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Abstract: Blade icing seriously affects wind turbines’ aerodynamic performance and output power.
Timely and accurately predicting blade icing status is crucial to improving the economy and safety of
wind farms. However, existing blade icing prediction methods cannot effectively solve the problems
of unbalanced icing/non-icing data and low prediction accuracy. In order to solve the above problems,
this paper proposes a wind turbine blade icing prediction method based on the focal loss function
and CNN-Attention-GRU. First, the recursive feature elimination method combined with the physical
mechanism of icing is used to extract features highly correlated with blade icing, and a new feature
subset is formed through a sliding window algorithm. Then, the focal loss function is utilized to assign
more weight to the ice samples with a lower proportion, addressing the significant class imbalance
between the ice and non-ice categories. Finally, based on the CNN-Attention-GRU algorithm, a
blade icing prediction model is established using continuous 24-h historical data as the input and the
icing status of the next 24 h as the output. The model is compared with advanced neural network
models. The results show that the proposed method improves the prediction accuracy and F1 score
by an average of 6.41% and 4.27%, respectively, demonstrating the accuracy and effectiveness of the
proposed method.

Keywords: wind turbine blade; icing prediction; SCADA; focal loss; neural networks

1. Introduction

Blade icing refers to the phenomenon where moisture on the blade’s surface condenses
and forms ice when the ambient temperature is below freezing [1,2]. Blade icing is a
common issue when wind turbines operate in cold environments. The accumulation of
ice can affect the aerodynamic performance of the blades, leading to a decrease in power
generation efficiency or even shutdown [3–5]. Furthermore, blade icing can cause an
uneven load distribution and irregular vibrations, which further impact the reliability and
lifespan of the wind turbine [6,7]. Therefore, the accuracy and timeliness of blade icing
prediction are crucial for the operation and management of wind farms. The accurate
prediction of icing can help operators take appropriate measures, such as activating heating
systems and cleaning the blades, minimizing the negative impacts of icing [8–10]. This
helps improve power generation efficiency, reduces maintenance costs, and ensures the
stable operation of wind turbines.

At present, blade icing prediction methods can be broadly classified into direct meth-
ods and indirect methods. Direct methods involve installing sensors around the blades to
analyze changes in monitored variables caused by ice accumulation, such as variations in
capacitance and resistance [11], variations in ultrasound signals [12], variations in thermal
infrared radiation signals [13], changes in hyperspectral images [14], rotor speed and pitch
angle variations [15], power variations [16], etc. However, direct methods rely on precise
and reliable sensors, and most focus on diagnosing icing conditions rather than predicting
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them in advance. They cannot provide early warnings about icing conditions. On the other
hand, indirect methods involve establishing icing prediction models to forecast blade icing
status in advance. These methods can provide accurate icing status predictions, enabling
operators to receive timely warnings. As a result, more and more researchers are adopting
indirect methods to study blade icing prediction.

Indirect methods can be further divided into physics-based methods and data-driven
methods. Physics-based methods primarily study the relationship between meteorological
conditions or the operational parameters of wind turbines and icing, and construct physical
models for blade icing [17]. This method requires significant professional knowledge,
which is challenging, complex, and difficult to model. On the other hand, data-driven
methods do not rely on complex theoretical models. They can be applied to various
domains and adaptively update the models as the data change. Data-driven methods can
also uncover underlying patterns in the data and perform well in tasks such as prediction,
classification, and clustering. Currently, many researchers employ data-driven methods to
predict the blade icing status of wind turbines, which mainly involves feature extraction and
model construction.

In terms of feature extraction, Kreutz et al. [18] utilized their empirical knowledge to
select environmental temperature and wind speed at the hub height from SCADA data, as
well as the humidity, pressure, ground temperature, temperature at 200 m height, ground
wind speed, and wind speed at 200 m height from meteorological forecast data as features
for blade icing prediction. Xiao et al. [19] ranked the importance of 26 features in SCADA
data using the chi-square test and recursively removed features with low importance to
obtain the optimal feature set. Peng et al. [20] employed dynamic principal component
analysis for feature extraction and ultimately selected yaw angle, nacelle temperature, and
generator speed as the features for blade icing. Ma et al. [21] constructed a severity index
for the blade icing and selected wind direction, environmental temperature, pitch angle,
power, and wind speed as features based on statistical characteristics and the trend of icing
data over continuous periods.

Regarding model construction, Bai et al. [22] developed an RFECV-TSVM icing diag-
nosis model, which addressed the issue of class imbalance in blade icing data by generating
pseudo-samples. However, this method is not suitable for icing prediction. Tao et al. [23]
used random under-sampling to address the class imbalance issue in icing data and es-
tablished a Stacked-XGBoost blade icing diagnosis model. Xiao et al. [19] proposed the
Selective Deep Ensemble model based on the Group Method of Data Processing as a blade
icing prediction model. Li et al. [24] utilized backpropagation neural networks and radial
basis function neural networks as blade icing prediction models and evaluated the relative
percentage errors of both models. Peng et al. [20] constructed a blade icing prediction
model based on the backpropagation self-organizing clustering algorithm. Kreutz et al. [25]
employed a five-layer convolutional neural network as a blade icing prediction model to
forecast wind turbine blades’ icing conditions in the next 24 h. Ma et al. [21] developed a
four-layer deep belief network as a blade icing prediction model.

In summary, the research on wind turbine blade icing prediction faces the
following challenges:

(1) There is a significant class imbalance issue in blade icing data. Most of the time,
wind turbine blades are in a normal state, resulting in a low proportion of icing data. This
imbalance makes it easy for machine learning models to overlook the minority of icing
instances during training, increasing the difficulty of wind turbine blade icing prediction.

(2) The accuracy of wind turbine blade icing prediction models is low. Existing
methods often use a single neural network module to construct blade icing prediction
models, aiming to improve the prediction performance by increasing the number of layers,
resulting in a model that performs well on the training set but poorly on unseen data.

To address the abovementioned issues, this paper proposes a wind turbine blade icing
prediction method based on the focal loss function and CNN-Attention-GRU algorithm.
The main contributions of this paper are as follows:
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(1) The focal loss function is employed as the model’s loss function to address the class
imbalance issue. By assigning more weight to the icing data, the model focuses more on
the minority class samples, enhancing its learning ability for icing information.

(2) A wind turbine blade icing prediction model based on CNN-Attention-GRU
is established. This can better mine the potential icing information in the SCADA his-
torical data. Compared to previous methods, the proposed model achieves a higher
prediction accuracy.

The remaining parts of the paper are as follows: Section 2 describes the data prepro-
cessing process, including feature extraction and dataset construction. Section 3 introduces
the wind turbine blade icing prediction model based on the focal loss function and CNN-
Attention-GRU. Section 4 introduces the dataset and presents case studies and analyses.
Section 5 concludes the paper.

2. Data Processing
2.1. Feature Extraction
2.1.1. Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a feature extraction method to select a subset
of the most predictive features for modelling tasks. This method works by recursively
training a model and eliminating relatively unimportant features [26]. The basic principle
of RFE is as follows:

First, a model is trained based on the original feature set, and the importance scores
of each feature are calculated. The importance scores of features can be calculated using
different models and feature evaluation methods (such as decision trees, linear regression,
random forests, etc.). Second, based on the importance scores of features, a subset of
features is selected, consisting of the top-ranked features in terms of importance for the
current iteration.

Then, this feature subset is used to train a model, and the performance metrics of
the model (such as accuracy) are calculated. If the performance metrics of the selected
feature subset meet a predetermined threshold or a predetermined number of features have
been eliminated, the process is stopped. Otherwise, the process returns to the second step,
continuing to iterate and select feature subsets until the stopping criteria are met.

The advantages of the Recursive Feature Elimination (RFE) method are that it can
automatically select a subset of features, making the final model more simplified and
interpretable. Gradually eliminating unimportant features reduces the risk of overfitting
and improves the model’s generalization ability. Additionally, RFE can rank the importance
of features, facilitating a better understanding of the data and the modelling process.

In this paper, RFE was applied with a random forest as the estimator, and the following
10 features were identified as necessary for the dataset: actual power, wind speed, generator
speed, environmental temperature, cabin temperature, yaw angle, wind direction, gearbox
oil temperature, gearbox bearing temperature, and generator temperature.

2.1.2. Feature Construction Based on Icing Physics

Tao et al. [23], based on the icing physics process and the analysis of ice formation
mechanisms, constructed diagnostic features for blade icing. Based on this, this paper
selects four parameters: theoretical power, blade tip speed ratio, wind speed squared, and
wind speed cubed, as features extracted based on empirical knowledge.

(1) Theoretical power

Theoretical power is an essential feature for predicting blade icing in wind turbines. It
describes the theoretical output power curve of the turbine at different wind speeds and is
calculated using the following formula.

Pideal = f (Pactual) (1)
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where Pideal is the theoretical power; f (·) is the functional relationship between theoretical
power and actual power; and Pactual is the actual power.

However, the original SCADA data do not directly provide the theoretical power.
Therefore, we need to fit and obtain it through the following steps. First, we need to remove
invalid data, which includes data points where the wind speed is less than 3 m/s but the
actual power is non-zero, data points where the wind speed is greater than 3 m/s but
the actual power is zero, and data points where the wind speed is greater than 25 m/s.
Next, we sort the wind speeds in ascending order and divide them into 100 equally spaced
intervals. Using the quartile method, we divide the actual power into four equal parts
within each interval and obtain the first quartile (25th percentile) and the third quartile
(75th percentile) values. We obtain the interquartile range by calculating the difference
between these two values. Finally, we can calculate the range of normal samples within
each interval using the formula, obtaining the fitted theoretical power.

[Ib, Ie] =
[
Q1 − 1.5IQR, Q3 + 1.5IQR

]
(2)

where [Ib, Ie] is the range of normal samples in each interval calculated by the quartile
method; Q1 is the first quartile; IQR is the interquartile range; and Q3 is the third quartile.

Exclude the outliers outside the [Ib, Ie] intervals and calculate the average wind speed
and actual power within each interval to fit the theoretical power curve.

(2) Tip speed ratio

λ =
ωR
v

(3)

where λ is the tip speed ratio; ω is the rotor’s rotation speed; R is the radius of the blade’s
rotation plane; and v is the wind speed.

(3) The square of wind speed

v′ = v2 (4)

(4) The cube of wind speed

v′′ = v3 (5)

This paper used a combination of RFE and icing physics knowledge for feature extrac-
tion. The final selected features from the dataset are shown in Table 1:

Table 1. Final features for blade icing prediction.

Feature Names

Actual power Gear oil temperature
Wind speed Gearbox bearing temperature

Generator speed Generator temperature
Ambient temperature Theoretical power
Nacelle temperature Tip speed ratio

Yaw angle The square of wind speed
Wind direction The cube of wind speed

RFE removes the least important features one at a time and extracts the features with
a high correlation to icing, achieving the compression of feature space dimension, which
greatly reduces the model computation time while ensuring the prediction accuracy. The
features extracted based on icing physics enhance the non-linear mapping ability of the
model and increase the accuracy of icing prediction while compensating for the shortcom-
ings of machine learning such as lack of interpretability. Therefore, the combination of
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machine learning methods and icing physics for feature extraction is of great significance
for icing prediction.

2.2. Constructing Dataset Based on Sliding Window Algorithm

The sliding window algorithm is commonly used for processing subsequences or
subarrays in sequence data or arrays. Its basic idea is to transform the problem into
operations on a sliding window. Using a fixed-size window and defining the starting
position, ending position, and sliding step, the algorithm slides the window over the
sequence to gradually process the data [27]. It can calculate statistical information, find
the maximum or minimum value, and perform other operations within the window. The
advantage of the sliding window algorithm is that it can solve the problem in a single pass
of the data without the need for multiple traversals of the entire sequence. This makes
the sliding window algorithm highly efficient when dealing with large-scale or real-time
data. The process of constructing a new dataset using the sliding window is illustrated
in Figure 1.
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In Figure 1, the horizontal represents the features and vertical represents the time,
where the length = 14 indicates the number of features finally selected. Step = 1 indicates
the size of each downward slide of the window. Width = 144 indicates that each window
contains 24 h of SCADA data information. Finally, the original two-dimensional data are
transformed into a three-dimensional input suitable for the neural network models.

2.3. Max–Min Normalization

Max–Min normalization, also known as interval scaling, is a commonly used method
for data normalization. It transforms data into a specified range, typically between [0, 1] or
[−1, 1]. Max–Min normalization achieves this by performing a linear transformation on
the original data, mapping the minimum value to the minimum value of the target range
and the maximum value to the maximum value of the target range while maintaining
the relative relationship of other values within this range. It is commonly used in the
preprocessing stage of machine learning algorithms to scale the values of different features
to the same range, preventing certain features from disproportionately impacting the model.
The formula is as follows:

x′i =
xi −min(xi)

max(xi)−min(xi)
(6)
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where xi are data of each dimension in the dataset before normalization; max(xi) is the
maximum value of each dimension in the dataset; and min(xi) is the minimum value of
each dimension in the dataset.

3. Model Building
3.1. Focal Loss Function

In traditional cross-entropy loss functions, for imbalanced datasets, the number of
samples in the majority class far exceeds the number of samples in the minority class,
causing the model to be more biased towards predicting the majority class samples and
ignoring the minority class samples [28]. The focal loss function is a type of loss function
designed to address the issue of class imbalance. It aims to tackle the difficulty of effectively
learning and classifying minority class samples when there are many majority class samples
in the data. Focal loss introduces an adjustable balancing parameter to modify the weight
relationship between the majority and minority class samples [29].

Specifically, the focal loss function introduces an adjustable parameter called the
focusing factor, which adjusts the loss weight for each sample. The focusing factor is
calculated based on the predicted probability of each sample. For the majority class
samples, the focusing factor is small, reducing their weight. In contrast, for minority class
samples, the focusing factor is significant, increasing their weight. This allows the model
to pay more attention to the minority class samples, thus improving the issue of class
imbalance. The formula for the focal loss functions as follows:

FL(pt) = −(1− pt)
γ log(pt) (7)

where pt is the predicted probability of the sample; and γ is the focusing factor. When
γ = 0, the focal loss function degenerates into the standard cross-entropy loss function.
Xiao et al. found that the model achieved the highest accuracy when γ = 2 in the focal loss
function [19]. Therefore, this paper selects γ = 2.

3.2. GRU Neural Network

Gated Recurrent Unit (GRU) is a Recurrent Neural Networks (RNN) variant used to
process and model sequential data. Similar to Long Short-Term Memory (LSTM), GRU
introduces a particular type of memory unit to address the issue of long-term dependencies.
It uses gate mechanisms to control the flow of information, thereby improving the accuracy
and performance of the model [30]. GRU also simplifies the LSTM network structure to
some extent while still effectively capturing long-term dependencies in sequences [31].
Since icing prediction is a time series forecasting problem and the data contain significant
temporal information related to icing, GRU is well-suited for handling sequential data with
long-term dependencies. It can effectively capture and retain long-term information in the
sequences. Therefore, this paper chooses the GRU model.

The core component of the GRU model is the GRU unit. Each GRU unit consists of two
essential parts: the reset and update gates. The GRU model controls the flow of information
and retention through the mechanisms of the reset and update gates, enabling sequential
data modelling. The reset gate controls the influence of the previous state on the current
input. The update gate determines how much new information should be merged into
the previous state. Compared to the LSTM model, the GRU model has fewer parameters,
higher computational efficiency, and is suitable for medium-scale sequential modelling
tasks. The schematic diagram of the GRU unit is shown in Figure 2.
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3.3. CNN Neural Network

The Convolutional Neural Network (CNN) is a type of deep learning model widely
used in computer vision tasks, particularly image recognition and classification tasks.
CNNs extract features from the image data through convolutional and pooling operations
and perform classification or regression through fully connected layers [32].

The core components of a CNN model include the convolutional layer and the pooling
layer. The convolutional layer applies convolutional operations between the original image
and a set of learnable filters to extract local features from the image. The convolution
operation involves element-wise multiplication and summation between the filters and the
input image, resulting in feature maps. The convolutional layer captures different image
features, such as edges and textures, by using multiple filters. The pooling layer reduces the
spatial dimensions of the feature maps while preserving the essential features. Common
pooling operations include max pooling and average pooling. The pooling layer divides
the feature maps into non-overlapping regions and selects the maximum value or computes
the average value within each region. This helps to reduce computational complexity and
the number of parameters while improving the robustness and generalization ability of
the model.

3.4. Attention Mechanism

Attention is a technique to enhance the model’s focus on different input parts. It is
commonly used in natural language processing (NLP) and computer vision (CV) tasks. It
dynamically assigns different weights to different input elements, allowing the model to
concentrate on important information relevant to the current task during the processing.

The main goal of the attention is to address the performance degradation issue in
models when dealing with long sequences or significant inputs, especially in tasks involving
long-term dependencies. By introducing the attention, the model associates a weight with
each element in a sequence, representing the model’s level of focus on that element. By
calculating the similarity between elements and converting it into weights, different levels
of attention can be assigned to different positions in the sequence, allowing the model to
pay more attention to important information during the processing [33].

The CNN-Attention-GRU model structure used in this study for blade icing prediction
is shown in Figure 3. This paper utilizes SCADA historical data from the past 24 h to
predict the blade icing status for the next 24 h. The model first extracts local icing features
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from the input data through convolutional layers and pooling layers. Then, it applies the
attention to aggregate these features with different weights. Finally, the GRU layer is used
to model and process the temporal data, predicting the final results of blade icing.

Energies 2023, 16, x FOR PEER REVIEW 8 of 15 
 

 

predict the blade icing status for the next 24 h. The model first extracts local icing features 

from the input data through convolutional layers and pooling layers. Then, it applies the 

attention to aggregate these features with different weights. Finally, the GRU layer is used 

to model and process the temporal data, predicting the final results of blade icing. 

 

Figure 3. The schematic diagram of the CNN-Attention-GRU model structure. 

3.5. Evaluation Metrics 

The confusion matrix is a commonly used metric in machine learning for classifica-

tion problems. When applying the confusion matrix to blade icing prediction, the specific 

meanings of each indicator are as follows: True Positive (TP ) represents the number of 

times the model correctly predicts the normal state data as the normal state data. True 
Negative (TN ) represents the number of times the model correctly predicts the icing state 

data as the icing state data. False Positive ( FP ) represents the number of times the model 

incorrectly predicts the icing state data as normal. False Negative ( FN ) represents the 

number of times the model incorrectly predicts the normal state data as the icing state 

data. Based on the above information, the evaluation metrics used in this study are calcu-

lated using the following formulas: 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (8) 

TP
Precision

TP FP
=

+
 (9) 

TP
Recall

TP FN
=

+
 (10) 

1

*
2*

Precision Recall
F

Precision Recall
=

+
 (11) 

where Accuracy   refers to the accuracy rate; Precision   refers to the precision rate; 

Recall  refers to the recall rate of normal samples; 1F  refers to the harmonic mean of 

Precision  and Recall . Since Precision , Recall , and 1F  have redundancy, this pa-

per only uses Accuracy  and 1F  as the evaluation metrics. 

4. Case Study 

4.1. Data Description 

The dataset used in this study is the SCADA data of wind turbine icing in a moun-

tainous wind farm in Yunnan Province, China. The dataset covers the icing data from five 

doubly fed asynchronous wind turbine units with the following identifiers: A1, A2, A3, 

A4, and A5. The data span from 24 January 2018 to 31 December 2018, with a temporal 

Figure 3. The schematic diagram of the CNN-Attention-GRU model structure.

3.5. Evaluation Metrics

The confusion matrix is a commonly used metric in machine learning for classification
problems. When applying the confusion matrix to blade icing prediction, the specific
meanings of each indicator are as follows: True Positive (TP) represents the number of
times the model correctly predicts the normal state data as the normal state data. True
Negative (TN) represents the number of times the model correctly predicts the icing state
data as the icing state data. False Positive (FP) represents the number of times the model
incorrectly predicts the icing state data as normal. False Negative (FN) represents the
number of times the model incorrectly predicts the normal state data as the icing state data.
Based on the above information, the evaluation metrics used in this study are calculated
using the following formulas:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(11)

where Accuracy refers to the accuracy rate; Precision refers to the precision rate; Recall
refers to the recall rate of normal samples; F1 refers to the harmonic mean of Precision and
Recall. Since Precision, Recall, and F1 have redundancy, this paper only uses Accuracy and
F1 as the evaluation metrics.

4. Case Study
4.1. Data Description

The dataset used in this study is the SCADA data of wind turbine icing in a moun-
tainous wind farm in Yunnan Province, China. The dataset covers the icing data from five
doubly fed asynchronous wind turbine units with the following identifiers: A1, A2, A3,
A4, and A5. The data span from 24 January 2018 to 31 December 2018, with a temporal
resolution of 10 min. The dataset consists of 28 continuous numerical variables, among
which 19 are feature variables. The names and descriptions of the feature variables are
presented in Table 2. Table 2 shows the features in the original SCADA data, not the final
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features selected after feature extraction. Each sample in the dataset is labelled with a status
tag, where icing state data are labelled as “0” and normal state data are labelled as “1”.
Icing events at the wind farm occurred only from the night of December 29th to the early
morning of December 31st. Therefore, the data selected for analysis include the period from
December 24th to December 31st, with data before December 24th not used for training
and testing. The quantity and proportion of data for the five wind turbine units are shown
in Table 3.

Table 2. Feature parameter names and descriptions for the dataset.

Feature Name Feature Description Feature Name Feature Description

WIND_SPEED Wind speed GENGNTMP Generator temperature
REAL_POWER The active power of grid-side GENAPHSA Current of A-phase

CONVERTER_MOTOR_SPEED Generator speed GENAPHSB Current of B-phase
ROTOR_SPEED Blade rotation speed GENAPHSC Current of C-phase

WIND_DIRECTION Wind direction GENVPHSA Voltage of A-phase
TURYAWDIR Yaw angle GENVPHSB Voltage of B-phase
GBXOILTMP Temperature of gear oil GENVPHSC Voltage of C-phase
GBXSHFTMP Temperature of gearbox bearing GENHZ Frequency of motor

EXLTMP Temperature of environment TURPWRREACT Reactive power
TURINTTMP Temperature of nacelle

Table 3. Statistical parameters of the dataset.

Wind Turbine Number Total Number of Data Normal Data Icing Data

A1 1009 857 (84.94%) 152 (15.06%)
A2 1009 857 (84.94%) 152 (15.06%)
A3 997 831 (83.35%) 167 (16.65%)
A4 1009 849 (84.14%) 160 (15.86%)
A5 1009 826 (81.86%) 183 (18.14%)

This paper combines the SCADA data from the same wind farm’s five wind turbines.
This increases the information on blade icing in the data, but the ratio of icing to non-icing
data is the same as before the combination. The data from units A1, A2, A3, A4, and A5
are used as individual test sets, while the data from the remaining four units are used as
training and validation sets. This forms five feature subsets, denoted as A1T, A2T, A3T,
A4T, and A5T, as shown in Figure 4.
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 Figure 4. Schematic diagram of the dataset combination.

The overall process is illustrated in Figure 5. First, the RFE method combined with the
physical mechanism of icing is used to extract features highly correlated with blade icing,
and a new feature subset is formed through a sliding window algorithm. Kreutz et al. [9]
split data into a training dataset, a validation dataset, and a test dataset with a 60/20/20%
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ratio, with a high accuracy of model accuracy. However, due to the small amount of data in
this paper, the proportion of the training set is adjusted to 70%, the validation set is 10%,
and the test set is still 20%. Then, the focal loss function is utilized to assign more weight to
the ice samples with a lower proportion, addressing the significant class imbalance between
ice and non-ice categories. Finally, based on the CNN-Attention-GRU algorithm, a blade
icing prediction model is established using continuous 24-h historical data as the input and
the icing status of the next 24 h as the output.
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4.2. Verification of the Validity of the Focal Loss Function

Four neural network models were trained using binary a cross-entropy loss for icing
prediction to further validate the effectiveness of the focal loss function proposed in this
study for addressing the class imbalance issue in wind turbine blade icing. The results
were compared with the accuracy and F1 scores obtained using different loss functions for
the same models, as shown in Figures 6 and 7. After applying the focal loss function, all
algorithms showed a noticeable improvement in prediction accuracy. The average accuracy
across the four algorithms increased by 4.08%, with the CNN-LSTM model exhibiting
the most significant improvement of 9.68% and the CNN-Attention-GRU model showing
the minor improvement of 0.36%. Similarly, the average F1 improved by 3.48%, with
the CNN-LSTM model experiencing the most enormous improvement of 9.81% and the
CNN-Attention-GRU model showing the smallest improvement of 0.07%. These results
indicate that the focal loss function proposed in this study is suitable for addressing
the class imbalance issue in wind turbine blade icing. The minimal improvement in
accuracy for the CNN-Attention-GRU model also suggests its stability and suitability
for icing prediction tasks.
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4.3. Prediction Accuracy Validation of the CNN-Attention-GRU Model

The dataset was divided into 70% for training, 10% for validation, and 20% for testing.
The focal loss function was used, and the CNN-Attention-GRU neural network model
was employed to predict the icing conditions of wind turbines for the next 24 h compared
with 10 other neural network models and the results of the test set are shown in Table 4.
Where, the bolded portion represents the highest prediction accuracy for each model
in the same dataset.
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Table 4. Icing prediction results of different datasets in various models.

Model
Accuracy F1

A1T A2T A3T A4T A5T Average A1T A2T A3T A4T A5T Average

LSTM 0.9222 0.9597 0.8787 0.9694 0.6667 0.8793 0.9482 0.9739 0.9266 0.9808 0.7425 0.9144
GRU 0.9083 0.7222 0.8082 0.9708 0.8403 0.8500 0.9384 0.8279 0.8887 0.9816 0.898 0.9069

Bi-LSTM 0.9653 0.7806 0.9859 0.9847 0.7472 0.8927 0.9775 0.8556 0.9909 0.9903 0.8553 0.9339
Bi-GRU 0.975 0.8458 0.7884 0.9736 0.7472 0.8660 0.9839 0.9095 0.8786 0.9833 0.8553 0.9221

Attention-LSTM 0.9708 0.9403 0.9972 0.9333 0.7667 0.9217 0.9814 0.9628 0.9982 0.959 0.865 0.9533
Attention-GRU 0.9819 0.8444 0.9986 0.8556 0.7472 0.8855 0.9884 0.9079 0.9991 0.9152 0.8553 0.9332

CNN-LSTM 0.7597 0.9389 0.976 0.9153 0.7444 0.8669 0.8207 0.9613 0.9846 0.9484 0.8149 0.9060
CNN-GRU 0.6014 0.7722 0.8999 0.9597 0.6069 0.7680 0.6627 0.8316 0.9386 0.9748 0.6705 0.8156

CNN-Flatten 0.9403 0.8181 0.969 0.9625 0.7639 0.8908 0.9609 0.8868 0.9801 0.9765 0.8636 0.9336
CNN-Attention-LSTM 0.9764 0.9028 0.9492 0.8361 0.7472 0.8823 0.9848 0.9383 0.9679 0.9048 0.8553 0.9302
CNN-Attention-GRU 0.9153 0.9278 0.9803 0.9069 0.9417 0.9344 0.9434 0.9521 0.9873 0.9437 0.9615 0.9576

The mixed distribution of data from the five turbines has some influence on the
prediction results. The best-performing models on the five test sets are different, and no
clear pattern is based solely on these results. To address this, the average accuracy and F1 of
the predictions from the mixed data of the five turbines were calculated, and the results are
shown in Figures 8 and 9. The different coloured bars in the figures represent the prediction
results of different neural network models on the test set, with the red bar on the far right
representing the CNN-Attention-GRU model based on the focal loss function used in this
study. Compared to the other 10 models, the average accuracy was improved by 6.41%,
with the CNN-GRU model having the highest improvement rate of 16.64%. The average F1
was improved by 4.27%, with the CNN-GRU model having the highest improvement rate
of 14.20%. These results indicate that the model used in this paper performs better than
other models in the icing prediction and demonstrates good applicability.
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5. Conclusions

This study focuses on wind turbine blade icing predictions based on SCADA data
from five wind turbines in a wind farm. The research is conducted from two aspects:
data processing and model construction. Firstly, a method combining RFE and empirical
icing knowledge extract features were highly correlated with blade icing. Then, the data
from the five turbines are combined, and a new feature subset is formed using a sliding
window algorithm. Finally, the focal loss function is employed to address the issue of
class imbalance, and different neural network models are used to evaluate the prediction
accuracy of the proposed CNN-Attention-GRU model. The main conclusions of this study
are as follows:

The neural network model based on the focal loss function can address the issue of
class imbalance in wind turbine blade icing data. Compared to other neural network models
that use a binary cross-entropy loss function, this method achieves an average accuracy
improvement of 4.08%, with the CNN-LSTM model showing the highest improvement
of 9.68%. The average F1 improves by 3.48%, with the CNN-LSTM model showing the
highest improvement of 9.81%.

The CNN-Attention-GRU model can address the issue of low accuracy in wind turbine
blade icing prediction. Compared to other neural network models, this method achieves an
average accuracy improvement of 6.41%, with the CNN-GRU model showing the highest
improvement of 16.64%. The average F1 improves by 4.27%, with the CNN-GRU model
showing the most significant improvement of 14.20%. In conclusion, the proposed method
in this paper effectively improves the accuracy of wind turbine blade icing prediction and
is more suitable for the problem of blade icing prediction.
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