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Abstract: Due to their efficiency and control capabilities, induction motors fed with inverters have
become prevalent in various industrial applications. However, ensuring the reliable operation
of the motor and diagnosing faults on time are crucial for preventing unexpected failures and
minimizing downtime. This paper systematically analyzes condition monitoring and practical
diagnostic techniques for inverter-fed motor drive systems. This study encompasses a thorough
evaluation of different methods used for condition monitoring and diagnostics of induction motors,
with the most crucial faults in their stator, rotor, bearings, eccentricity, shaft currents, and partial
discharges. It also includes an assessment of their applicability. The presented analysis includes
a focus on the challenges associated with inverter-fed systems, such as high-frequency harmonics,
common-mode voltages causing the bearing currents, and high voltage gradients (dv/dt) due to fast
switching frequency, which can impact the motor operation, as well as its faults analysis. Furthermore,
this research explores the usefulness and efficiency of various available diagnostic methods, such
as motor current signature analysis and other useful analyses using advanced signal processing
techniques. This study aims to present findings that provide valuable insights for developing
comprehensive condition monitoring strategies, and practical diagnostic techniques that enable
proactive maintenance, enhanced system performance, and improved operational reliability of
inverter-fed motor drive systems.

Keywords: condition monitoring; induction motors; pulse width modulation inverters; principal
component analysis; spectral analysis; switching circuits

1. Introduction

Today, industries utilize many electrical machines, particularly induction motors (IM),
with wattages ranging from several watts to megawatts to convert electrical power to
the required mechanical power. IM has a lower power-by-weight (W/kg) ratio than a
synchronous machine of the same rating, has lower costs, is more durable, and requires
less maintenance. Hence, they are known as the workhorse of the industry. They are
more useful in about 80% of the industry’s operations, such as the petrochemical industry,
vehicular technology, mining process, propulsion systems, aerospace, nuclear-reactor plants
etc. Their healthy and continued operation is required, because motor failure can shut
down the whole plant process. This situation will generate significant financial loss and
should be avoided to the maximum extent. Hence, early detection of faults with appropriate
condition monitoring and diagnostic techniques within the motor is always required in
terms of all means of time and money [1–3].

Many publications [4–7] investigated the condition monitoring (CM) and fault diag-
nostics (FD) of IM faults related to electrical, mechanical, and environmental scenarios
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when operated with the grid supply. However, inverter-fed machines also undergo faults
due to the impacts of the Pulse Width Modulation (PWM) technique, which has a high-
frequency transition, and high steepness in the waveform or high voltage gradient (dv/dt)
due to switching frequency (fsw) of power electronic wide band-gap drives (WBG). These
WBG devices have demonstrated superior material properties that are accepted worldwide,
allowing their high-switching and high-voltage operation, as well as capabilities to operate
at high-temperature profiles [8–11].

1.1. PWM Inverter-Fed Motor Drive System

These inverters drive the IM while improving the operation’s safety and reliability, but
increasing harmonic-frequency traces. The PWM modulation technique and switching fre-
quency determine these harmonic amplitudes and wide-band frequencies. PWM-controlled
inverters employed with WBG devices such as SiC (Silicon Carbide), GaN (Gallium Ni-
tride), GaAs (Gallium Arsenide), AlN (Aluminum Nitride), etc. have critical switchinits g
frequencies ranging from a few kHz to tens of kHz. Other than generating the increased har-
monic contents at the output terminal of the inverter, they also generate a high-frequency
common-mode voltage (CMV), a major problem in switching power converter fed IM. This
happens with the shaft voltage and generates the bearing current through the AC machine’s
stray capacitive and inductive coupled paths [12]. High modulation frequency attenuates
low-order harmonics and increases the inverter’s loss. These low-order harmonics are quite
unhealthy for motors, because they cause torsional oscillations, pulsating torques in the
shaft, and rotor bar-broken damage. Researchers are trying to reduce switching losses and
increase the power converter efficiency with different inverter control strategies, and some
novel designs such as [13–16] used discontinuous PWM (DPWM), sine triangle PWM-based
DPWM, and space vector-based synchronized DRWM types of design techniques. A typical
one-line diagram of an alternating current (AC) source with a voltage-source inverter (VSI),
a rectifier system, filters with smoothing capacitors, and an IM operated with inverters is
shown in Figure 1. It is worth mentioning that the failure rate of inverter-fed IM drives is
12 times faster than line or grid-fed drives, and this is demonstrated in the literature by a
questionnaire survey of 3934 grid-fed drives and 286 variable-speed inverter drives [17].
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Figure 1. The schematics of a conventional inverter-fed electric motor drive system [17]. 

Inverter-based supply harmonics have a wide frequency spectrum compared to grid-
fed variants, with a simple odd multiple of fundamental components. Since modern in-
verter-driven motors have high controllability, precision, dependability, and efficiency, 
they have become an integral component of modern drive systems. With the features de-
scribed here, the common utilization issues of inverters are increased costs, increased 
switching losses, iron losses, high torque pulsations, electromagnetic compatibility issues, 
and acoustics noise. Due to switching frequency and high dv/dt, these high-frequency 
components are not designed with consideration of the motor’s effective response and 

Figure 1. The schematics of a conventional inverter-fed electric motor drive system [17].

Inverter-based supply harmonics have a wide frequency spectrum compared to grid-
fed variants, with a simple odd multiple of fundamental components. Since modern
inverter-driven motors have high controllability, precision, dependability, and efficiency,
they have become an integral component of modern drive systems. With the features
described here, the common utilization issues of inverters are increased costs, increased
switching losses, iron losses, high torque pulsations, electromagnetic compatibility issues,
and acoustics noise. Due to switching frequency and high dv/dt, these high-frequency
components are not designed with consideration of the motor’s effective response and
operation, leading to a high potential research gap in the motor field [7,18]. These random
harmonic distributions in the current create an additional frequency spectrum in the wide
band. Hence, these drawbacks encourage potential research to develop solutions [19–21].
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1.2. Potential Challenges with Inverter-Fed Supply

Since PWM-based inverter-fed induction motors have certain advantages over grid-
fed power supply, such as variable speed control, energy efficiency, and flexibility, they
also face challenges with regard to condition monitoring and fault diagnostics. Table 1
presents a comparison, based on the available literature, between Pulse Width Modulation
(PWM)-based inverter-fed induction motors and those with grid-fed supplies, with regard
to the challenges, complexity, and problems they face in their condition monitoring and
fault diagnostics.

Table 1. Comparison of challenges posed by supplies to motor drive system.

Sr. No. Challenges PWM Inverter-Fed Motors Grid-Fed Motors Reference

1. Noise and distortion

• Harmonics and
high-frequency noise.

• Lowers the accuracy of methods.

• Lower harmonics
and distortion.

• Provides stable and reliable
signal for fault diagnosis.

[22]

2. Sensor compatibility

• Complex power electronics
require more sensors
or interfaces.

• Complexity and cost addition.

• Standardized sensors and
measurement points.

• Simplified CM and
FD implementation.

[23,24]

3. Variable
operating conditions

• Feasibility with various load and
speed conditions.

• Dynamic system behavior and
different failure signature
complicate the fault diagnosis.

• More stable operation and
predictable conditions.

• FD is
more straightforward.

[25]

4. Nonlinear-
system dynamics

• Nonlinear behavior due to the
switching nature.

• Greater challenges in FD and
assumption with linearity or
relying on linear models.

• Linear characteristics.
• Simplified in linear-based

FD and
modeling approaches.

[26,27]

5. Power quality and
transient response

• Adds voltage sags, harmonics,
and transients.

• Affects power quality and
perhaps masks fault signatures.

• Provide stable and
high-quality power with
minimal transients.

• Cleaner environment
for FD.

[28,29]

6. The complexity of fault
signatures and analysis

• Power electronics, motor
dynamics, and fault conditions
create complex and
non-traditional scenarios in
fault signatures.

• Requires advanced signal
processing or customized fault
detection algorithms.

• Straightforward and
conventional in CM
and FD.

• Simple fault analysis,
detection,
and interpretation.

[30]

This review article briefly analyzes induction motor faults, condition monitoring, and
practical diagnosis and highlights the scientific results of different approaches and their
applicability in this field of diagnostics, specifically with motor drive systems. The authors
present a thorough detail of induction motor fault classification in Section 2. Then authors
include various condition monitoring schemes and diagnostics with various applicability
details in Section 3.

A comprehensive analysis of potential induction motor faults, including monitoring
and mitigation methods, is covered in Section 4. The authors add the details of most occur-
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ring faults like stator, inter-turn short circuits, broken rotor faults known as BRB, mechanical
bearing damage, air-gap eccentricity, common-mode voltage development faults, and bear-
ing currents leading towards partial discharges in the induction motor. Additionally, the
authors outline the most advanced machine learning and artificial intelligence-based CM
and DF techniques of recent times in Section 5. Section 6 of this paper addresses the po-
tential research gaps as a future direction for the research, based on an extensive literature
analysis by the authors.

2. Classification of Various Faults in Induction Motor

Based on the available literature, Figure 2 shows various IM fault types, which effec-
tively influence the continuous and reliable operation when operated by an inverter-based
power supply [27]. The IM faults are classified into three main categories: mechanical,
electrical, or environmental. Electrical faults in particular are initiated at the stator side of
IM. Mechanical faults have the most impact on the remaining useful life of the motor, as
they are degenerative and tend to increase these faults over time.
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2.1. Fault Type Classification

These faults are likely to be avoided in advance with early detection, and good
condition monitoring schemes are required for the motor, before going into catastrophic
failure. These faults are more critical and difficult to detect earlier but are equally important
to trace. This article highlights the electric motor fault, the diagnosis technique mainly
associated with using a power electronic converter [31,32].

Three institutions, named the Institution of Electrical and Electronics Engineers (IEEE),
Electric Power Research Institute (EPRI), and Asea Brown Boveri (ABB), have evaluated
the IM fault types and their performances. Their surveys, which are depicted in Figure 3,
reflect the importance of condition monitoring and diagnostics in different parts of motors,
and show the percentage contribution of the faults related to motor’s stator, rotor, bearing,
and other related considerations [33,34].
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2.2. Typical Faults with Inverter-Fed Induction Motor

Table 2 illustrates the various faults in an induction motor when supplied with a Pulse
Width Modulation (PWM) inverter. It presents a comparative analysis table encompassing
various faults and corresponding diagnostic techniques. These CM and FD methods are
crucial in facilitating the precise interpretation of fault signatures, offering valuable insights
into motor faults’ underlying causes and severity. The researchers consistently aimed to
improve the dependability and efficiency of inverter-fed induction motors by implementing
effective strategies for detecting and diagnosing faults.

Table 2. Fault and companion diagnostics in an inverter-fed induction motor.

Sr. No. Faults Diagnostic Techniques Reference

1.
Stator winding phase(s) faults, inter-tern
faults, vibration, and
conductor displacements

• Motor current signature analysis (MCSA);

# Signal spectrum analysis;
# Wavelet transform;
# Fast Fourier transform (FFT);
# Park’s vector approach;
# Artificial intelligence

techniques (AI);

• Relays and switches.

[36,37]

2. Rotor faults, mechanical faults

• FEA analysis;
• Vibration analysis;
• Motor current signature analysis;

# Fast Fourier transform (FFT);
# Wavelet transform;
# Time frequecny analysis, etc.

[11,38,39]

3.
Bearing faults, misalignment of bearings,
lubrication loss in bearings, mechanical and
thermal imbalance in the rotor

• MCSA;

# Instantaneous power FFT;

• Flux measurement method.
[40–43]

4. Shaft voltage stress and transient overvoltage

• Parasitic capacitance calculation;
• RLC transient modeling;
• Shaft current and stray flux analysis;
• 2D and 3D analysis.

[29,44]
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Table 2. Cont.

Sr. No. Faults Diagnostic Techniques Reference

5. Bearing voltages and leakage currents,
corrosion, and failure

• Vibration analysis;
• Chemical analysis. [45,46]

6. Common-mode voltage (CMV) issues and
high dv/dt

• New electrostatic shielded design;
• RLC transient modelling. [47,48]

7. PWM switching harmonic losses, distortion,
and heating

• Infrared thermography;
• Infrared recognition;
• Thermal monitoring;
• Signal spectrum analysis.

[22,49]

8. Insulation system damages

• Monitoring of winding’s temperature,
gases composition;

• Stray flux analysis;
• Partial discharge;
• Filtered voltage impulse and partial

discharge (PD) spectra;
• AI.

[50–52]

9. Electromagnetic interference (EMI) issues
• High resonance circuit equivalent modeling

and analysis. [53]

10. Switching harmonic and frequency
loss analysis

• Discontinuous Pulse Width Modulation
(DPWM) and space vector bases DPWM;

• Electromagnetic field monitoring.
[54–56]

3. Condition Monitoring and Diagnostic Techniques

This paper reviews the research on condition monitoring and fault diagnosis and
draws attention to the methods proven to be the most reliable and helpful. Fault diagnosis
techniques can be categorized based on whether they require invasive or non-invasive
methods to assess the condition of the motor drive system. Non-invasive fault diagnosis
techniques do not require physical intervention or direct contact with the motor drive
system being monitored. These methods rely on external measurements or signals to
analyze the system’s behavior and detect potential faults. Invasive fault diagnosis tech-
niques involve physical intervention or direct contact with the system to diagnose faults.
These methods typically require accessing the internal components or subsystems of the
machine [57].

3.1. Common Condition Monitoring Techniques

There are common condition monitoring (CM) techniques based on electrical signature
analysis (ESA) through sensor data, which are useful not only for the condition monitoring
of induction motors, but also for electrical generators, transformers, and other equipment.
The most common type of signature analysis is motor current signature analysis (MCSA),
in which the current signal signature is analyzed to trace the faults within the induction
motor [38,58]. ESA also includes the motor circuit analysis involving parameters like
resistance, phase angle, current response, frequency response, equivalent impedance,
inductance, and ground faults. Some of the common condition monitoring techniques used
in identifying IM faults are listed below [41,50,59–65]:

• Motor current signature analysis (MCSA) [66];
• Voltage signature analysis (VSA) [67];
• Extended Park vector approach (EPVA) [68];
• Instantaneous power signature analysis (IPSA) [69];
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• State monitoring analysis like temperature, noise, speed fluctuation, magnetic flux;
• Condition Monitoring Sensors:

a. Vibration sensors: accelerometers, proximity probes;
b. Temperature sensors: thermocouples, resistance temperature detectors;
c. Current sensors: Hall effect sensors, current transformers;
d. Acoustic sensors: microphones, ultrasonic sensors;
e. Emissions-based monitoring;

• Partial discharge and surge testing;
• Motor circuit analysis.

Fault diagnosis methods are mainly divided into categories, i.e., signal processing and
model-based techniques. Signal-based techniques for condition monitoring and fault diag-
nosis of electrical machines involve analyzing various signals acquired from the machines
to detect abnormalities, deviations, or fault signatures [31,70,71]. These techniques focus
on extracting relevant information from the signals to assess the machine’s condition. Some
common signal-based techniques are shown in Figure 4.
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Model-based techniques for CM and FD of electrical machines are based on mathe-
matical modeling to evaluate the behavior of the motor and detect the relevant faults or
deviance from the common operating requirements [73,74]. The most common model-based
techniques in FD are analytical models, finite element analysis (FEA), signal processing
techniques, Kalman filtering (KF) and state estimation, artificial intelligence (AI), stochas-
tic resonance, and machine learning (ML), as shown in Figure 5. These model-based
techniques provide valuable tools for the CM and FD of electrical machines, allowing
pre-condition of faults, predictive maintenance, legible reliability, and high performance.
The divisions above can also be used in artificial intelligence (AI) based techniques for
diagnostics. An artificial intelligence approach to predictive maintenance necessitates
both human intelligence and machine learning or training of algorithms for machine fault
diagnostics [75–79].
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IM-related faults caused by high-frequency inverter transients and behavior that
generate the faults. Academia, and industry are investing heavily in their research and
development (R&D) related to condition monitoring and diagnostics [81,82]. Figure 6
shows a tie of an electric machine with an intelligent diagnostics system, which integrates
the motor’s real-time parameters, for example, electrical, mechanical, flux, optical, acoustic,
chemical, partial discharges, and others, to form a diagnostic [83–85].
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3.2. Latest Trends in Condition Monitoring for IM Faults

Advanced condition monitoring and fault diagnostic methods for induction motor
faults have emerged due to advancements in technology and research. The authors present
a list of the latest more advanced condition monitoring methods for induction motor (IM)
faults, along with their types and further subtypes in Table 3.

Table 3. Condition monitoring and diagnostics with latest trends.

Sr. No. Latest FD Technique Feature Application

1. Advanced signal processing techniques

• Time-domain analysis [86];

# Amplitude and RMS analysis [87,88];
# Kurtosis analysis;
# Harmonic order tracking analysis [89];
# Time synchronous averaging (TSA) [90–92];
# Statistical analysis [93];

� Stochastic resonance;

# Signal decomposition [89];

• Frequency-domain Analysis;

# Fast Fourier transform (FFT);
# Wavelet transform [90];
# Higher-order spectral analysis [37];

• Time-frequency analysis [70,94];

# Spectrogram;
# Scalogram;
# Hilbert–Huang transform and its extension;

� Empirical mode decomposition;
� Intrinsic mode function;
� Extracting instantaneous amplitude and frequency;

# Short-Time Fourier Transform (STFT);
# Wavelet packet transform [95];
# Wigner–Ville distribution [91];

• High-resolution analysis techniques [38,45,92,93];

# MUSIC [96].

2. Intelligent technique

• Artificial intelligence (AI) [97];
• Machine learning (ML) [98];
• Data-driven approach [99–101];

# High-dimensional feature reduction [102–104];

• Data mining: date fusion and pattern recognition [105].

3. Expert Systems

• Rule-based systems [106–108];

# Fuzzy logic [109];
# Knowledge-based rules [110];

• Case-based reasoning [111];

# Experience-based reasoning;

• Fault diagnosis from historical cases.

4. Model-based prognostics and health
management (PHM)

• Advanced diagnosis recognition [112];
• Smart classifier-based prognostics [105].

5. Model-based prognostics and health
management (PHM)

• Advanced diagnosis recognition [104,112];
• Smart classifier-based prognostics [105].

6. Digital twin technology
• Ramanujan digital twin (RDT) [113];
• Model approach [113].

7. Image processing and computer vision

• Advanced image processing and hyperspectral imaging [110,114];
• Histogram of oriented gradients approach [115];
• Thermal imaging: infrared thermography, temperature

mapping [116].



Energies 2023, 16, 5628 10 of 41

Table 3. Cont.

Sr. No. Latest FD Technique Feature Application

8. Hardware-in-the-Loop (HIL) condition
monitoring methods

• Virtual HIL;

# Software-in-the-Loop (SIL);
# Processor-in-the-Loop (PIL) [117];

• Hardware-in-the-Loop (HIL) with real motors [118];
• Hybrid HIL: a combination of virtual and real components [119,120].

9. Advanced Fault Detection Methods

• Ensemble methods [121];

# Random forest;
# AdaBoost;
# Bagging.

• Bayesian networks: probabilistic graphical models, fault
propagation [122];

• Genetic algorithms: optimization [123], feature selection, parameter
tuning [124–126].

10. Inverse problem theory

• Parameter estimation: Kalman’s prediction [127,128];
• State estimation [129];
• Fault location estimation [130];
• Fault severity estimation.

Recent trends include time–frequency analysis (tf ) methods, such as Short-Time
Fourier Transform (STFT), wavelet transform, and Wigner–Ville transform, which pro-
vide valuable insights into motor signal transient and frequency-varying components.
Applying these techniques makes it possible to detect and diagnose faults that may man-
ifest as changes in frequency content or time-varying patterns. Different methods can
identify certain faults in machines, such as the power spectrum graph, phase spectrum
graph, cepstrum-graph, autoregressive (AR) spectrum-graph, spectrogram, wavelet scalo-
gram, wavelet phase graph, etc. However, these methods often present several problems
in terms of complexity and cost. The conventional signal-based methods are not always
reliable, as they depend on the operating conditions of motors [121].

To improve the detection of incipient fault issues, the field of fault feature extraction has
also taken advantage of stochastic resonance. Using straightforward techniques, researchers
and diagnostic designers can better understand the motor drive system faults. In this
approach, the system is represented by a network of interconnected neurons, where each
neuron stands for a particular quality or feature of the signals the machinery generates [131].
The optimal signal-to-noise ratio and the misclassification rate are two examples of multi-
objective optimization techniques used to determine the ideal coupling strengths between
the neurons.

3.3. CM Implementation Strategy

A well-designed implementation strategic plan is important, because it ensures a
systematic and organized approach to condition monitoring. It improves the monitoring
process’s efficacy and efficiency, enables proactive maintenance, reduces downtime, and
optimizes resource utilization. Furthermore, a well-defined strategic plan encourages
uniformity, standardization, and scalability, allowing organizations to reap the benefits of
condition monitoring across various assets and facilities. Figure 7 shows the implementa-
tion of a strategic layout of condition monitoring, which refers to the systematic approach
and framework for implementing condition monitoring techniques.

Potential future research is always required to precisely analyze the electrical ma-
chine’s service life expectancy deterioration with improved CM, FD, and prediction method-
ologies. This predictive maintenance would reduce the cost of the process in its downtime
and prevent unexpected motor failures.
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4. Fault Monitoring and Diagnosis of Induction Motor

Monitoring and diagnosing fault conditions is crucial to maintaining induction motors’
dependable and efficient performance. Utilizing modern sensors and data acquisition
systems permits the early identification of fault conditions, such as bearing wear, rotor
faults, stator winding faults, and imbalance. Simultaneously, fault diagnostics analyzes
the collected data to determine the defect’s specific type and severity. Various techniques,
such as signal processing, pattern recognition, and machine learning algorithms, identify
fault varieties. These techniques extract relevant characteristics from the collected data and
classify the fault type [98,132]. The information obtained through fault diagnostics enables
maintenance personnel to promptly implement corrective measures, reduce inactivity
periods, and prevent further damage to the induction motor. The subsequent subchapters
will comprehensively analyze each fault [71,97,133–135], and present condition monitoring
and fault diagnosis according to the fault.

4.1. IM Stator’s Faults

Stator faults in the induction motor account for approximately 16–37% of the total
occurred faults [35]. Induction motor stator faults include winding faults and external drive
faults. The stator winding fault (SWF) can be caused by turn-to-turn, coil-to-coil, phase-to-
phase, or phase-to-ground faults, as shown in Figure 8. Most stator faults involve broken
winding insulation. MCSA can detect broken thread insulation, which can cause phase
insulation to break and kill the motor. Insulation is most affected by thermal stress [136].
The combination of different electric stresses generated through the transient voltages is
particularly undesirable [137].
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The stator is stressed by thermal, electrical, mechanical, and environmental factors,
causing faults [139–141]. Table 4 presents the types of fault diagnostics techniques for
induction motor (IM) stator faults.

Table 4. Types of fault diagnostics techniques for induction motor (IM) stator faults.

Sr. No. FD Technique Group Pros Con Reference

1. Motor current signature
analysis (MCSA)

Motor current signals
(current spectrum)

• Non-invasive.
• Specific harmonics specify

the fault.
• Provides real-time

monitoring of motor health.
• Diagnose turn-to-turn short

circuits, open circuits, and
insulation
degradation related.

• Cost-effective and relatively
simple to implement.

• Limited effectiveness for
incipient faults.

• Expert knowledge is
required when analyzing
the spectrum.

• Difficult in fault
segregation in the case of
inverter-fed motors.

• Influenced by external
noise and interferences.

[34]

2.
Motor current Park’s
vector
analysis (MCPVA)

Stator current signal
(vector
components analysis)

• Provides insights into motor
health and faults.

• Provides a broad view of
motor behavior.

• Divides signal into
orthogonal components.

• Effective in both steady-state
and transient conditions.

• Early detection of
motor faults.

• Requires
accurate measurement.

• Complex in evaluating
vector relationships and
deviations from
predicted values.

• Influenced by noise and
measurement uncertainties.

• Requires expertise in
vector analysis
and interpretation.

• Limited effectiveness for
incipient or small faults.

[68,142]

3. Neural network
techniques

Current or
voltage signals

• Capable of handling
non-linear and
dynamic systems.

• Adaptive and
self-learning nature.

• Can identify fault patterns
and diagnose based
on their responses.

• Robust performance.
• Handle multi-variate and

high-dimensional data.
• fault detection and diagnosis

in early stages.

• Require large amounts
of training data.

• Lack of interpretability
and explainability.

• Computationally
intensive and
time-consuming training

• Complex in learning to
implement in linking
between input patterns
and fault states.

• Limited effectiveness for
unknown fault types.

[143–145]
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Table 4. Cont.

Sr. No. FD Technique Group Pros Con Reference

4. Wavelet
transform analysis Stator current signal

• Effective for time-frequency
analysis.

• Can handle non-stationary
and transient signals.

• Ability to detect transitory
phenomena, frequency
fluctuations, and disruptions.

• Offers
multi-resolution analysis.

• Can diagnose stator faults
such as short circuits, broken
rotor bars (BRB), and
bearing faults.

• Appropriate wavelet
basis can be challenging
in selection.

• Computational complexity
• Interpretation of wavelet

coefficients
requires expertise.

• Requires a careful
balance between time
and
frequency resolution.

• Compromise in
effectiveness for very
high or very
low frequencies.

• Proper selection of
wavelet parameters
is crucial.

[101–105]

4.1.1. Classification of the Stator Fault

Incipient stator faults fall into the following broad categories.

1. Laminations that create a hotspot in the core and cause slackening in the core.
2. Faults in the frame due to unbalanced vibration, circulating current within it due to shaft

voltages, coolant loss, or a potential earth fault.
3. Faults in the end portion, insulation fretting, insulation contamination by moisture, oil,

or dirt, damage to connectors, cracking of insulation, discharge erosion of insulation,
and the displacement of conductors.

4. Faults in portions from the slot due to the misplacement of conductors.

4.1.2. Inter-Turn Short-Circuit Faults

Industrial drives have a 16–28% stator inter-turn short circuit (ITSC) fault [136].
Inverter-fed induction machines have more harmonics than line-connected motors. The
harmonic current heats the stator winding, deteriorating the insulation quickly [37,146].
If undetected, a three-phase IM stator winding short circuit starts with an inter-turn fault
and progresses to a phase-phase or phase-ground fault. MCSA detects inter-turn faults in
inverter-fed IM. If a PWM inverter feeds the machine, MCSA fails due to high-frequency
inverter switching, and the current spectrum is noisy, making fault detection difficult.
If undetected, a three-phase IM stator winding short circuit starts with an inter-turn
fault, and progresses to a phase–phase or phase–ground fault. MCSA detects inter-turn
faults in inverter-fed IM. If a PWM inverter feeds, the machine MCSA fails due to high-
frequency inverter switching, and the current spectrum is noisy, making fault detection
difficult [147,148]. The details of the current harmonics that the stator intern short circuit
has caused and the two-level inverter’s currents harmonic are explained below.

4.1.3. Current Harmonics Due to Stator ITSC Fault

In the case of stator inter-turn short circuits (ITSCs), the number of coil turns is reduced,
and the remaining coils are used to carry fault current. A short circuit current reduces
the faulty phase’s MMF, and the air gap’s spatial flux distributions are disturbed [149].
The motor’s current components at some frequencies are limited to shorted turns. This is
described by Equation (1) [150].

fst = fg[
n
p
(1− s)± k] (1)

where fst is the component related to shorted turn, fg is the fundamental electrical frequency,
n is 1, 2, 3, . . ., p is pole pairs (number), s is slip (per unit), k = 1, 2, 3.
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4.1.4. II-Level Inverter’s Current Harmonics

The II-level triangular carrier PWM inverter-fed IM has the per phase voltage in
Equation (2) [25].

V(t) = MVdc
2 cos(ω f t)

+ 2Vdc
π

∞
∑

m=1
j0mM π

2 sin(m π
2 ) cos(mωct)

+ 2Vdc
π

∞
∑

m=1

∞
∑

n=±1

jnmM
m

π
2 sin[(m + n)π

2 ] cos(mω + mω f t)

(2)

where Vdc = DC link voltage, M is Modulation index, ωf is the fundamental frequency, ωc
is the carrier frequency, m is the integer, J0, & Jn are the Bessel functions, and
V(t) = fundamental voltage.

Equation (2) shows the modulation index’s analytical function (which is defined as M),
while the second and third term reflect the carrier frequency band harmonics. By varying
the coefficients ωf, ωc stated in Equation (2), the output of the inverter is varied, and the
required voltage for the fed induction is achieved. Since the voltages are non-sinusoidal,
they are being fed to the motor; they cause the harmonics in the phase current, and most
reflecting harmonics are along the side of switching frequency (ωc ± 3ωf, 2ωc) [151]. ITSC
fault generates the current if, and the Rf fault resistance is reflected as shorted turns in the
phase winding undergone to the fault, as shown in Figure 9.
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Figure 9. Induction motor ITSC fault [36].

Researchers recently proposed the most efficient and applicable fault diagnostic tech-
niques using the observer coil based FFT analysis and measuring the internal flux method-
ology [152]. Furthermore, coil based FFT analysis and sensors based on the Hall effect are
separately installed inside the motor’s geometry, which requires extra labor [63].

Also, it is not influential for implementation because of being sensitivity-dependent
due to load variation, current harmonics, and an unbalanced supply voltage.

Table 5 summarizes different motor ratings, implemented schemes, and different
parameters in the event of inter-turn short faults.

Table 5. Summary of inter-turn short circuit faults in different motors.

Sr. No. Motor Specification FD Technique Fault Resistance
(Ω)

Fault Current
If (A)

Fault
Severity
If/Ir (%)

References

1. 3.7-kW,41-V, 4-pole,
50-Hz,

Wavelet transform
analysis on the
Stator current

2 0.7 12.73 [69]

2. 400-V, 11-kW,
50-Hz, 4-pole

Fast Fourier transform
and stray-flux 0 3.75 16.66 [70]



Energies 2023, 16, 5628 15 of 41

Table 5. Cont.

Sr. No. Motor Specification FD Technique Fault Resistance
(Ω)

Fault Current
If (A)

Fault
Severity
If/Ir (%)

References

3. 15-kW, 400-V,
50-Hz, 4-pole

Stator current
multi-reference frames 0.012 6 20.33 [71]

4. 400-V, 5.5-kW,
50-Hz, 4-pole

Symmetrical
components of the
stator-current
(input current)

- 2 18.18 [72]

5. 110-V, 1-kW,
50-Hz, 4 pole

IM stator current
phase averaging 6 1.3 26.00 [73]

6. 415-V, 3-kW,
50-Hz, 4-pole

Discrete wavelet
transform (DWT) 0.5 10 200 [74]

7. 380-V, 3.7-kW,
60-Hz, 4-pole

Discrete Fourier
transform (DFT) 0 12 100 [75]

8. 460-V, 3.7-kW,
60-Hz, 6-pole

Waveform
envelope construction 1 3.5 71.86 [76]

4.2. Rotor Faults

The induction motor rotor can undergo the following faults, which are stated below as:

1. Broken rotor bars (BRB);
2. Rotor bar displacement;
3. Rotor bar eccentricity;
4. Rotor end ring damage;
5. Rotor core faults and overheating;
6. Rotor skewing issues;
7. Rotor short circuits.

Rotors can be divided into wound types and squirrel cage types. In the case of
the squirrel cage rotor, the windings are a cage of conducting bars that meet at the end
ring [153]. The wound rotor consists of the winding made on the rotor with different
winding topologies. The main faults occur with the motor due to irregular fluctuations and
high pulses. Figure 10 shows the rotor bar broken faults within it.
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ken [9].

Most MCSA-based methods take advantage of electrical machine faults leaving fault-
frequency components in the current spectrum. Poor materials, overloading, or heavy
starts can cause these faults. BRB faults can increase resistance or break the electrical circuit.
Rotor bar failures mostly affect motor starting and parasitic moments. The missing bar
(due to an open circuit within it) current path increases the current in other bars, causing
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more faults (where one bar is broken). The current components in the stator windings can
be identified at the frequencies mentioned in Equation (3), in case of a BRB [154,155].

fbrb = fg[
n
p
(1− s)± k] (3)

where fbrb is a broken rotor bar (BRB) frequency, fg is the electrical input inverter primary
frequency, k is 1, 2, 3, . . ., p is the number of pole pairs, s is slip (per unit).

The typical problem with commercial induction motors is BRB faults. The authors
of [156] presented the diagnostic techniques based on the existence of the motor current
signature analysis. In [157], a low-complexity fault detection algorithm was implemented
based on the analytic current signal’s sub-Nyquist sampling. The algorithm was tested
for BRB-related faults. The proposed techniques in [94] are based on advanced signal
processing tools, such as spectrogram, scalogram, and Hilbert–Huang transform. Results
demonstrated the effectiveness of these approaches in simulation and experimental val-
idation. The author of [158] adopted SOGI-ANF, a new time domain signal processing
algorithm for stator current envelope extraction in induction motors, suitable for embedded
devices, and its adaptive nature allows accurate tracking of envelope variations. Based on
the literature, Table 6 compares different diagnostic methods.

Table 6. Induction motor BRB fault diagnosis methods in the MCSA group.

Sr. No. FD Technique Group Pros Cons Reference

1. Active and
reactive currents

FFT
(MCSA)

• Non-invasive.
• Can segregate load

vibration effects.
• Moderate level of

mathematical calculation.

• Medium level of
memory required. [159]

2. Ant clustering Park’s vector, FFT

• Non-invasive.
• No speed estimation

is required.

• Difficult to segregate
different faults.

• Large mathematical
calculations and
memory required.

[99]

3. Autoregressive
method DTFT and Notch

• Non-invasive.
• No speed estimation

is required.

• Operated on
steady-state current. [160]

4.
Information
entropy and
fuzzy inference

Fuzzy logic

• Non-invasive.
• A medium level of

mathematical calculation
is required.

• Requires
steady-state current.

• Large
memory required.

[107]

5. Homogeneity
estimation FPGA

• Non-invasive.
• Used with

transient current.
• No speed estimation

is required.
• A low level of

mathematical calculation
is required.

• Segregation of faults
is difficult. [161]
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Table 6. Cont.

Sr. No. FD Technique Group Pros Cons Reference

6. Principle slot
harmonics FFT

• Non-invasive.
• Used with an unbalanced

power supply.

• Segregation of
different faults is
difficult.

• Large mathematical
calculations and
memory required.

[162]

7. Harmonic
order tracking Gabor transform

• Non-invasive.
• Capable of segregating

faults and
non-stationary conditions.

• A medium level of
memory is required
to use.

[89]

8.

Hilbert
Transform
(Envelope
detection)

Hilbert transform

• Non-invasive.
• Steady-state analysis.
• A low level of

mathematical calculation
and memory is required.

• Segregation of
different faults
is difficult.

• Problems with varying
load conditions.

[163]

9. Reduced
envelope Hilbert transform

• Non-invasive.
• Suitable for diagnostic on

low slip
• Suitable to implement on

DSP and FPGA kits.

• Segregation of
different faults
is difficult.

[164]

10. Notch-filter Fast
Fourier transform

• Non-invasive.
• Suitable for diagnostic

on low-slip.
• Difficult under varying

load conditions.

• Segregation of
different faults
is difficult.

[165]

11. Parameters
estimation Analytical

• Non-invasive.
• It can be more accurate

under
steady-state conditions.

• It can be used to
segregate faults.

• The high mathematical
calculation is required.

• High memory
is required.

[166,167]

12. Pendulous
oscillation Analytical

• Non-invasive.
• Suitable for implementing

under low slip conditions
and
steady-state conditions.

• It can be used to
segregate faults.

• The complex
mathematical
calculation is required.

[168,169]

13. Power
spectral density

Short-time FT
and wavelet

• Non-invasive.
• Suitable to implement

under low slip conditions.
• Cab be applied under

varying load conditions.
• It can be used to

segregate faults.

• An accurate sampling
rate is required.

• Selection of mother
wavelet required.

[170]
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Table 6. Cont.

Sr. No. FD Technique Group Pros Cons Reference

14. Spectrum
synch technique

Local band synch,
central
kurtosis analysis

• Non-invasive.
• It is suitable to implement

under low slip conditions
and can be used to
segregate faults.

• Difficult to implement
under varying
load conditions.

[168]

15. Zero-sequence
voltages Analytical

• Non-invasive.
• Suitable for constant

load conditions.

• Segregation of
different faults
is complicated.

[171]

16. Wavelet
transform (WT) t-f analysis

• Non-invasive.
• It can be used to

segregate faults
• It can be used for varying

load conditions.

• The sampling rate and
selection of the mother
wavelet are important.

[172]

17.
Adaptive
neuro-fuzzy
inference system

Time
domain analysis

• Non-invasive.
• Used with stator current.
• Detectability with a wide

speed range.
• Can detect BRB and air

gap eccentricity.
• Reduced complexity and

high accuracy.

• High
computational burden.

• Extensive training of
the network.

[173,174]

4.3. Bearing Faults

Bearing mechanical faults contribute to an impact of 40–50% of overall rotating electric
machine failures [35]. IMs use ball or roller bearings with the rolling element, outer race,
inner race, and train (or cage) defects, as shown in Figure 11, due to mechanical stress and
bearing currents, poor installation, assembling, temperature rise, and maintenance cause
most bearing failures. Pollution or contamination added from outdoors also cause bearing
failures due to adverse impact on the bearing lubricant. Dust and liquid contamination en-
tering the seal cause bearing failures [175]. Most diagnostic methods for machine electrical
and mechanical failures use MCSA [43,176,177].
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Figure 11. Depict of bearing structural faults: (a) ball bearing, (b) outer raceway fault, (c) inner
raceway [178].

Bearing faults can have the following causes:

1. The rotor vibrates heavily and increases the fatigue stress due to high output load torque;
2. Loss of lubrication brought on by a shaft voltage;
3. A high bearing current result in the heat that the shaft can conduct.
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Different sensor data, such as vibration measurements, motor current, input voltage,
stray flux, and temperatures at different motor locations, are used in conventional bearing
condition monitoring and diagnostics.

Motor vibration analysis gives the frequencies produced by the failures can be ex-
pressed in Equations (4)–(7):

fouter =
Nb fr

2
(1− d cos φ

D
) (4)

finner =
Nb fr

2
(1 +

d cos φ

D
) (5)

fcage =
fr

2
(1− d cos φ

D
) (6)

fball =
d fr

2D
{1− (

d cos φ

D
)

2
} (7)

where fcage is the cage failure frequency, fouter is the outer race frequency, finner is the inner
race fr quency, fball is the ball defect frequency, d is the ball diameter, D is the pitch diameter,
and fr is the frequency of the rotor (mechanical).

fcur−harmonics =| fi − n fc| (8)

where fcur-harmonics is the harmonic current frequency, fi is the fundamental inverter fre-
quency, fc is the characteristic vibration frequency, and n is an integer. Figure 12 summa-
rizes different approaches from the spectrum waveform and signals, illustrating faulty or
abnormal attributes [42,178,179].
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The inaccurate and air-gap irregularity in stator–rotor structure and bearing stiffness
can cause excessive motor vibration by affecting shaft dynamics. IM break or destroy early
due to rotor bar failures caused by bearing failures. Using the homogeneity algorithm
(HA), the authors of [180] presented the fault traces in outer race-bearing in IM that use
the vibration signals to estimate the change on the normal structural line and initiate the
fault detection.

The author of [181] proposed the mechanical fault of bearing using the motor cur-
rent signature analysis based on the normalized triple co-variance in the IM. The author
of [182] proposes a prospective Envelope Harmonic Spectrum (EHS) and adaptive second
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order cyclo-stationarity blind deconvolution algorithm. This research implementation can
estimate the IM bearings. Based on the literature, Table 7 compares different traditional
diagnostic methods.

Table 7. Induction motor bearing fault diagnosis methods.

Sr. No. FD Technique Pros Cons Type of Fault Reference

1. Harmonics in motor current
signature analysis (MCSA)

• Features are
extracted well.

• Immune to
noisy environments.

• Stationary signals
are excluded. • Ball bearing. [62,131]

2. Instantaneous
frequency-power spectrum

• Identify the
useful information.

• Measurement errors
of faulty signals.

• Ball bearings
• roller bearings. [183–185]

3. FFT and
current-voltage information

• Measures
value quickly.

• Isolates
bearing faults.

• Inclusion with
data manipulation. • Ball bearings. [186,187]

4.
Phase modulation and
high-resolution stator
current spectral analysis

• Accurate.
• Measures faults

where segregation
is difficult.

• Nonlinear.
• Expensive.

• Inner race.
• Outer

race faults.
[188]

4.4. Air-Gap Eccentricity Faults

Non-uniformity in the airgap in the motor’s rotor-stator physical structure creates
these eccentricity faults. Three types of these faults as stated below [189,190].

1. Static eccentricity (SE);
2. Dynamic eccentricity (DE);
3. Mixed eccentricity (ME).

SE has a fixed minimal radial air gap, and the rotor center of the axis remains fixed
regardless of the center stator diameter. In contrast, in DE, the center of the rotor moves
with the stator, while ME includes both SE and DE. The rotor in ME rotates around the third
fixed center of rotation other than the center of the stator or the rotor [191]. Figure 13 shows
the state of change of the center of rotation in operation and Table 8 shows the induction
motor diagnosis methods related to eccentricity fault.
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Table 8. Induction motor eccentricity fault diagnosis methods.

Sr. No. FD Technique Pros Cons Reference

1. Air gap eccentricity monitoring
using magnetic flux

• High accuracy.
• Various sensors

are required.
• Complex representation.

[194,195]

2. Stator current analysis in time
and frequency domain

• Non invasive.
• FFT measures

value quickly.
• Isolates

bearing faults.

• Difficult in
fault segrigation.

• Expertise required
in implementation.

• Inclusion with
data manipulation.

[196]

3. Instantaneous
frequency-power spectrum

• Identify the
useful information.

• Measurement errors of
faulty signals. [197]

4. Wavelet transform analysis (WT)

• Only current or
voltage signal
are required.

• t-f analysis.
• High

resolution analysis.
• Can segrigate

faults amoung
PHS and
fault sidebands.

• Can be used to
segregate faults.

• Can be used for varying
load conditions.

[198]

5. Eddy current testing

• Easy in detection
due to variations
in magnetic fields.

• Multiple sensors required.
• Complex FD technique. [199]

6. Neural network technique

• High accuracy
in model.

• Accounts for
turn-to-turn
capacitances and
3D end winding.

• Difficulty in training ANNs
with historical data. [200,201]

Equations (9)–(11) below show the eccentricity fault frequency, and fc shows the
central frequency.

fec = fg{(R± nd)(
1− s

p
)± nws} (9)

s =
Ns − Nr

Ns
(10)

where, fec is the eccentricity frequency (also called the irregularity frequency), fg is the
fundamental frequency, R is the number of rotor bars, nws is 1, 3, 5, 7, . . ., Ns is rotor slip,
Nr is synchronous speed, s is slip (per unit), and slip is calculated from the equation, nd is
+1 or −1. Central frequency fc on the air gap-static eccentricity spectrum is determined by
Equation (11).

fc = R fg (11)

4.5. Common-Mode Voltage (CMV) and Bearing Current Faults

Each pulse’s voltage waveform at the inverter terminals has steep lines at the start and
end. Recent studies have shown that PWM inverter’s common-mode voltage (CMV) is the
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primary reason for this, which creates the bearing current (BC) as a serious side effect [48];
the most effective reasons for this are as follows.

1. The voltage at the equipment terminals is doubled because of reflections, putting
extra strain on the windings’ insulation.

2. In windings, capacitive currents and non-uniform voltage distribution can cause
electrical machines to experience a circulating current nominated as a bearing current.

3. Charges stored in the ground capacitors.

The common-mode voltage and bearing current faults are discussed below.

4.5.1. Common-Mode Voltage (CMV)

PWM inverters usually cause motor bearing failures. Bearing currents, also known as
shaft voltages, flow from the shaft through the bearings and must be monitored and diag-
nosed when PWM inverter sources feed an electric machine. This issue is usually caused
by bearing material erosion and mechanical failures like rotor eccentricity, homopolar flux
effects, and electrostatic discharge in electric devices [48]. Since the phase output voltages
alternate between +Vdc and −Vdc. The neutral-to-ground voltage in a star-connected ma-
chine is the zero-sequence voltage, expressed in Equation (12). Figure 14 shows that the
voltage change rate and CMV frequency is three times more than the switching frequency.
The overall CMV activity is done by the parasitic capacitance, starting from the stator
winding point to the rotor [24,27].

Vcom =
VA + VB + VC

3
(12)
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Since each pulse’s voltage waveform at the inverter terminals has very steep lines at
the start and end, this is the root cause of the negative effects on the motors’ service lives
and the overall system’s vulnerability. Recent studies have shown that PWM inverters’
CMV is the primary reason for these side effects [81]:

1. The voltage at the equipment terminals is doubled because of reflections, putting
extra strain on the windings’ insulation.

2. In windings, capacitive currents and non-uniform voltage distribution can cause
electrical machines to experience a circulating current nominated as a bearing current.

3. Charges are stored in the ground capacitors.

Charging current is generated due to the developed common mode capacitive coupling.
It flows from the rotor to the end bearing due to the highest switching application of PWM
drives for the induction motor with the high dv/dt. Bearing currents are classified by their
courses inside the machine and origin:

1. Capacitive BC,
2. Non-circulating BC,
3. Circulating BC (electric discharge machining),
4. Current in rotor-ground.

As depicted in Figure 15, the bearing current Ibrg comes from a simple inverter with
one phase (phase a) and an impedance Zinv between the DC-link and the ground. Stator
winding and the rotor create capacitance Cwr, which starts charging the rotor shaft current
when the inverter current flows into the motor’s main windings.
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Figure 15. Bearing currents with the ground return [26].

Cg is the capacitance across the bearing Cws and Cwr are parasitic capacitance in motor,
respectively. Zinv is the inverter-ground capacitive coupling. This is non-circulating because
the bearing current returns to the inverter instead of the machine. Stray capacitances in
the stator winding cause bearing leakage currents generated by the parasitic capacitive
coupling between the rotor and stator alone. the second circulating current arises due to the
electromagnetic induction caused by the stray magnetic flux path field within the winding
coils, due to uneven current distributions.
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High dv/dt generates capacitive currents to the stator iron, causing this uneven current
distribution. Terminal-end currents are higher than far-end currents, creating a current
unbalance on each coil side, as shown in Figure 16.
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A fast and accurate method of fault diagnosis using a common-mode voltage and
an open switch has been proposed and implemented. An active common-mode voltage
injection (ACMVI) is used to improve the algorithm’s robustness applicability, reduce the
false frequency alarms, and enhance fault diagnosis accuracy [203]. For the modeling of
current faults and circuit parameters, it is required to have an in-depth analysis of the
reflection of typical electrical machines’ complex geometry and their material composi-
tion. Different Analytical (DA), Finite Element Analysis (FEA) two-dimensional (2D), and
FEA three-dimensional (3D) modeling techniques evaluate the bearing or shaft currents
process [12]. A comparative summary of the different parameter identification for the para-
sitic capacitance for the bearing current estimation and further analysis for the condition
monitoring and diagnostics is presented in Table 9.

Table 9. Machine parasitic capacitance calculation methods in fault mitigation.

Sr. No. FD Technique Pros Cons Reference

1. Impedance
fitting algorithm

• Accurate and validating.
• No assumptions; naturally

consider all factors.

• Inspection points.
• Difficulty in decoupling

specific capacitances from
adjacent capacitances.

• Turn–turn capacitances.

[204]

2.
Geometrically
simplified
analytical methods

• Have low
computational burden.

• Featured with the
estimation of
stray capacitance.

• Inedequete
approximations.

• Difficult in end-winding
modelling to quantify
the effect.

[205]
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Table 9. Cont.

Sr. No. FD Technique Pros Cons Reference

3. 2D FEM

• Better in estimation of turn
to turn capacitance.

• End-winding is simplified
by the
axis-symmetric modelling.

• Non-consideration of
turn-to-turn capacitance.

• Non-consideration
of end-winding.

[206,207]

4. 3D FEM

• High accuracy in model.
• Accounts for turn-to-turn

capacitances and 3D
end winding.

• Calculation difficulty in the
material and geometry. [208–210]

4.5.2. Diagnostic of Bearing Currents Faults

Inverter-fed IM drives have more potential impact on generating more shaft voltages
and subsequently cause bearing current, so their diagnostic is a pre-condition for a prog-
nostic of the overall power system [211]. For an effective motor fault diagnostic, authors
suggested several mitigation methods based on the motor’s physical, analytical modeling,
which considers the overall surrounding of the motor containing the whole bearing current
path installation [212].

The primary methods for reducing bearing current are depicted in Figure 17 based
on the inverter, motor, and connection side. New inverter topologies and modulation
strategies have been devised to reduce the CMV amplitude and voltage and impact of high
dv/dt, which also feature the bearing-current diagnostic approaches from the input source
side [213–215].
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Table 10 summarizes the mitigation method’s pros and cons. It shows that not all
mitigation methods reduce all bearing current types. Understanding the bearing current
mechanism is necessary before choosing mitigation methods. Most mitigation methods are
costly and require high accuracy bearing current modeling to determine their necessity.

Table 10. Methods of bearing current fault mitigation.

Sr. No. FD Technique Pros Cons Reference

1.

Filtered-hybrid
selective elimination of
harmonic with Pulse
Width Modulation

• Harmonic elimination.
• HF noise mitigation

with PWM.
• Feasible for fans or pumps. [216]

2. Space vector PWM
control design

• PWM rectifiers/inverters’
CMV can be
greatly reduced.

• Fully controlled
rectifier needed. [217]

3.
1-ϕ half-bridge,
multi-level-
inverter system

• A potential reduction of
98.67% of bearing currents. • Extra hardware. [218]

4. An LC-filtered
fourth leg

• Eliminates CMV. • Extra hardware. [219]

5. Dual-bridge inverter

• Significant mitigation of
leakage-current.

• Eliminating the
shaft voltage.

• Reduction of
bearing currents.

• Additional six
IGBTs devices.

• Additional
three-phase machine.

• Costly.

[220]

6.
Dual/Paired IV-level
inverter with a strategic
switching strategy

• CMV is suppressed down. • System complexity. [221]

7. Active common
noise canceler

• Reduce shaft voltage,
ground current, and EMI.

• Hardware and
control complexity. [222,223]

8. Shielded cables
• EMI and voltage

reflection reduction.
• Increased circulating

bearing currents. [224]

9. Ceramic-ball
hybrid bearings

• Simple design. • Bearings cost more. [225]

10. Multiple
conductive microfibers

• Low friction.
• Good electrical contact. • Costly. [226]

11. Oblique in slots
• A 98% shaft-to-frame

voltage reduction.

• Compromise the
electromagnetic performances.

• Reduced
electromagnetic capabilities.

[227]

4.6. Partial Discharge (PD)

The dielectric of the electric motor insulation system deteriorates with high termi-
nal voltage stresses, transient voltages, and an elevated exchange rate of voltage fed at
the output terminal of inverter utilization with the PWM faster wide-bandgap devices
(WBG) [228]. There is acceleration aging by stimulating partial discharges. Motor terminal
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surges most often cause drive failure. To avoid motor partial discharge faults, multiple HF
motor models have been developed, analyzed, and presented [26,229,230].

The output terminal of the inverter has high voltage gradient attributes (high dv/dt),
and high transient frequency generates the partial discharge (PD). Therefore, its output
terminal voltage stresses the IM stator winding, and electrical stress at the insulation
with a high impact compared with grid-fed machines leads to a permanent insulation
failure [231–233]. Therefore, high-frequency modeling and lumped parameters estimation
has been implemented for the condition monitoring and fault diagnostic in IM. This
shows the research and development work that has been carried out in critical parameters
and overvoltage mitigation to avoid partial discharges. As a result, the PD impacts and
accelerated gaining parameters are necessary for effective predictive maintenance through
numerical modeling.

Partial discharges lead to the ongoing degradation of the protective enamel, resulting
in delamination, erosion, and breakage. These factors caused the conducting surface area
in the whole component to register short circuits and signaling through the current relay
with autonomous detection, as explained by the authors in [234,235]. There are four types
of PDs, as depicted in Figure 18.

A summary of insulation aging analyses according to the available literature is de-
picted in Figure 19.
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The impedance analysis of the motor is used for a response measurement with a wide
frequency range, starting from low frequency to several megahertz frequency levels. For
this purpose, parameterized motor models are estimated within a motor, connection cables,
and inverter, along with the corresponding series and branch impedance and an effective
lumped parameter value. The LTspic software tool was used to estimate the building of
numerous models, with a motor, cable, and inverter setup, as well as one-phase estimation
and in-depth analysis.
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5. Intelligent Diagnostic Techniques

Intelligent diagnostic techniques for induction motor condition monitoring and diag-
nostics include fuzzy logic (FL), as well as model-free optimization methods like genetic
algorithms, a hidden Markov model, a Bayesian classifier, a support vector machine (SVM),
deep learning, and artificial neural networks (ANN) [98,237,238]. Figure 20 shows multiple
diagnosis types based on artificial intelligence algorithms used in modern computations.
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Thus, the system should monitor algorithms with input–output mapping, dynamics,
and control expressions. An artificial neural network (ANN) is used in a system for
prospective detection of bearing faults in IM using MCSA [94]. ANN uses Levenberg–
Marquardt-trained three-layered backpropagation.

There is another type of neural network called a Trained Neural Network (T-ANN),
which is now confirmed for implementation and validity with the use of the trained
data. Residuals are obtained from the output of the ANN. The resultant output data can
be monitored for the delivered accuracy and validity in which the residues threshold
illustrates the potential fault estimation.

Author study [99] used machine learning and k-means clusters as assessment criteria
for condition monitoring and fault diagnostics, among other behaviors. The author of [239]
proposed a neural network structure for detecting the induction motor bearing fault. Real-
time torque and voltage unbalance monitoring was used to examine faults further. In [102],
the author demonstrated the hybrid feature reduction process using the motor vibration
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signature analysis in a novel way. The following features listed below can help to recognize
and show the fault or failure in IM:

• Decomposition methods of the signal,
• Statistical time-based feature prediction,
• Genetic algorithm (GA) optimization based on the feature,
• Component analysis based on integrating principal,
• Selection procedure based on the feature,
• Selection based on the Fisher score,
• Extraction of the feature.

Additionally, fuzzy logic (FL) can be used for the condition monitoring of the IM. The
following algorithms concerning the real-time implementation of the artificial intelligence
(AI) field for condition monitoring and fault diagnostics are listed below:

• Adaptive neuro-fuzzy inference systems (ANFIS),
• Fuzzy wavelet logic,
• Wavelet packet transform (WPT),
• Support vector machine (SVM).

K-function, also known as Kernel function, and wavelet transform were added to SVM
techniques for fault diagnostics goals. Wavelet fusion features and decision analysis can
also detect IM faults [240,241].

6. Summary and Future Directions

Modern drives operated by WBG-based power electronic converters are more effec-
tive when used in electric traction or propulsion systems because they work better, are
more portable, and have fewer moving parts than traditional Si-based drives. The main
challenges affecting the reliable operation of electric motors are the sharp pulse steps with
large over-voltage transients and high-switching frequency in the operation of inverters
observed at motor input terminals. The impact of the inverter on the electric machines
must be considered according to the faults, and, hence, its CM and FD increase their service
life. In the case of inverter-operated machines, the complexity level of segregating the fault
frequency trances and investigation becomes higher.

Limitations such as discontinuities in available data, a lower sampling rate of the
sensor signals, and fractional signal data at the start and end lead to enduring spectral
leakage when applying some FFT algorithms. Spectrum resolution also has limitations for
some of its complexity in the available fault condition monitoring and diagnostics. The
application of advanced signal processing techniques makes the process more extensively
complex, and places a high computational burden on addressing the abovementioned
issues. Therefore, there is good research potential in simple algorithm development to
improve the spectrum resolution without the complexity of advanced signal processing
techniques. Furthermore, based on the research gap, some recent directions and research
ideas for future studies in CM and FD for IM operated by PWM high-frequency inverters
are stated below and explained in detail.

1. FD in IM fed with high-frequency PWM inverter: Research into the impact of high-
frequency PWM switching on the motor insulation, partial discharge impacts, bearing
mechanical faults, common-mode voltage adverse effects, and other components,
and to foster techniques to detect and diagnose faults specifically related to the
PWM operation.

2. Sensor-less fault detection techniques: Analyze some of the advanced sensorless FD
techniques that can be used to supervise the condition and identify the faults in IM,
without relying on additional usages of the sensor’s entity, without much complexity,
and overall cost of FD strategic implementation,

3. FD with machine learning (ML): This area highlights the investigation related to ap-
plying machine learning algorithms, such as deep learning or reinforcement learning,
with improved models of high accuracy in IM operated by high PWM inverters.
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4. FD in multi-level inverters: This is also a potential research area to study the impact
of multi-level PWM inverters on motor operation, output performance, transient
response caused to load changes, operation in high-speed environments, and flux
weaken range, while operating in wide-beyond speed, tailored to the characteristics
of multi-level modulation techniques.

5. Condition monitoring in harsh environments: Development of robust fault diagnostic
technique suitable for IM operated in harsh environments, such as in the zone of
extremely high temperature, high humidity, contaminated environments, and the high
duty cycle of operation, which create indigenous faults within IM. The robustness
defines the compactness of the algorithm or FD techniques, which shows insensitivity
in its output, with some changes in input-sensitive parameters. The probability of
robustness can be analyzed through different statical analyses and analytical tech-
niques, especially in the time domain signal analysis that include RMS value, standard
deviation, skewness, kurtosis, high statical moments. It can be enhanced with opti-
mization algorithms, such as particle swarm optimization, genetic algorithms, and
other naturally inspired algorithms.

6. IoT for remote access: The most feasible and influential process can be implemented
by exploring the IoT integration techniques with FD. Real-time remote monitoring of
IM operated by a high transient inverter allows continuous time monitoring and early
detection from anywhere.

7. Model-based predictive maintenance: For this type of FD, state-of-the-art, physics-
based IM models; real-time sensor instrumentation; and measurement capability can
be utilized to establish a FD scheme for predictive maintenance strategy. For the high-
performance output of FD technique, the maintenance schedule can be optimized to
minimize the IM motor’s downtime.

8. FD in mechanical faults: Examine methods for fault identification and diagnosis
in bearing, e.g., outer, inner race, and roller fault. Examples of rotor faults include
broken rotor (BRB) faults and eccentricity. It is necessary to consider the one-of-a-kind
difficulties and negative impact that high-PWM inverters present.

9. Online-parameter estimation: Developing the online-parameter estimation methods
to accurately access the motor parameters, which can detect the fault and generate a
potentially viable solution for FD. These parameters are resistance, inductances, load
torque, and speed response, which vary with IM operation and employ monitoring
criteria and algorithms for the FD.

10. Hybrid FD techniques: A good combination of numerous techniques, such as ad-
vanced signal processing techniques, artificial intelligence, machine learning, and
model-based techniques, can be used to create a hybrid FD approach that can improve
overall performance and reliability by taking advantage of the strengths inherent in
each diagnostic procedure.

The above-described directions can provide an area for new research in the field of
CM and FD.

7. Conclusions

In conclusion, this research paper comprehensively analyzes condition monitoring
and practical diagnostic techniques for induction motors fed by inverters. With a systematic
approach, this paper reviewed the impact and challenges associated with an inverter-fed
system on the induction motor, different fault scenarios, and concern approach of condition
monitoring and diagnostics. This study emphasized the practicality and applicability of
diagnostics schemes with its pros and cons, starting from conventional methods such as
MCSA, monitoring analysis, and acoustics emission. The authors also highlighted the
most advanced techniques, such as data-driven prognostics, artificial intelligence (AI)
and machine learning (ML), model-based fault detection and diagnosis, fault signature
analysis using advanced signal processing techniques, and condition-based maintenance
optimization. The fault condition monitoring and diagnostics schemes discussed in this
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study utilize state-of-the-art technologies to enhance the precision, productivity, and efficacy
of fault detection and diagnosis across diverse systems and industries.

The presented case studies of the literature demonstrate the effectiveness of these
techniques in detecting and diagnosing different induction motor faults in its stator, rotor,
bearing, shaft voltages development, and partial discharge. The insights gained from this
research contribute to advancing condition monitoring strategies and practical diagnostic
techniques, thereby benefiting industries that rely on inverter-fed motor drive systems and
researchers in the field of diagnostics.
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