional CET market and the national CET
market and power companies before and after the launch of the national CET market,
including paired spillover index, total spillover index, spillover index, spillover index,
and net spillover index. Among them, the diagonal element of the matrix represents the
proportion of risk borne by each market itself, and the nondiagonal element of the matrix
represents the paired spillover index of the listed market to the corresponding market. The
sum of nondiagonal rows is the spillover index, representing the sum of spillover effects of
other markets on the row’s market. The sum of the nondiagonal columns is the spillover
index, representing the sum of the spillover effects of this column of markets on other
markets. The net spillover index is the difference between the spillover index and the inflow
index of the listed market. Markets with a positive (negative) net spillover index are the net
communicators (net recipients) of overall market spillovers. In addition, the total spillover
index represents the spillover effect between the overall market. Table A2 presents the
results of the static spillover analysis between the regional CET market and the stock market
of electric power companies before the launch of the national CET market. On the other
hand, Table A3 reports the spillover results between the regional CET market, the national
CET market, and the power companies after the launch of the national CET market.

According to the total spillover index, significant system-wide spillover effects are
observed in both stages, with the total spillover index surpassing 50%. This suggests that
more than 50% of the changes in system variables can be attributed to changes in other
variables within the system. These results align with the spillover findings between the
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EU carbon market and power enterprises, supporting the notion of a close interaction
within the carbon power system. Following the launch of the national CET market, the
total spillover index increased from 54.95% to 60.35%, indicating that the operation of the
national CET market has strengthened the interdependencies within the system.

Regarding the net spillover index, prior to the launch of the national CET market,
the regional CET market exhibited a net spillover index of -0.91%, indicating it was a net
recipient of risk due to low carbon prices and lenient quota allocation policies. However,
after the national CET market was launched, the net spillover index of the regional CET
market turned positive at 2.72%, suggesting its role as a risk propagator. This shift may
be attributed to the fluctuating upward trend in the weighted price of the regional CET
market, which heightened its risk transmission. Additionally, the net spillover index
of the national CET market was −21.29%, implying that information spillover from the
electricity market to the carbon market cannot be overlooked by investors in the carbon
market. This finding is supported by previous research indicating that emissions trading
prices have little effect on electricity prices [8]. It implies that the national CET market
has not yet exerted a significant impact on power companies, but fluctuations in power
company stock prices can provide some reference information for changes in the national
carbon price. This is because national carbon price fluctuations mainly occurred during
the initial three months of the national CET market’s launch and the performance period.
Since 2022, the national CET market has exhibited relatively low liquidity and inactive
market characteristics, making it more susceptible to systemic risk compared to the regional
CET market. Moreover, the net spillover directions of the eight power companies have
significantly changed before and after the launch of the national CET market. Notably,
GDDL and CYDL transitioned from risk recipients to risk exporters, while HNGJ, SHDL,
JKDL, WNDL, HYDL, and GZFZ experienced inverse changes in spillover directions.

Regarding the paired spillover index results, the spillover effect of the regional CET
market on the national CET market was 3.83% after the launch of the national CET market,
which exceeded the spillover effect of the national CET market on the regional CET market
(1.40%). This difference can be attributed to the use of the trading volume of the five regional
CET markets to weight the regional carbon price index in this study. This weighted indicator
provides insight into the overall direction of regional carbon prices in China. Consequently,
if carbon emission prices rise in the majority of segmented submarkets, the national carbon
emission price will also increase. However, the rise in national carbon emission prices
may not necessarily translate to each regional submarket, as the carbon emission prices in
different regional markets may be significantly influenced by local supply and demand
factors. This indicates that risk spillovers between national and regional carbon emission
markets exhibit some level of asymmetry. Furthermore, heterogeneity is also observed in
the paired spillover effects between power companies and the CET market. Particularly,
among the risk spillovers from power companies to the CET market, 13 out of 20 companies
exhibit a stronger spillover effect on the national CET market compared to the regional
CET market. While spillovers from the CET market to power companies demonstrate
that 14 companies are more affected by spillovers from the regional CET market than the
national CET market. Moreover, the system spillover effect on the national CET market
reaches 30.96%, significantly surpassing that of the regional CET market (11.64%), while
the spillover index of the regional CET market is 14.37%, exceeding that of the national CET
market (9.67%). These findings further emphasize that the national CET market exhibits
weaker risk transmission to the system compared to the regional CET market, and it is
more prone to accepting systemic risks.

5.2. Frequency-Domain Spillover and Network Connectedness

To investigate the risk spillover effects between China’s CET market and power com-
panies in different frequency domains, as well as the heterogeneity of influencing factors
for risk transmission across various indicators at different stages, the original sequence
is decomposed into high-frequency and low-frequency components. The high-frequency
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band represents a period of 1 to 5 days, the intermediate-frequency band represents 5 to
30 days, and the low-frequency band represents 30 days or more. The optimal delay order
for VaR remains as order 1. Additionally, this paper views the sample market as a node in
the network and views the spillover relationship between two indicators as the edge of the
network in order to identify the characteristics of the risk spillover network in the system.
The egress and ingress of nodes are measured using the paired spillover index computed by
the DY or BK model. The following figures illustrate the interactive connectivity between
variables, providing detailed information about the roles played by different markets in
the risk transfer process and the intensity of risk transmission. In the figures, the green
node represents the net transmitter of risk, and the red node represents the net receiver of
risk. The darker the color of the line between nodes indicates the stronger the risk spillover
effect between markets, with yellow indicating weak spillovers, purple indicating moderate
spillovers, and blue indicating strong spillovers.

First, the results from Figures 1 and 2 indicate that the long-term spillover effects in
the system are stronger than the medium-term and short-term spillover effects at different
stages. This suggests that spillover effects in the time domain are primarily driven by
long-term dynamics, with spillovers between variables occurring predominantly over
the long term. Furthermore, in different frequency domains, the spillover effect between
regional CET markets and power companies is found to be weak. These findings align
with previous research [7], which also identified a weak bidirectional spillover between the
carbon market and the electricity market.

In terms of the connectivity network results before the launch of the national CET
market, the regional CET market acts as a net recipient of risk spillover across different
frequencies, mainly receiving risk inputs from the system. This indicates that during this
stage, the regional CET market has a limited impact on various power companies, while
power companies are more likely to transmit risks to the CET market. Following the launch
of the national CET market, the net spillover index of the regional CET market is negative
in the short and medium term, but becomes positive in the long term, transforming into a
net exporter of risk. In the case of the regional CET market, the volatility of prices has a
minimal impact on other listed power companies in the short and medium term, but in the
long term, carbon prices drive up power generation costs and electricity prices, making the
CET market a risk spillover party. Additionally, in the medium and long term, risks are
mainly transmitted from the regional CET market to the national CET market, providing
further confirmation of previous conclusions.

(a) (b) (c)

Figure 1. Network connectedness before the launch of the national carbon market: (a) short term;
(b) medium term; (c) long term.
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(a) (b) (c)

Figure 2. Network connectedness after the launch of the national carbon market: (a) short term;
(b) medium term; (c) long term.

5.3. Dynamic Spillover Result
5.3.1. Total Spillover Change

Due to the limitations of static spillover indices in capturing temporal variability,
the impact of special events on spillover effects may be overlooked. To address this, we
employ a rolling time window approach with a length of 100 days and a forward prediction
step of 10 to capture the dynamic spillover effect between the CET market and power
companies. Given the relatively short operating time of the national CET market, we use
local regional CET market indicators as representatives to analyze the dynamic trend of the
system spillover index from 3 January 2017 to 13 January 2023.

The results in Figure 3 reveal that the dynamic total spillover index of China’s CET
market and power companies fluctuated significantly throughout the sample period, ex-
hibiting prominent time-varying characteristics. The total spillover index consistently
maintained a high level, surpassing 60%. Furthermore, it is evident that the occurrence
of special events amplified the degree of spillovers between markets. Specifically, the
total spillover index experienced a significant increase, peaking at over 80%, during the
Sino–US trade war in 2018, the COVID-19 pandemic in 2020, and the Russia–Ukraine war
in 2022. These findings demonstrate that the abnormal volatility of financial market will
increasing the uncertainty and infectivity of the market, and then the resulting negative
sentiment will intensify dynamic risk spillovers within corresponding submarkets. As the
effects of the Sino–US trade war and the pandemic gradually diminished in China, the
correlation between markets gradually returned to normal levels This further underscores
the contagious nature of major emergencies across different financial submarkets.

Figure 3. Total dynamics spillover of carbon pilot market. (Note: The ordinate indicates the total
spillover index result of the carbon power system, and the abscissa indicates the year.)

5.3.2. Paired Net Spillover Changes Between Carbon Markets

To further examine the dynamic changes in the interaction between the local regional
CET market and the national CET market, we implemented a rolling window analysis with
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a length of 100 days and a forward prediction step of 10. This analysis allowed us to observe
the trend of the net spillover index from the local regional CET market to the national CET
market from 16 July 2021 to the present. A positive (negative) spillover index indicates that
the regional CET market acts as a net exporter (recipient) of risk to the national CET market.
The results depicted in the Figure 4 reveal predominantly negative paired net spillovers
from the local regional CET market to the national CET market, providing further support
for our earlier finding that the local regional CET market poses a greater risk to the national
CET market.

Figure 4. Paired net spillover of carbon pilot market to national carbon market. (Note: The ordinate
indicates the pairwise net spillover index of the local carbon pilot market to the national carbon
market, and the abscissa indicates the year.)

5.4. Minimum Spanning Tree Result Analysis
5.4.1. Minimum Spanning Tree

As correlation plays a crucial role in assessing risk contagion among variables, this
study employs the minimum spanning tree (MST) model to filter network information,
eliminating subjective interference and highlighting the transmission path of price shocks
and the fundamental relationships. To construct a correlation coefficient matrix for both the
regional CET pilot stage and the national CET market launch stage, the copula function is
utilized. Subsequently, an undirected weighted MST network is constructed to emphasize
central differences in the network structure across different stages, providing insights into
the network’s structure, risk transmission paths, and key markets involved in financial
risk transmission.

In undirected networks, the importance of a node is measured by its degree, indicating
the degree of connection to other nodes and its centrality within the network. As depicted
in the Figure 5, only a small number of nodes exert influence and govern the entire network,
while the majority of nodes are grouped around these key nodes and dispersed at the
network’s periphery. This characteristic resembles a scale-free network, with the degree
distribution following a power-law distribution. A lower number of connections per node
implies a more stable structure. Specifically, at different stages, both the local regional
CET market and the national CET market reside at the periphery of the spanning tree
within the system, indicating a relatively weak risk contagion between the CET market and
electric power enterprises, which further supports the earlier findings regarding spillover
effects. In the regional CET pilot stage, YDL, SZNY, and JKDL hold the highest node
degrees, each scoring 4, signifying their crucial positions in the network. In the national
CET market launch stage, NMHD, SNGF, GZFZ, HNGJ, JNDL, and YNKG possess the
highest node degrees, with a degree of 3. It is worth noting that while the system’s
risk transmission paths undergo significant changes at various points, the CET market
consistently maintains a high level of independence. Furthermore, before the launch of
the national CET market, tier 1 nodes accounted for 42.86% of the network, whereas after
the launch, their proportion decreased to 36.37%, indicating that during the regional CET
pilot stage, the carbon power system exhibited a larger network size, a more unstable
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structure, and higher susceptibility to the impact of influential markets, resulting in easier
risk propagation throughout the network.

(a)
(b)

Figure 5. Minimum spanning tree: (a) regional CET pilot stage; (b) national CET market launch stage.

5.4.2. Dynamically Normalize Tree Length

We proceed with a detailed analysis of the MST structure using dynamic correlation
coefficients obtained from time-varying copula models. By evaluating its time-varying
characteristics, we can observe the evolution of risk within the network. The standardized
tree length, which reflects the compactness of the network, is a useful measure of the
network structure. A higher value indicates looser connections between nodes, resulting in
slower risk or information propagation within the network, and vice versa. The red line
represents the cut-off line for the launch of the national carbon market.

As illustrated in Figure 6, the standardized tree length of the system decreases under
the influence of major events such as the Sino–US trade war in 2018, the COVID-19 epi-
demic in 2020, and the Russia–Ukraine war in 2022. This suggests that as risk increases,
the network connections become tighter, facilitating the spread of risk among nodes. This
finding aligns with the conclusions drawn from the dynamic spillover index. Although
the rolling normalized length and network overflow index have different definitions and
values, they serve as informative indicators reflecting the overall connectivity level within
the system, and thus yield consistent results. Furthermore, a noticeable fluctuation in the
standardized tree length is observed during the China regional CET pilot stage, character-
ized by several extremely low values. In contrast, the standardized tree length exhibits
greater stability and maintains a relatively high level during the operation of the national
CET market. This further confirms that the transmission of systemic risk is stronger in the
regional CET pilot stage compared to the national CET market operation stage.

Figure 6. Dynamically normalize tree length. (Note: The ordinate represents the normalize tree
length results of the system, and the abscissa represents the year.)
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5.4.3. Network Topological Property

To delve deeper into the identification of key variables in the network structure, we
utilized three widely used centrality measures in academic research: degree centrality,
proximity centrality, and intermediate centrality. Tables 2 and 3 present the summary
statistical data for each centrality indicator.

Table 2. Summary statistics for centrality measures before the launch of the national carbon market.

Degree Centrality Closeness Centrality Betweenness Centrality

CARBON1 0.0500 0.1887 0.0000
GDDL 0.0500 0.2198 0.0000
HNGJ 0.1000 0.1802 0.1000
DTFD 0.0500 0.2198 0.0000
HDGJ 0.1000 0.2128 0.1895
ZNDL 0.0500 0.1538 0.0000
YDL 0.2000 0.3636 0.6421
JNDL 0.1000 0.2247 0.1000
JSGX 0.1000 0.2299 0.1000
SHDL 0.1000 0.3030 0.3368

NMHD 0.0500 0.2703 0.0000
SZNY 0.2000 0.3704 0.6474
SNGF 0.0500 0.2740 0.0000
JKDL 0.2000 0.2778 0.3632
JTNY 0.0500 0.1852 0.0000

WNDL 0.1000 0.2532 0.2684
CYDL 0.0500 0.2500 0.0000
YNKG 0.1000 0.2817 0.1000
SHY 0.1000 0.2857 0.1895

HYDL 0.1500 0.3279 0.4684
GZFZ 0.0500 0.2222 0.0000

Prior to the launch of the national CET market, YDL and SZNY exhibited the highest
degree centrality, closeness centrality, and betweenness centrality within the system. These
two power companies held pivotal positions in the network, indicating their significant
influence on risk contagion during this stage. This can be attributed to their focus on
Guangdong and Shenzhen, where the CET markets were highly active, leading to fluctua-
tions in the stock prices of these listed power companies. However, after the launch of the
national CET market, notable changes occurred in the central nodes. Among them, NMHD
emerged as the most central node, occupying a key position in the network. In contrast, the
centrality of YDL and SZNY decreased significantly. This shift can be explained by the fact
that Inner Mongolia, being rich in energy resources with relatively low energy prices and
a lower technological level, has greater potential to adopt new technologies for emission
reduction. As a result, it may become a major seller of carbon quotas, positioning it as a key
player in the network due to lower marginal emission reduction costs and higher initial
carbon emission quotas.

Furthermore, examining the centrality results of the local regional CET market and
the national CET market, both displayed weaker degrees of centrality. However, the
closeness centrality of the national CET market (0.1858) surpassed that of the local regional
CET market (0.1556), indicating stronger risk transmission efficiency between the national
CET market and power companies. This finding further validates the aforementioned
spillover results.

To visually illustrate the changes in centrality before and after the launch of the
national CET market, we created a radar chart displaying the tightness centrality of each
variable during the two stages. As depicted in Figure 7, the centrality of different variables
was generally higher during the regional CET pilot stage compared to the national CET
market launch stage. This suggests an expansion in the risk transmission path of the entire
system, accompanied by a decline in risk transmission efficiency following the introduction
of the national CET market.
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Table 3. Summary statistics for centrality measures after the launch of the national carbon market.

Degree Centrality Closeness Centrality Betweenness Centrality

CARBON1 0.0476 0.1556 0.0000
CARBON2 0.0476 0.1858 0.0000

GDDL 0.0952 0.1680 0.0952
HNGJ 0.1429 0.2258 0.1857
DTFD 0.0952 0.2308 0.2571
HDGJ 0.0952 0.1963 0.1810
ZNDL 0.0952 0.2727 0.4667
YDL 0.0476 0.1858 0.0000
JNDL 0.1429 0.2471 0.4667
JSGX 0.0476 0.1448 0.0000
SHDL 0.0952 0.2958 0.4952

NMHD 0.1429 0.3134 0.6857
SZNY 0.0952 0.2121 0.2571
SNGF 0.1429 0.2727 0.4000
JKDL 0.0476 0.2165 0.0000
JTNY 0.0476 0.1707 0.0000

WNDL 0.0952 0.2039 0.0952
CYDL 0.0952 0.2211 0.0952
YNKG 0.1429 0.1826 0.1857
SHY 0.0476 0.1556 0.0000

HYDL 0.0476 0.1826 0.0000
GZFZ 0.1429 0.2727 0.4095

Figure 7. Comparison of the closeness centrality of variables before and after the launch of the
national carbon market.

5.5. Robustness Test

To ensure the reliability of the above results, referring to the methods of Diebold and
Yilmaz [23], the prediction step size was changed to 5 and 2 days, and the scroll window
was adjusted to 150 and 200 days. Figures 8 and 9 show the time-varying overflow graph of
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the total overflow index under different prediction days and window combinations. It can
be seen that the total spillover index has a consistent pattern across all situations, indicating
that the results are robust for different prediction ranges and window lengths. Furthermore,
we employed the Kendall correlation coefficient as an alternative to the copula correlation
coefficient used in this study. By reconstructing the minimum spanning tree (MST) based
on the Kendall correlation coefficient, the results shown in Figure 10 align with the previous
analysis. This further validates the stability and reliability of the empirical results.

(a) (b) (c)

Figure 8. Robustness checks by applying the 2-day forecast horizon: (a) 100-day rolling windows;
(b) 150-day rolling windows; (c) 200-day rolling windows.

(a) (b) (c)

Figure 9. Robustness checks by applying the 5-day forecast horizon: (a) 100-day rolling windows;
(b) 150-day rolling windows; (c) 200-day rolling windows.

(a) (b)

Figure 10. Minimum spanning tree of calculated by Kendall correlation coefficient: (a) regional CET
pilot stage; (b) national CET market launch stage.

6. Conclusions and Policy Implications
6.1. Conclusions

In response to the significant global carbon emission problem, China has proactively
developed carbon emission trading markets. The launch of the national carbon emission
trading market on 16 July 2021 has strengthened the relationship between China’s carbon
emission trading market and the power market, facilitating the transfer of risks within the
system. Consequently, it holds immense significance to investigate the interaction between
the carbon market and power enterprises across various stages.



Energies 2023, 16, 5578 21 of 27

Therefore, utilizing the time–frequency domain spillover index model and the min-
imum spanning tree model, this paper examines the effects of volatility spillover and
network structure characteristics between China’s CET market and electric power com-
panies during the regional CET pilot stage and the national CET market launch stage.
Furthermore, it explores the mechanism of risk transmission between markets. The main
findings can be summarized as follows.

Firstly, in terms of the spillover index model results, the time domain analysis reveals
a significant interaction between the CET market and power companies, as indicated by the
high total spillover index of carbon power systems. The net spillover analysis indicates that
the net spillover index of the local regional CET market shifted from negative to positive
after the launch of the national CET market, transitioning from being a risk recipient to a risk
exporter. However, the net spillover index of the national CET market is notably negative,
indicating that it receives risk spillovers from power companies. It is evident that there
are asymmetries in pairwise spillovers between markets when comparing the differences
between the local regional CET market and the national CET market, with risks primarily
transmitted from the local regional CET market to the national CET market. Simultaneously,
the risk spillovers from electric power companies to the national CET market are stronger
than those to the local regional CET market, while the risk spillovers from the national
CET market are weaker than those from the regional CET market. The frequency-domain
analysis demonstrates that long-term spillovers are the predominant driver of spillovers,
indicating that spillover effects between variables mainly occur in the long term. Moreover,
prior to the launch of the national CET market, local regional CET markets were all net risk
recipients in different frequency domains. However, after the launch of the national CET
market, the net spillover direction of the CET market changed with the frequency domain.
Lastly, the dynamic spillover analysis reveals that crisis events such as the Sino–US trade
war and the COVID-19 epidemic amplify risk contagion between markets.

Secondly, regarding the MST model results, the minimum spanning tree analysis
conducted before and after the launch of the national CET market reveals that both the local
regional CET market and the national CET market are positioned at the periphery of the
network, indicating relatively weak interactions with power companies. Furthermore, the
risk transmission path undergoes changes at different stages, with higher risk transmission
efficiency observed during the regional CET pilot stage compared to the operational stage of
the national CET market. The results of the dynamic standardized tree length demonstrate
that the occurrence of crisis events leads to a reduction in the standardized tree length of
the system, exacerbating risk transmission. Additionally, after the launch of the national
CET market, the standardized tree length stabilizes at a high level, indicating a weakening
of risk transmission. The analysis of network topology properties reveals that the key nodes
in the system during the regional CET pilot stage are YDL and SZNY, whereas after the
launch of the national CET market, the key nodes become NMHD. Moreover, the national
CET market exhibits a higher level of centrality compared to the local regional CET market,
indicating a relatively closer correlation with power companies.

6.2. Policy Implication

The research findings of this paper can serve as a theoretical and empirical basis for
the development of the CET market, the electricity market, and the investment behavior
of financial market participants in China. First, policymakers should focus on enhancing
the coordinated development between the national CET market and the electricity market.
This is particularly important during the launch of the national CET market, as it is crucial
to understand the relationship and distinctions between the national CET market and local
regional CET markets. Furthermore, it is important to promote the full implementation
of regional and national carbon price signals. This will help reduce the cost of power
system transformation, enhance production efficiency, and strengthen the impact of carbon
emission reduction. Secondly, in terms of electric power enterprise development, it is
important to address the short-term impact of carbon price fluctuations on production



Energies 2023, 16, 5578 22 of 27

costs. This can be done by timely adjusting the allocation of carbon assets and preventing
the risks associated with carbon price fluctuations. In the long run, as the CET market
matures and the value of carbon assets increases, power companies should actively promote
technological progress and optimize the power generation structure. This will reduce the
reliance on carbon prices for power generation costs and mitigate the risks arising from
carbon price fluctuations. Thirdly, regarding the development of the CET market, it is
crucial to consider the role of thermal power companies as an important component with
a significant impact. Attention should be given to the influence of power company stock
prices on carbon pricing. It is important to clarify the information transmission mechanism
of the carbon power system, monitor the power industry’s development, and focus on
enterprises in key positions within the system to mitigate the risk of transmission to the
CET market. Additionally, it is necessary to prevent the risk of carbon price collapse caused
by risk spillover effects and implement appropriate price stabilization mechanisms to
intervene in carbon prices. Lastly, when making strategic decisions, investors in power
companies and carbon finance markets should consider the interaction between the CET
market and power companies, as well as between regional CET markets and the national
CET market. They should analyze the risk transmission mechanism between markets and
mitigate investment risks by diversifying their investment portfolios.
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Appendix A

Figure A1. Carbon price and power company share price trend graph.
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Table A1. Summary descriptive statistics of regional CET pilot stage.

CARBON1 GDDL HNGJ DTFD HDGJ ZNDL YDL JNDL JSGX SHDL NMHD SZNY SNGF JKDL JTNY WNDL CYDL YNKG SHY HYDL GZFZ

Mean 21.7 0.97 1.85 1.72 1.67 1.22 1.52 1.46 2.32 1.57 1.54 2.11 1.21 2.11 2.61 1.62 2.61 2.8 2.49 3.02 1.57
Maximum 73.89 7.04 4.02 5.64 3.58 2.79 4.69 8.66 6.94 3.92 3.42 10.75 3.27 8.59 8.8 4.39 11.66 11.13 8.37 11.73 5.21
Minimum 6.21 0 0.84 1.04 0.76 0.77 0.84 0.9 1.36 0.96 1.03 0.99 0.79 1.12 1.52 0.91 1.05 1.3 1.14 1.45 0.84

Std. Deviation 13.32 0.69 0.56 0.66 0.52 0.35 0.65 0.74 0.86 0.48 0.4 1.42 0.35 1.13 1.05 0.55 1.81 1.71 1.15 1.72 0.67
Kurtosis 1.01 2.44 0.78 2.06 0.42 1.5 1.83 4.61 2.08 1.83 1.63 2.71 1.79 2.62 2.3 1.5 2.31 2.19 1.69 2.09 2.12

Skewness 3.56 14.24 3.81 8.35 2.73 5.46 6.66 32 8.82 7.4 6.13 11.93 7.25 11.17 9.52 6.31 8.86 7.91 6.17 8.02 8.6
J-B 203.36 *** 6657.88 *** 143.07 *** 2089.01 *** 36.11 *** 696.64 *** 1226.74 *** 42236.04 *** 2303.76 *** 1487.90 *** 939.02 *** 4994.20 *** 1411.47 *** 4305.23 *** 2909.94 *** 911.75 *** 2542.33 *** 1979.50 *** 979.12 *** 1956.05 *** 2256.91 ***

ADF −8.36 *** −14.05 *** −3.18 *** −5.52 *** −3.79 *** −4.95 *** −5.79 *** −6.38 *** −6.05 *** −4.36 *** −5.87 *** −3.17 *** −5.88 *** −6.38 *** −5.96 *** −4.90 *** −3.15 *** −4.67 *** −5.12 *** −4.50 *** −5.95 ***

Notes: Jarque-Bera tests for the null hypothesis of a normal distribution. ADF tests the estimates of the Augmented Dikey Fuller unit roots tests; *** denote significance at the 1% level.

Table A2. Index table of spillover before the launch of the national carbon market.

CARBON1 GDDL HNGJ DTFD HDGJ ZNDL YDL JNDL JSGX SHDL NMHD SZNY SNGF JKDL JTNY WNDL CYDL YNKG SHY HYDL GZFZ FROM

CARBON1 92.01 0.07 0.36 0.59 0.57 0.07 1.25 0.02 0.91 0.04 0.13 0.16 0.1 0.04 0.56 0.05 0.08 0.07 0.1 2.31 0.52 7.99
GDDL 0.5 41.49 4.25 4.99 5.33 3.92 2.52 2.05 1.52 2.65 4.01 1.3 2.3 4.05 3.25 5.87 1.4 1.5 3.16 2.53 1.41 58.51
HNGJ 0.06 5.54 42.35 7.35 20.63 2.51 0.67 1.11 0.19 2.61 1.41 0.93 0.99 3.38 2.9 4.3 0.37 0.39 0.64 0.57 1.11 57.65
DTFD 0.15 4.37 5.43 37.84 4.82 3.7 0.95 1.79 1.34 5.53 5.47 2.36 0.75 9.24 1.29 2.9 1.17 0.8 1.25 6.89 1.97 62.16
HDGJ 0.2 4.97 14.73 5.92 36.92 2.81 3.02 1.8 0.64 3.87 3.22 1.16 1.33 2.9 2.14 6.57 1.66 0.47 2.6 1.23 1.83 63.08
ZNDL 0.04 5.52 4.08 6.16 3.73 39.18 2.91 3.09 3.26 5.41 3.13 2.88 4.44 3.46 1.83 5.7 0.49 1.15 1.36 0.95 1.24 60.82
YDL 0.81 4.07 1.61 2.92 3.71 2.38 32.6 1.59 1.05 4.16 7.2 4.44 2.12 2.44 4.36 5.54 1.75 1.46 7.36 3.77 4.66 67.4
JNDL 0.07 4.48 1.98 6.65 2.34 5.25 3.67 31.65 0.34 3.44 9.39 5.46 1.35 3.41 4.4 6.67 1.34 0.67 2.72 2.74 1.99 68.35
JSGX 0.08 2.6 0.42 1.76 1.11 4.31 3.89 0.3 51.33 3.24 3.88 1.35 1.72 1.93 1.62 3.49 1.2 4.36 4.27 0.32 6.79 48.67
SHDL 0.01 4.64 1.25 2.41 2.79 2.19 2.32 0.9 1.82 49.12 2.7 6.79 1.33 5 1.71 5.19 2.13 0.45 1.9 3.66 1.69 50.88

NMHD 0.3 3.49 1.56 7.57 2.82 2.03 5 2.95 0.58 3.41 38.61 2.34 1.34 3.89 1.87 6.47 3.34 0.82 4.69 4.55 2.37 61.39
SZNY 0.15 3.77 0.84 3.87 0.86 1.39 2.82 0.28 0.67 6.8 3.69 43.49 0.87 5.3 1 2.68 3.73 3.69 2.44 10.31 1.36 56.51
SNGF 0.92 6.07 1.15 2.21 2.59 5.32 3.72 3.61 1.97 2.33 4.96 5.41 39.19 1.17 3.34 5.02 1.64 2.19 3.29 2.16 1.73 60.81
JKDL 0.89 5.01 2.26 5.21 2.3 1.73 1.94 2.75 0.37 4.76 3.57 4.2 0.63 39.04 1.4 4.29 1.09 7.55 1.74 5.89 3.38 60.96
JTNY 0.31 2.54 2.1 7.37 2.02 2.02 1.28 2.21 1.6 2.55 3.51 1.09 2.42 4.23 47.43 6.87 0.84 0.79 1.55 6.25 1.02 52.57

WNDL 0.1 5.83 3.65 3.2 5.24 3.49 4.1 1.23 0.85 6.83 3.81 2.3 3.23 4.4 5.01 34.73 2.07 1.36 3.61 1.61 3.37 65.27
CYDL 0.01 2.04 0.7 1.86 1.6 0.7 1.08 0.93 0.45 7.33 3.66 7.91 0.53 2.76 0.53 2.2 41.05 2.26 2.12 19.67 0.62 58.95
YNKG 0.26 4.08 0.39 2.23 1.34 2.37 0.46 1.98 1.27 1.87 5.5 3.9 1.39 3.48 1.18 2.26 1.5 53.85 2.1 5.16 3.44 46.15
SHY 1.94 3.1 0.28 1.27 1.8 2.21 4.41 1.28 0.67 4.17 7.09 4.16 2.88 2.16 2.76 6.15 1.13 2.02 43.2 2.91 4.39 56.8

HYDL 0.16 2.24 0.87 5.06 0.69 0.69 0.51 0.41 0.08 3.71 2.72 7.93 0.29 7.2 0.89 0.98 5.61 4.15 1.98 52.4 1.41 47.6
GZFZ 0.1 3.46 0.58 2.02 1.05 1.52 2.36 0.42 0.91 4.04 2.45 2.43 1.05 2.77 2.1 3.11 0.39 4.95 3.33 2.43 58.53 41.47

TO 7.08 77.9 48.48 80.6 67.32 50.62 48.86 30.68 20.51 78.77 81.5 68.51 31.06 73.21 44.15 86.3 32.9 41.11 52.21 85.91 46.31 TCL
NET −0.91 19.39 −9.17 18.44 4.24 −10.2 −18.54 −37.67 −28.16 27.89 20.11 12 −29.75 12.25 −8.42 21.03 −26.04 −5.04 −4.59 38.3 4.83 54.95
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Table A3. Index table of spillover after the launch of the national carbon market.

CARBON1 CARBON2 GDDL HNGJ DTFD HDGJ ZNDL YDL JNDL JSGX SHDL NMHD SZNY SNGF JKDL JTNY WNDL CYDL YNKG SHY HYDL GZFZ FROM
CARBON1 88.36 1.4 1 0.46 0.44 0.08 0.4 0.18 0.26 0.24 0.77 1.5 0.12 0.54 0.4 0.51 0.58 0.31 0.4 0.62 0.4 1.03 11.64
CARBON2 3.83 69.04 4.89 3.82 1.67 0.77 0.13 2.02 2.1 0.07 0.21 0.63 0.16 2.57 2.87 1.24 1.57 0.11 0.25 0.05 0.51 1.48 30.96

GDDL 1.02 2.1 40.01 10.86 1.48 13.87 0.08 8.45 0.49 2.64 0.46 0.04 2.84 0.17 1.53 1.37 0.22 4.91 0.13 0.51 5.96 0.87 59.99
HNGJ 1.5 0.07 7.16 43.83 5.9 16.4 0.57 5.47 0.06 0.18 8.23 3 0.31 2.19 0.4 1.2 0.08 0.83 1.21 0.02 1.11 0.28 56.17
DTFD 0.23 0 3.8 7.46 28.92 10.36 2.71 0.93 3.14 1.52 6.68 8.41 3.94 8.38 2.6 2.11 3.46 0.13 2.44 0.56 0.11 2.12 71.08
HDGJ 0.06 0.22 8.9 15.27 7.31 38.31 0.26 5.53 0.13 2.23 4.1 1.97 0.24 2 2.38 0.01 1.83 3.71 0.06 0.23 5.16 0.08 61.69
ZNDL 0.43 0.33 0.86 0.59 3.93 2.94 33.28 0.61 10.84 2.57 3.9 7.3 6.93 3.21 4.02 5.36 4.1 2.32 1.83 0.83 1.19 2.61 66.72
YDL 0.21 0.25 6.07 7.51 1.46 7.67 2.72 26.34 3.29 0.59 0.14 0.04 7.07 0.01 0.51 5.98 2.5 11.54 1.27 2.99 11.63 0.23 73.66
JNDL 1.09 0.01 0.73 1.61 5.9 1.72 7.96 1.64 25.07 0.78 2.8 5.37 9.97 6.41 3.56 4.71 7.98 4.1 1.55 1.74 2.44 2.86 74.93
JSGX 0.03 0.06 3.67 0.61 1.1 2.93 4.74 2.94 0.73 61.77 0.83 0.15 1.04 0.36 0.79 1.54 2.96 5 4.15 0.49 3.47 0.65 38.23
SHDL 0.13 2.41 1.18 10.43 10.31 11.69 2.02 1.18 1.55 1.57 26.6 13.43 3.3 2.85 3.36 0.23 2.13 0.14 0.68 0.47 0.08 4.23 73.4

NMHD 1.01 0.35 1.1 3.81 5.23 7 5.22 0.72 3.07 2.6 2.58 36.43 3.64 5.78 3.63 3.36 7.83 0.18 0.21 0.25 0.1 5.9 63.57
SZNY 0.86 0.04 1.41 0.7 2.23 0.29 7.35 4.71 7.4 1.07 3.02 2.66 24.51 3.08 2.43 5.03 3.47 12.79 2.8 1.95 9.15 3.05 75.49
SNGF 0.63 0.07 0.47 5.55 10.9 4.69 2.87 0.12 4.22 0.29 5.18 6.96 5.26 24.81 10.54 2.45 6.83 0.24 2.18 3.15 0.04 2.55 75.19
JKDL 0.14 0.3 2.5 6.17 4.57 5.15 2.48 0.12 2.84 0.12 2.24 5.48 2.32 6.7 45.55 1.65 2.93 0.34 2.3 1.06 0.14 4.88 54.45
JTNY 0.14 0.05 1.06 0.82 4.16 1.05 6.69 2.61 4.86 0.92 0.76 4.35 7.45 5.4 2.13 37.6 9.78 3.31 0.33 0.88 2.06 3.6 62.4

WNDL 0.29 0.14 1.5 2.98 8.76 3.69 4.58 0.64 7.46 0.54 4.97 6.32 4.75 7.56 2.92 6.87 28.6 0.54 0.26 0.51 0.71 5.43 71.4
CYDL 0.18 0.02 2.64 0.51 0.01 5.89 3.02 10.24 3.42 1.4 0.94 0.32 14.82 0.07 0.21 4.7 0.26 30.38 1.94 1.9 16.43 0.71 69.62
YNKG 1.34 0.1 0.48 0.08 0.22 0.2 7.37 3.42 4.92 0.91 0.22 5.85 9.79 0.82 3.66 3.76 0.75 6.42 39.89 2.16 6.31 1.33 60.11
SHY 0.25 0.28 0.41 0.82 1.73 0.17 1.69 2.05 2.81 0.89 3.23 1.45 2.99 3.78 3.41 2.67 0.41 1.62 4.64 61.38 0.76 2.56 38.62

HYDL 0.17 0.01 3.09 0.86 0.4 7.54 1.91 10.78 2.32 1.9 0.79 0.02 13.51 0.02 0.23 3.17 0.55 27.21 1.14 1.34 22.57 0.45 77.43
GZFZ 0.84 1.46 1.05 2.51 4.05 2.05 1.83 0.2 2.19 0.1 4.49 12.95 7.81 2.1 2.52 2.26 4.13 2.5 2.16 1.46 2.38 38.96 61.04

TO 14.37 9.67 53.97 83.43 81.75 106.16 66.62 64.54 68.12 23.14 56.56 88.2 108.25 63.99 54.08 60.17 64.34 88.25 31.94 23.18 70.16 46.91 1327.79
NET 2.72 −21.29 −6.02 27.25 10.68 44.46 −0.1 −9.12 −6.81 −15.09 −16.84 24.63 32.76 −11.19 −0.37 -2.23 −7.06 18.63 -28.18 −15.44 −7.27 −14.13 60.35
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