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Abstract: Solar photovoltaic (PV) systems often encounter a problem called partial shading condition
(PSC), which causes a significant decrease in the system’s output power. To address this issue, meta-
heuristic algorithms (MHAs) can be used to perform maximum power point tracking (MPPT) on the
system’s multiple-peak P-V curves due to PSCs. Particle swarm optimization was one of the first MHA
methods to be implemented for MPPT. However, PSO has some drawbacks, including long settling
time and sustained PV output power oscillations during tracking. Hence, some improved MHA
methods have been proposed. One approach is to combine a MHA with a deterministic approach
(DA) such as P & O method. However, such a hybrid method is more complex to implement. Also,
the transition criteria from a DA to a MHA and vice versa is sometimes difficult to define. Another
approach, as adapted in this paper is to modify the existing MHAs. This includes modifying the search
operators or the parameter settings, to enhance exploration or exploitation capabilities of MHAs.
This paper proposed to incorporate the stooping behaviour in the golden eagle optimization (GEO)
algorithm. Stooping is in fact a hunting technique frequently employed by golden eagles. Inclusion of
stooping in the GEO algorithm not only truly model golden eagles’ hunting behaviour but also yields
great performance. Stooping behavior only requires one extra parameter. Nevertheless, on average,
the proposed method can reduce tracking time by 42.41% and improve dynamic tracking accuracy by
1.95%, compared to GEO. Moreover, compared to PSO, GWO, and BA, the proposed method achieves
an improvement of 2.66%, 3.56%, and 4.24% in dynamic tracking accuracy, respectively.

Keywords: partial shading condition; maximum power point tracking; photovoltaic system; golden
eagle optimizer

1. Introduction

Solar energy is one of the most promising sources of renewable energy and its global
installation is expected to hit 1870 GW by 2025. One of the biggest issues with PV systems
is partial shading. Typically, this is due to tall structures, clouds, trees, snow, and dust on
neighbouring PV modules. Shaded modules provide less power than unshaded modules
in partial shading conditions (PSCs). The shaded modules place a limit on the output
power and may result in uneven current flow. Localized hotspots are resulted due to
the mismatch losses in the PV arrays. To overcome the hotspot problem, each module is
installed with a bypass diode. Nevertheless, this results in multiple peaks in power-voltage
or power-current curves.

Attaining the global maximum power point (GMPP) of a P-V curve is essential for
generating the maximum power. Up to 70% of the output power of a PV system may be
lost if a maximum power point tracking (MPPT) system is unable to find the GMPP [1].
There are two different ways to alleviate PSC issues to prevent this—hardware and soft-
ware approaches.
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Reconfiguring the hardware is the first way. The electrical array reconfiguration (EAR)
technique is applied to the PV array to reduce mismatch loss under PSCs. The hardware
approach reconfigures the electrical connections of solar PV panels to mitigate shading
effects. Nevertheless, the necessity for numerous switches, sensors, and control algorithms
makes large-scale deployment challenging.

Software solutions for maximum power point tracking (MPPT) under PSCs focus on
developing advanced algorithms without requiring additional hardware, making them
cost-effective. There are mainly three types of software solutions: deterministic approaches
(DAs), meta-heuristic approaches (MHAs) and artificial intelligence (AI) methods.

Deterministic approaches such as perturb-and-observe (P & O) [2,3], hill climbing [4],
and incremental conductance [5] essentially employ greedy algorithms. Since a greedy
algorithm always chooses the bet possible option available at the current time, with-
out considering the future consequences or alternative choices, it would lead to suboptimal
solutions under PSCs. Although there have been improved greedy algorithms such as
those proposed in [6–8] designed for the PSCs, they still face challenges like computational
burden, steady-state oscillations, and being trapped in a suboptimal solution. Usually,
prior knowledge of P-V or power current (P-I) characteristics under PSCs is necessary to
have these algorithms work under PSCs.

For AI methods, artificial neural networks (ANNs) [9,10] are the most commonly used
methods to develop for MPPT. ANN consists of a series of neurons, which are organized
into layers. The network attempts to learn the underlying relationship between the input
and output by adjusting the weights of the network using an optimization algorithm
such as gradient descent. The optimization algorithm tries to minimize the difference
between the predicted output of the network and the actual output. However, they can be
computationally intensive and require large amounts of data to train effectively.

MHAs are optimization techniques that are designed to efficiently explore large search
spaces and find near-optimal solutions. These algorithms do not guarantee finding the
global optimal solution but rather search for the best solution within a reasonable amount of
time. MHAs can be further categorized into single solution and population based searches.
Single-solution methods focus on modifying and improving a single candidate solution
throughout the search. Population-based approaches maintain and improve multiple
candidate solutions, often using population characteristics to guide the search. Hence, pop-
ulation based MHAs are usually based on swarm intelligence algorithms or bio-inspired
algorithms. A common example of a single-solution MHA is the simulated annealing (SA)
algorithm, which has been proposed for MPPT tracking by Lyden [11]. However, SA may
take a long time to deliver the final solution if the cooling process is slow. For population-
based MHAs, particle swarm optimization (PSO) was one of the the first few methods to be
implemented for MPPT [12]. and has been widely used to counteract the problem of PSCs
due to its simple structure and easy implementation. However, PSO has some drawbacks,
including long settling time and sustained PV output power oscillations during tracking.
Consequently, other population based MHAs have been proposed for MPPT. These in-
clude grey wolf optimization (GWO) [13], firefly algorithm [14], ant colongy optimization
(ACO) [15], bat algorithm (BA) [16], Cukoo search algorithm (CSA) [17], golden eagle opti-
mization (GEO) [18], genetic algorithm [19] and et cetera. These methods although in some
situations perform better than PSO, they still have similar problems of long searching time
and being trapped in local optima. Therefore, researchers have further made modifications
on these MHAs. The easiest approach is to combine a MHA with a deterministic approach
(DA) such as P & O method because such a hybrid method can leverage the strengths of
MHAs and DAs to find the GMPP. For example, Lian et al. [20] proposed a hybrid method,
combining P & O with PSO. Initially, the P & O method is employed to allocate the nearest
local maximum. Then, starting from that point on, the PSO method is employed to search
for GMPP. Nugraha et al. [21] integrated the best aspects of the CSA and the golden section
search (GSS) to leverage advantageous characteristics from both algorithms and use them
as the MPPT control method for extracting the maximum power. Tomar et al. [22] proposed
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a method that combines the crow search algorithm (CSA) and the perturb-and-observe
method to increase tracking efficiency and reduce tracking time. Liao et al. [23] made
enhancements to the BA by incorporating the abandonment mechanism from the CSA
algorithm. The motivation behind this modification was that the original BA may struggle
to locate the GMPP when there are local maximum power points (LMPPs) near the GMPP.
The results of their study indicate that incorporating this modification can improve the
convergence speed by approximately 35% across various PV curves. Abo-Khalil et al. [24]
used SA for maximum power searching and then switched to P & O to attain a more precise
convergence. Koh et al. [25] introduced a modified PSO technique, combined with an adap-
tive local algorithm. The approach utilizes a rank-based selection scheme to identify the
top-performing half of the population, which is then employed in subsequent global and
local search processes. Following that, a local search method is implemented, combining
perturb and observe with an adaptive step size approach, to fine-tune the near-optimal duty
cycle and achieve precise tracking of the GMPP. Nevertheless, a hybrid method is more
complex to implement. Also, the transition criteria from a DA to a MHA and vice versa is
sometimes difficult to define. Hence, another approach is to modify the existing MHAs.
This includes modifying the search operators or the parameter settings, to enhance explo-
ration or exploitation capabilities of MHAs. For example, one can introduce a new operator
to diversify the search process or fine-tune the parameter values to balance exploration
and exploitation. Ishaque et al. [26] proposed an improved MPPT method for the PV
system using a modified PSO algorithm to reduce the steady-state oscillation once the
GMPP is located. Makhloufi et al. [27] presented a logarithmic PSO method for MPPT
to reduce power oscillations during the search process and accelerates the convergence
without search window reduction. Millah [28] improved the performance of the grey wolf
optimization (GWO) by incorporating the pouncing actions and other weighting factors
in the original GWO algorithm. The results demonstrated an enhancement in dynamic
tracking efficiency of over 2% compared to the original GWO. Teshome et al. [29] modified
the FA and used the average of all the brighter fireflies as the representative point so that
the firefly only move toward this point without wandering toward all the brighter flies.
Their method not only drastically decreases the tracking time and reduces the number of
operations per iteration but also saves up to 67% of the tracking time, as compared with
the original FA. Authors of [30] proposed an improved Rat Swarm Optimizer algorithm
by initializing with detecting and skips method and employing an adaptive step size
method for varying load. Overall, improving MHAs is an ongoing research topic for MPPT
that requires a deep understanding of the optimization problem. This paper proposes a
modified GEO for MPPT. The original GEO method does not take into account the fact
that golden eagles engage in stooping behaviour when hunting small animals such as
rodents, rabbits, or birds. Thus, the proposed method incorporates the stooping behaviour,
which completes the true hunting behaviour of the golden eagle. The proposed method has
been validated with experiments under various static and dynamic conditions. It will be
shown that the developed GEO can lower the tracking time up to 42.41% and increase the
dynamic efficiency more than 1.95%, compared to the original GEO. In addition, various
sate-of-the-art methods have also been compared with the proposed method, and it will be
shown that the proposed method also outperform these methods.

The proposed method is an enhanced version of the GEO algorithm. The main
contributions of the paper can be summarized as follows:

1. A new procedure, stooping, is added to the GEO to improve convergence speed in
the late search period. Since a golden eagle may engage in stooping during hunting,
this newly added procedure completes the GEO.

2. On average, the proposed method can reduce tracking time by 42.41% and improve
dynamic tracking accuracy by 1.95%, compared to GEO.

3. The proposed method underwent thorough validation through rigorous experimenta-
tion using a PV emulator. A wide range of complex tests was conducted to simulate
real-world dynamic changes in solar irradiance. The performance of the proposed
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method was then compared to several state-of-the-art techniques. The results indicate
the superiority of the proposed method, outperforming these techniques in both
MPPT accuracy and tracking time.

The remaining sections of this paper are structured as follows. Section 2 describes GEO
and details the development of the proposed method presented in this paper. Section 3
illustrates the results of the experiments. Finally, Section 4 concludes this paper.

2. Golden Eagle Optimization
2.1. Overview

The golden eagle, a member of the Accipitridae family, is one of the largest eagles in
the world and can be found throughout the northern hemisphere, from Eurasia to North
America. The golden eagle possesses remarkable hunting abilities, including exceptional
eyesight, high-speed flight, and good hunting instinct, enabling it to capture prey of various
sizes ranging from small rodents to medium-sized animals such as groundhogs or rabbits.
In some instances, it even collaborates with other golden eagles to capture larger prey such
as wolves or deer, which increases hunting efficiency and safety. The behavior of a golden
eagle is unique and can be seen in Figure 1. It involves a spiral trajectory and two forces,
which are the propensity to attack and the propensity to cruise.

Cruise

Attack

PreyPrey

Figure 1. Habit behavior of golden eagles.

In GEO, we assume that golden eagles cooperate in hunting. While hunting, golden
eagles start spiral trajectory behaviour, from exploration mode (low-attack and high-cruise
propensities) to exploitation mode (high-attack and low-cruise propensities) smoothly. Each
golden eagle starts its hunting behaviour by flying at high altitudes within its realm in large
circles and beginning to search for the best prey. Once the prey is spotted, the golden eagle
starts moving in a circle route where the prey is in the center and starts spiral trajectories
of the exploration mode. If a golden eagle and other golden eagles do not spot another
better prey, it will regard the current spotted prey as the best prey, sending the location
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of the best prey to other golden eagles and switch hunting behaviour to the exploitation
mode, continuing their spiral trajectory behaviour until reaching the location of the best
prey to attack. If one golden eagle finds out that there is a prey better than the previous one
during the reasonable searching time, it will abandon its previous choice and start to spot
the new best prey, sending the location of the new best prey to other golden eagles. They
will continue their spiral trajectories until the location of the new best prey is reached.

2.2. Mathematical Model

According to [31], the hunting behaviour of the golden eagle can be divided into two
forces: attack and cruise. The GEO algorithm of the following equations are combined with
these two elements to update the position of golden eagles.

2.2.1. Attack (Exploitation)

The attack force can be seen as a vector that expresses the eagerness to attack. This
vector originates from the current position of the golden eagle and terminates at the location
of the most desirable prey. It is possible to compute the attack vector for each golden eagle
using the following equation:

~Ai = ~X f − ~Xi, (1)

where ~Ai is an attack vector, ~X f represents the current global best prey’s location among all
golden eagles’ hunting memory and ~Xi means the current position of each golden eagle i.

2.2.2. Cruise (Exploration)

The cruise force can be regard as a vector with cruise propensity. This vector is a
tangent vector to the circle and perpendicular to the attack vector. The cruise vector for
each golden eagle i can be stated as:

~Ci = [c1 = random, c2 = random, ..., cn = random] (2)

where random is a random non-integral value between zero and one. The component of
cruise vector is composed of random values.

2.2.3. Transition from Exploration to Exploitation

As mentioned before, in the initial stages, golden eagles show spiral trajectory be-
haviours in the exploration mode (low-attack and high-cruise propensity) for searching
for the best prey and smoothly shift to the exploitation mode (high-attack and low-cruise
propensity) to attack the best prey in the final stages. To verify the tendency of exploration
and exploitation modes, we need to find out the characteristics of attack and cruise propen-
sities. The propensity to attack and propensity to cruise can be calculated via (3) and (4):

pa = p0
a +

t
T
| pT

a − p0
a | (3)

pc = p0
c −

t
T
| pT

c − p0
c | (4)

where pa represents the propensity to attack and pc represents the propensity to cruise,
t indicates current iteration times, and T indicates maximum iteration times. pT

a and p0
a

represent the parameters for attack propensity. pT
c and p0

c represent the parameters for
cruise propensity.

As shown in Figure 2, as iteration increases, the propensity to attack (pa) is more
intense while the propensity to cruise (pc) is more inactive.

The propensity to attack, pa and propensity to cruise, pc can affect the convergence
process. This can be seen in Figure 3. If we set initial values of pc to be 60 and pa to be
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30, the convergence rate is better than the case when initial values of pc to be 80 and pa to
be 40.

Iteration

P
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en

si
ty

 t
o

 a
tt
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ck

 /
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is

e

T0

Exploration Exploitation

pc0

pa0

pcT

paT

Exploration Exploitation Stooping

GEO 

Method:

Proposed 

Method:

Figure 2. pa and pc over the course of iterations in GEO.
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Figure 3. Initial values of pa and pc (a) p0

a = 30 and p0
c = 60; (b) p0

a = 40 and p0
c = 80.

2.2.4. Moving to New Positions

The incremental position of golden eagle i,4xi involves attack vector ~Ai, cruise vector
~Ci, propensity to attack pa and propensity to cruise pc. The calculation of4xi is as follows:

4xi = ~r1 pa
~Ai

|| ~Ai ||
+ ~r2 pc

~Ci

|| ~Ci ||
(5)

where || ~Ai || and || ~Ci || are the Euclidean norm of the attack and cruise vectors, as stated
in (6). ~r1 and ~r2 are random vectors whose elements are non-integer and lie in the interval
[0, 1].

|| ~Ai || =

√√√√ n

∑
j=1

a2
j , || ~Ci || =

√√√√ n

∑
j=1

c2
j (6)

Hence, the position of golden eagle i in the next iteration, xt+1
i can be calculated as

xt+1
i = xt

i +4xt
i (7)
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where xt
i means the position of golden eagle i in the current iteration.

If one of the golden eagles finds out that there is a new prey better than the current
global best prey, ~X f will be replaced by the new location of the new prey (the new global
best prey) and the algorithms will restart the renew process for the next iteration. If a
golden eagle finds out that the current global best prey is still the best, ~X f will remain to
be the current global best prey and the algorithms will restart the renewal process for the
next iteration.

2.3. Proposed Stooping Behaviour

“Stooping” refers to a hunting technique where an eagle will dive down toward its
prey with incredible speed and force, as shown in Figure 4. This is often used to catch
smaller animals like rodents or fish. To mathematically model stooping, we proposed to
use (8).

xt+1
i = ~X f ± d, (8)

where d is a random number generated in the interval [0, α]. Note that (8) is similar to the
concept of the random walk in BA. The local search of the BA allows the bat to exploit the
local search space to correct the best solution.

We proposed to switch to the stooping mode when one of the two conditions are
satisfied.

1. An eagle is approximately close to the prey.
2. A certain iteration number is reached.

Since the prey (i.e., the GMPP) will not be known until the reaching condition is
satisfied, the position of the prey can be approximated by the global best of the eagles.
For the second condition, we divided the iteration process into exploration, exploitation,
and stooping modes. As in the original GEO, the breakpoint between exploration and
exploitation of the proposed method is when pc and pa intersects. Nevertheless, we
proposed that transition from exploitation to stooping modes occurs when the area under
pc curve before the breakpoint is equal to the area above pc after the breakpoint, as shown
in Figure 2.

Figure 4. Stooping behavior of golden eagle.
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2.4. Benchmark Functions Test

The proposed algorithm is tested on the benchmark functions as proposed in [32].
These benchmark functions are commonly used to test the performance of a MHA. They
are minimization functions and can be divided into three groups: unimodal (F1–F7), multi-
modal (F8–F16), fixed-dimension multimodal (F14–F23). The statistical results (average and
standard deviation) are reported in Table 1. The proposed method outperforms or ties with
the golden eagle optimization (GEO) in 18 functions out of 23. Also, the proposed method
performed exceptionally well on multimodal and fixed-dimension multimodal functions.

Table 1. Optimization results obtained by GEO and the proposed method on the 23 benchmark
functions. (X: proposed method outperforms GEO; M: proposed method ties with GEO).

GEO Proposed Method

Mean Std Mean Std

F1X 9.24× 10−34 4.89× 10−33 0 0
F2 7.94× 10−94 3.05× 10−93 1.32× 10−83 4.09× 10−83

F3 1.35× 10−125 3.58× 10−125 4.33× 10−112 9.41× 10−112

F4 M −1.00 0 −1.00 0
F5 −4.89 4.78× 10−3 −4.87 1.14× 10−2

F6 1.78× 10−11 1.03× 10−11 5.70× 10−11 2.44× 10−11

F7 4.92× 10−14 1.76× 10−14 6.81× 10−14 2.19× 10−14

F8 M −1.00 0 −1.00 0
F9 M −9.60× 102 0 −9.60× 102 0
F10 M 0 0 0 0
F11 M 1.35× 10−31 0 1.35× 10−31 0
F12X 6.90× 10−1 6.81× 10−1 4.32× 10−6 1.59× 10−6

F13X 1.09× 10−2 9.75× 10−3 5.35× 10−6 2.32× 10−6

F14X 2.51× 10−1 5.13× 10−2 1.74× 10−1 2.40× 10−2

F15X −8.93 3.87× 10−1 −9.51 1.04× 10−1

F16X 3.81× 10−2 5.66× 10−2 2.16× 10−7 2.20× 10−7

F17X 1.06× 10−2 3.35× 10−3 3.58× 10−8 3.01× 10−8

F18X 2.68 2.61× 10−1 1.57 2.74× 10−1

F19X 1.16 2.20 1.05× 10−1 5.70× 10−2

F20X 1.23× 101 3.15 6.60 1.30
F21X 4.00 7.71 1.02× 10−1 5.38× 10−2

F22X 4.20× 10−1 4.00× 10−2 2.97× 10−1 1.80× 10−2

F23X 3.66× 10−20 3.60× 10−20 6.04× 10−21 2.40× 10−21

3. Experimental Setup and Test Result

For the experiment, we carry out one static case and three dynamic cases. The static
case means that no continuous P-V curve is changing and there are four different static P-V
curves to be tested, as shown in Figure 5. The first dynamic case means that algorithms of
MPPT are tested with a sequence of continuously changing P-V curves. The second dynamic
case means algorithms of MPPT are tested with a reversed sequence of continuous P-V
curves. The third dynamic case means algorithms of MPPT are tested with continuous P-V
curves whose GMPPs are largely different. During the GMPP tracking experiment, a group
of five eagles was employed. It was noticed that increasing the number of eagles had the
potential to improve accuracy; however, it also resulted in longer search times and higher
computational demands. After conducting several offline simulations, it was determined
that utilizing five eagles achieved a favorable balance between tracking efficiency and time.
The initial values for these five search agents were set at 90%, 75%, 60%, 45%, and 30% of
the open circuit voltage. To ensure a fair comparison, all algorithms were applied with the
same initial conditions for both static and dynamic scenarios.
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Figure 5. P-V curves for (a) scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario 4.

3.1. Experimental Setup

The experimental configuration consists of a programmable P-V emulator, a digital
signal processor, an interleaved DC-DC boost converter, and a DC power supply, as shown
in Figure 6.

The programmable P-V emulator (AMETEK ETS600X8C-PVF) can simulate various
PV panel models for all circumstances, including PSCs. The MPPT control algorithm is im-
plemented in the digital signal processor from Texas Instruments (TMS320F28035). The in-
terleaved DC-DC boost converter comprises two pairs of inductors, diodes, and power
switches and is more efficient than traditional DC-DC boost converters, with low input
current and low output voltage ripple. Additionally, it can reduce element requirements,
the electromagnetic interference, and boost transient response.

It is to be noted that the interleaved boost converter employed in this paper is to reduce
current ripples. Thus, the two branches shown in Figure 7 are switched in a complementary
fashion. The proposed enhanced GEO method is employed to track the GMPP. This is
different from the approach used in [33,34] where the authors proposed to use interleaved
converters to remedy the partial shading effects by extracting the summation of individual
maximum power available from each PV array breaches. In fact, different duty cycles are
provided for each branch of the interleaved converter where a separate MPP tracker is used
for each PV array to track its unique MPP.
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Figure 6. PV system experimental setup.
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Figure 7. PV system schematic.

Table 2 is the characteristic and specifications of the solar module that the PV emulator
mimics and Table 3 lists the hardware information of the experimental setup shown in
Figure 7.

Table 2. Electrical parameters of ecoSolargy ECO300A156M-72 solar panel.

Solar module ecoSolargy ECO300A156M-72
Pmax 300 W

No. of cells, Ncells 72
Voc 45.73 V
Isc 8.71 A

Vmp 37.12 V
Imp 8.09 A
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Table 3. Component data and operation range of the interleaved boost converter.

Vpv 0–224 V Diode D1 DSEI30-06A
Vdc 0–450 V Diode D2 DSEI30-06A
Ipv 0–2.8 A L1 2 mH
Idc 0–1.43 A L2 2 mH

MOSFET T1 17N80C3 Cpv 120 µF
MOSFET T2 17N80C3 Cdc 470 µF

Switching frequency 100 kHz Sampling frequency 100 kHz
Load, Rdc 350 Ω Load power 600 W

3.2. Results of Static Cases

Figure 8a shows the tracking profile of the voltage and power of GEO for scenario 1.
As shown in the figure, it takes a total of 12 iterations to reach the GMPP, leading to 6 s of
tracking time, and the accuracy is 97.45%. On the other hand, Figure 8b shows that it only
takes 8 iterations for the proposed method to reach the GMPP, leading to 3.9 s of tracking
time, and the accuracy is 98.68%. The tracking profiles of PSO, GWO, and BA shown in
Figure 8c–e, indicate that their efficiencies are smaller than the proposed method, and the
tracking times are larger than that of the proposed method.

Figure 9a shows the tracking profiles of the power and voltage of GEO for scenario 2.
As indicated in the figure, the tracking time and accuracy are 6 s and 98.09%, respectively.
On the other hand, the tracking time and accuracy of the proposed method are 2.6 s and
99.18%, respectively, as shown in Figure 9b, demonstrating a much shorter tracking time
and better accuracy, as compared to those of GEO. Figure 9c–e show the tracking profiles
of PSO, GWO, and BA for scenario 2. As these figures indicate, the tracking times for
PSO, GWO, and BA are 6 s, 4.4 s, and 6 s, respectively, which are much longer than that
of the proposed method. Also, the tracking accuracies of PSO, GWO, and BA are 98.7%,
98.06%, and 98.93%, respectively, which are also lower than that of the proposed method.
The tracking profiles of various algorithms for scenarios 3 and 4 are in general similar to
those of scenarios 1 and 2.
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Figure 8. Voltage and power waveforms for scenario 1: (a) GEO; (b) the proposed method; (c) PSO;
(d) GWO; (e) BA.
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Figure 9. Voltage and power waveforms for scenario 2: (a) GEO; (b) the proposed method; (c) PSO;
(d) GWO; (e) BA.
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As shown in Table 4, on average, the proposed algorithm performs with the highest
accuracy, followed by GEO, PSO, GWO, and BA. Their accuracies are 98.64%, 98.41%,
98.01%, 97.82%, and 97.73%, respectively. For the MPPT tracking times, as shown in Table 4,
on average, the proposed method performs with the shortest MPPT tracking time, followed
by PSO, GWO, GEO, and BA. Their tracking times are 3.3 s, 4.05 s, 5.73 s, 5.5 s, and 5.99 s,
respectively. In other words, the proposed method spent on average only 57.59% of the
tracking time, of the GEO. Compared to PSO, the proposed method spends only 81.48% of
PSO’s tracking time.

Table 4. Static case result.

Method GEO Proposed PSO GWO BA

Scenario 1 accuracy 98.4%± 0.05 98.85%± 0.205 98.16%± 0.059 98.37%± 0.043 97.87%± 0.088
time 5.56± 0.7 (s) 3.31± 0.342 (s) 3.23± 0.485 (s) 5.49± 0.064 (s) 5.98± 0.073 (s)

Scenario 2 accuracy 98.82%± 0.081 99.05%± 0.383 98.12%± 0.063 98.16%± 0.02 97.89%± 0.041
time 5.96± 0.01 (s) 3.12± 0.29 (s) 3.95± 0.129 (s) 5.49± 0.045 (s) 5.98± 0.104 (s)

Scenario 3 accuracy 99.18%± 0.379 98.63%± 0.1 98.14%± 0.078 97.09%± 0.09 97.87%± 0.045
time 5.43± 0.487 (s) 3.29± 0.227 (s) 3.93± 0.423 (s) 5.49± 0.037 (s) 5.99± 0.149 (s)

Scenario 4 accuracy 97.24%± 0.267 98.03%± 0.132 97.63%± 0.029 97.68%± 0.086 97.3%± 0.032
time 5.97± 0.005 (s) 3.49± 0.69 (s) 5.082± 0.361 (s) 5.51± 0.029 (s) 6.01± 0.126 (s)

Average accuracy 98.41% 98.64% 98.01% 97.82% 97.73%
time 5.73 (s) 3.3 (s) 4.05 (s) 5.5 (s) 5.99 (s)

3.3. Dynamic Case Result

A total of seven P-V curves are generated to test the algorithms’ capabilities for
continuous dynamic tracking. Figure 10 displays the sequence of the P-V curves.

Based on [35], there are two ways of re-initialization for a maximum power tracker.
The first method depends on dispersing the particles at a certain predefined time in order to
look for the new GMPP of a new partial shading condition. The second one is to continually
monitor any changes in partial shading conditions to disperse the particles to follow the
new GMPP. We have actually adapted the second method.
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Figure 10. P-V curves for the dynamic cases.

Note that the non-uniform P-V curve is not covered by the European test standard
EN50530 [36], which is only applicable to the uniform P-V curve. Tracking non-uniform
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P-V curves takes more time. However, the irradiance change rate, defined by the EN50530
European test standard are too quick to notice. We use 12 s as the change time to give each
algorithm enough time to adequately settle before testing how well they perform under
non-uniform P-V curve conditions.

According to [36], the following equation can be used to determine the effectiveness
of dynamic tracking:

ηd =
∑i Vpv,i · Ipv,i · ∆Ti

∑j GMPth,j · ∆Tj
× 100% , (9)

where ∆Ti is the time in which the Vpv,i and Ipv,i are sampled and ∆Tj is the period in which
the GMPth,j is delivered.

To detect the variance in P-V curves of GMPPs [29], an extra condition is needed,
as mentioned in (10).

|Ppv − Ppv,last|
Ppv,last

≥ ∆Ppv, (10)

where Ppv,last is the previously found GMPP and ∆Ppv is set to 6%. After Ppv,last is found,
the setup will restart to track the new GMPP if the condition is detected.

Note that if the difference in power is less than the tolerance value, then the new
GMPP will probably be missed. However, such a problem would also impose difficulty for
most of the existing MPPT method and is beyond the scope of this paper.

3.3.1. Dynamic Case 1

Figure 11a–e are voltage and power waveforms of the GEO, proposed method, PSO,
GWO, and BA, respectively. From Figure 11a–e, all of the algorithms can track the GMPPs
from curve 1 to curve 7 successfully. However, the dynamic tracking accuracy can be quite
different. As shown in Table 5, the proposed algorithm performs with the highest dynamic
tracking accuracy, followed by GEO, PSO, GWO, and BA, which are 96.79%, 94.82%, 94.62%,
92.93%, and 91.97%, respectively. The proposed method performs the best in terms of
tracking the maximum point in each sequence and achieves a high level of accuracy in
attaining the GMPP.
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Figure 11. Voltage and power waveforms for dynamic case 1: (a) GEO; (b) the proposed method;
(c) PSO; (d) GWO; (e) BA.

3.3.2. Dynamic Case 2

This case also includes seven P-V curves, which are identical to the curves used in the
first dynamic case. However, the sequence in which the curves evolve is reversed. The P-V
profiles displayed in Figure 10 are difficult to track and are useful for testing MPPT control
algorithms since all profiles undergo gradual changes. The change of P-V curves is also
detected by (10), as mentioned before.

Figure 12a–e are voltage and power waveforms of the GEO, proposed method, PSO,
GWO, and BA, respectively. As shown in Table 5, the proposed algorithm performs with
the highest dynamic tracking accuracy, followed by GEO, PSO, GWO, and BA, which are
98.13%, 96%, 94.39%, 93.09%, and 92.47%, respectively. The proposed algorithm also outper-
forms the other algorithms in the reverse tracking case because it has the shortest tracking
time and attains the GMPP with high accuracy, resulting in the best dynamic accuracy.
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Figure 12. Voltage and power waveforms for dynamic case 2: (a) GEO; (b) the proposed method;
(c) PSO; (d) GWO; (e) BA.

3.3.3. Dynamic Case 3

Compared to the first and second dynamic cases, this case consists of a very sharp
power change. The starting power level is 453.38 W, the halfway power level is 283.63 W
and the ending power level is back to 453.38 W. The evolving sequence of the curves is also
illustrated in Figure 10, and the change of P-V curves is also detected in (10).

Figure 13a–e are voltage and power waveforms of the GEO, proposed method, PSO,
GWO, and BA, respectively. As shown in Table 5, the proposed algorithm performs with
the highest dynamic tracking accuracy, followed by GEO, GWO, PSO, and BA, which are
95.01%, 93.24%, 93.23%, 92.93%, and 92.75%, respectively.
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Figure 13. Voltage and power waveforms for dynamic case 3: (a) GEO; (b) the proposed method;
(c) PSO; (d) GWO; (e) BA.

As shown in Table 5, on average, the proposed algorithm performs with the highest
dynamic tracking accuracy, followed by GEO, PSO, GWO, and BA, which are 96.64%,
94.69%, 93.98%, 93.08%, and 92.4%, respectively. In other words, the dynamic tracking
accuracy on average can be enhanced by 1.95%, as compared to the original GEO. And the
dynamic tracking accuracy on average can be enhanced by 2.66%, as compared to PSO.
Also, on average, an improvement of 3.56% and 4.24% in dynamic tracking accuracy can be
achieved by the proposed method, as compared to GWO and BA, respectively.

Table 5. Results of dynamic cases.

Algorithm GEO Proposed PSO GWO BA

Case 1 94.82% 96.79% 94.62% 92.93% 91.97%
Case 2 96% 98.13% 94.39% 93.09% 92.47%
Case 3 93.24% 95.01% 92.93% 93.23% 92.75%

Average 94.69% 96.64% 93.98% 93.08% 92.4%

Furthermore, the findings of Section 3.2 indicate that the proposed method generally
outperforms algorithms such as PSO, GWO, and BA due to the reasons outlined below:

1. Better exploration and exploitation: The proposed method inherited from GEO can
effectively explore the solution space by employing the cruise behaviour while also
exploiting promising areas by attacking and stooping.

2. Dynamic parameter adaptation: GEO includes mechanisms for dynamically adapting
its control parameters during the optimization process. This adaptability helps the
algorithm adjust its behaviour according to the problem’s characteristics or changing
conditions, leading to potentially improved convergence and robustness.

3. Powerful exploitation phase: The stooping behaviour of eagles is known for its
efficiency in capturing prey. Similarly, The proposed method employs stooping
behaviour in the promising regions by focusing its search on those areas, which
can result in faster convergence and better exploitation of the best solutions in the
optimization process.

4. Conclusions

This study has proposed a GEO-based approach with stooping behaviour, for maxi-
mum power point tracking. The performance of proposed method is compared with those
of the GEO, PSO, GWO, and BA in terms of tracking accuracy and tracking time, and the
results of the static experiment show that the proposed algorithm can achieve high accuracy
while significantly reducing the tracking time. When compared with the GEO algorithm,
the proposed method can save on average, 42.41% of the tracking time. In comparison with
PSO, the proposed method can save an average of 18.52% of the tracking time. Further-
more, in various dynamic cases, the proposed algorithm can enhance the dynamic tracking
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accuracy by 1.95%, 2.66%, 3.56%, and 4.24% as compared to the GEO, PSO, GWO, and BA,
respectively.
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