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Abstract: The emission reduction of global greenhouse gases is one of the key steps towards sustain-
able development. Demand response utilizes the resources of the demand side as an alternative of
power supply which is very important for the power network balance, and the virtual power plant
(VPP) could overcome barriers to participate in the electricity market. In this paper, the optimal
scheduling of a VPP with a flexibility margin considering demand response and uncertainties is
proposed. Compared with a conventional power plant, the cost models of VPPs considering the
impact of uncertainty and the operation constraints considering demand response and flexibility
margin characteristics are constructed. The orderly charging and discharging strategy for electric
vehicles considering user demands and interests is introduced in the demand response. The research
results show that the method can reduce the charging cost for users participating in reverse power
supply using a VPP. The optimizing strategy could prevent overload, complete load transfer, and
realize peak shifting and valley filling, solving the problems of the new peak caused by disorderly
power utilization.

Keywords: virtual power plant (VPP); flexibility margin; demand response; uncertainties; integrated
energy system; renewable energy

1. Introduction

With the increasing energy crisis and pollution problems, new technologies such as
the smart grid, energy internet, energy hub, integrated energy system (IES), and virtual
power plant (VPP) have been introduced to realize the multi-energy coordinated supply
and cascade utilization of energy [1,2]. Meanwhile, a high proportion of wind power and
photovoltaic power generation are connected to the power grid, resulting in a large increase
in flexibility demands [3]. The traditional scheduling strategy relies on the improvement
of a rotating reserve capacity to ensure the stable operation of a power system which is
unable to cope with the rapidity of net load changes. Therefore, demand responses and
flexibility loads have gradually become one of the research hotspots of current power
system optimization scheduling. Moreover, the concept of a virtual power plant was
proposed to integrate different energy resources such as distributed generations, energy
storage systems, and flexibility loads to provide system support services [4,5].

A VPP benefits from the electricity market or dynamic pricing to shift energy de-
mand [6–8]. A VPP always focuses on economic benefits and the optimization of VPP
operation is closely related to it. Many researchers have conducted a lot of research on
it and have also achieved many excellent results. The scheduling optimization of VPPs
usually aims to minimize operating costs and maximize operating benefits. Moreover, a
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lot of papers focus on multiple objectives such as cost, benefits, and power grid stability
through methods such as the fuzzy multi-objective method [9]. The currently used optimal
algorithms include the linear optimization algorithm [10], mixed integer linear program-
ming algorithm [11,12], hierarchical optimization algorithm [13], differential evolution
algorithm [14], adaptive heuristic algorithm [15,16], and robust optimization algorithm [17].
Li et al. analyzed the feasibility of VPPs by means of local renewable energy plant construc-
tion and the updating of high-efficiency appliances located at electricity customers [18].
Some scholars use the data envelopment analysis method to consider the comprehensive
efficiency of the candidate units for economy, environmental protection, stability, and
reliability, and they select the units to build a VPP according to the results [19]. Sousa et al.
proposed a simulated annealing approach to address energy resource management from
the point of view of a VPP, and the results showed that a VPP can purchase additional
energy from a set of external suppliers [20].

The VPPs aggregate a lot of equipment which include wind power, photovoltaic power
(PV), electric boilers, air conditioners, electric vehicles, flexibility loads, and so on [21–23].
Moreover, the uncertainties of renewable energy output, energy demand, and market
price bring a huge challenge to the optimal scheduling of VPPs [24,25]. The uncertainty of
renewable energy output mainly includes wind and photovoltaic power. The uncertainty
of wind power output is mainly due to the randomness of wind speed, and the uncertainty
of photovoltaic power output is mainly due to solar radiation. Moreover, the weather can
affect renewable energy output, especially on a rainy day. Energy demands are uncertainty
in VPP optimization problems which derive from prediction and measurement errors.
The uncertainties of market price include electricity price, natural gas price, and heating
price which have very strong fluctuations. A lot of optimization approaches considering
uncertainty have been studied by different scholars. These include the Monte Carlo
simulation [26,27], robust optimization [28], rolling horizon, stochastic dominance [29],
fuzzy chance constraint programming constraints [30], and point estimation methods [31].
Some scholars focused on the fluctuation problem of VPP output. Hooshmand et al. [32]
introduced the user side of power stations in a virtual power plant and built a double-layer
model to increase revenues and to provide backup service to the energy system.

Previous research has already studied the optimization of VPP operation and achieved
a lot of results. However, some studies only considered the uncertainty of wind power
and PV, and the method could only handle the constraint conditions without stochastic
variables. In this paper, a flexibility margin considering demand response and uncertainties
is analyzed with a stochastic chance constrained planning method. Moreover, the demand
response of electric vehicles and traditional loads are optimized to guide customers’ power
consumption behavior.

This paper is structured as follows: Section 2 describes an overview of the VPP’s
structure, which includes the model formulation, constraint conditions, and objective
function. Section 3 describes the flexibility margin considering demand response. Section 4
gives an example to analyze the VPP. Section 5 concludes this research study by describing
challenges and future work.

2. VPP Structure

As shown in Figure 1, the VPP consists of a distributed photovoltaic system, combined
heat and power system, gas-fired boiler, absorption refrigeration unit, refrigeration unit,
electric boiler, electric vehicle, cooling storage, electric storage, thermal storage, electrical
load, cooling load, heating load, electricity market, and so on. The VPP operator is obligated
to satisfy the demands of consumers by purchasing energy from the electricity market. In
the electricity market, the VPP operator allows consumers to participate in the market to
alleviate supply pressure, inducing load reductions by incentivizing consumers. Moreover,
the VPP serves as a backup that shifts loads from peak to off-peak periods.
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2.1. Model Formulation of the VPP
2.1.1. Distributed Photovoltaic System

The power output of the distributed photovoltaic system is greatly affected by environ-
mental factors. The power output is determined by light intensity and ambient temperature
in an ideal situation which is shown as follows:

PPV = fpvPPVR
G
GS

[1 + αPV(T − TS)] (1)

where PPV represents the power output of the photovoltaic power system, MW. fpv and
PPVR represent the reduction coefficient and rated power output in the standard state.
G and GS represent the illumination intensity of the current position and the standard
state. αPV is the power temperature reduction coefficient in the standard state. T and Ts
represent the temperature on the surface of the photovoltaic panel and the temperature of
the photovoltaic surface in the standard state.

2.1.2. Combined Heat and Power System

The combined heat and power (CHP) system generates electricity and heating energy
by burning natural gas. Collecting the heating energy could improve the energy utilization
rate of the gas turbine field in the CHP. Moreover, the output of heating and power energy
are proportional to the consumption of natural gas. The calculation formulas are as follows:

PEGT = ηEFGT (2)

PHGT = ηH FGT (3)

ηE + ηH + ηloss = 1 (4)

where PEGT and PHGT are the electric power output and thermal power output by the CHP,
MW. ηE, ηH , ηloss indicate the electric efficiency, thermal efficiency, and heat loss rate of the
CHP, respectively. FGT represents the energy of gas combustion.
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2.1.3. Gas-Fired Boiler

The gas-fired boiler consumes natural gas to produce thermal power which meets
thermal balance. The thermal output of the gas boiler is proportional to the natural gas
consumption, which is as follows:

PGB = ηGBFGB (5)

where PGB is the thermal output power of the gas boiler. ηGB indicates the gas utilization
efficiency of the gas boiler. FGB is the consumption of natural gas.

2.1.4. Refrigeration Unit

The electric refrigeration unit could supply cooling to the consumer, and the output of
the refrigerator is proportional to the input electric power which is as follows:

PCEC = ηECPEC (6)

where PEC is the cooling output of the electric refrigeration unit. ηEC indicates the utilization
efficiency of the electric refrigeration unit.

The absorption refrigeration unit utilizes the working medium to release cooling. The
cooling output is directly proportional to the input thermal power and electric power,
which are as follows:

PHRC = ηRCPRC (7)

where PHRC and PRC are the cooling output and heating input of the absorption refrigeration
unit. ηRC is the refrigeration efficiency.

2.1.4.1. Energy Storage Unit

The VPP includes electric, heating, and cooling storage units, which meet the loads’
demands. The energy storage unit has the function of balancing peaks and valleys which
could improve the coefficient of energy utilization. The mathematical models are as follows:

EES(t) = (1− ηES)EES(t− 1) + (PESCηESC − PESD/ηESD)∆t (8)

αESC + αESD ≤ 1 (9)

0 ≤ PESC ≤ αESCPESC max (10)

0 ≤ PESD ≤ αESDPESD max (11)

EES min ≤ EES(t) ≤ EES max (12)

where EES(t) and EES(t− 1) represent the electric energy stored by the electric energy
storage unit at time t and time t − 1. PESC and PESD are the charging power and discharge
power. ηES, ηESC, ηESD are the self-discharge ratio, charging efficiency, and discharge
efficiency, respectively. PESC max and PESD max are the rated charging power and the rated
discharge power, respectively. EES min and EES max are the lower and upper climbing limits.

Moreover, Heating exchanges of thermal storage unit are as follows:

QTS(t) = (1− ηTS)QTS(t− 1) + (PTSCηTSC − PTSD/ηTSD)∆t (13)

αTSC + αTSD ≤ 1 (14)

0 ≤ PTSC ≤ αTSCPTSC max (15)

0 ≤ PTSD ≤ αTSDPTSD max (16)

QTS min ≤ QTS(t) ≤ QTS max (17)
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where QTS(t) and QTS(t− 1) represent the thermal stored by thermal storage unit at time t
and time t − 1. QTS(t) and QTS(t− 1) are the charging heating and discharge heating at
time t and time t − 1. ηTS, ηTSC, ηTSD are the self-discharge ratio, charging efficiency and
discharge efficiency, respectively. PTSC max and PTSD max are the rated charging thermal
and the rated discharge thermal, respectively. EES min and EES max are the lower and upper
climbing limits.

2.2. Objective Function

The VPP was modelled using the mixed integer linear programming (MILP) method in
LINGO software. The objective of the optimization was to maximize the VPP profit, which
consists of the incomes of participating power and gas markets, benefits from demand
sides, carbon emission fees, and unbalanced penalties. Therefore, the objective function is
defined as follows:

maxCm=
T

∑
t=1

cd(t)Pd(t)−
T

∑
t=1

Fcarbon(t)ηcarbon +
T

∑
t=1

cl(t)Pl(t)−

T

∑
t=1

Feco(t)Pc,a(t)−cco(t)
T

∑
t=1

PTS(t)− Cb

(18)

where cd(t) is the prices in the electricity market. ηcarbon is the fee of carbon emissions,
yuan/t CO2. cl(t) is the price for VPP’s users. Cco(t) is the fee of energy storage loss and
Cb is the unbalanced penalty cost.

The operating cost is the sum of the purchased energy cost and equipment maintenance
cost which are showed as follows:

Feco = Cop + Cen (19)

where Feco is the operation cost. Cop is the maintenance cost. Cen is the purchased energy
cost which is shown as follows:

Cop = ∑T
t=1 [λ WT PWT(t) + λPV PPV(t)+λGT PGT(t) + λGBPGB(t)+

λECPEC(t) + λRCPRC(t) + λESPES(t) + λTSPTS(t)]∆t
(20)

Cen = δgas∑T
t=1[FGT(t) + FGB(t) ]∆t + δel∑T

t=1 Pgrid(t)∆t (21)

where PX(t) represents the average power output of X. λX represents the cost coefficient
of operation and maintenance. δgas and δel are the prices of natural gas and electricity,
respectively. FGT(t), FGB(t), Pgrid(t) indicate the average combustion ratio of natural gas in
CHP, the average combustion ratio of natural gas in the gas boiler, and the average input of
the power grid, respectively.

The carbon emissions of a VPP could be calculated using the following equation:

Fcarbon = ∑T
t=1 {λ gas[FGB

(t) + FGT(t)]+λel Pgrid(t)}∆t (22)

where Fcarbon represents the carbon emissions of the VPP, t CO2. λgas, λel are the carbon
emission coefficients of natural gas and the power grid, t CO2/MW.

2.3. Constraint Conditions

In order to make the energy network safe and stable, the variables in the energy
network need to meet certain constraints in the VPP. The energy conservation constraints
include

Pgrid + PWT + PPV + PEGT = PE + PEC + PESC(−PESD) (23)

PHGT + PGB = PH + PRC + PTSC(−PTSD) (24)
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ηECPEC + ηRCPRC = PC (25)

where Pgrid is the power supply of the power gird. PE, PH , PC are the electric load, thermal
load, and cooling load.

All equipment operates between the maximum output and the minimum output to
ensure long-term safe operation in VPP. The constraints include

0 ≤ PGT ≤ PGT max (26)

0 ≤ PGB ≤ PGB max (27)

0 ≤ PCEC ≤ PCEC max (28)

0 ≤ PHRC ≤ PHRC max (29)

0 ≤ Pgrid ≤ Pgrid max (30)

0 ≤ FGB + FGT ≤ Fmax (31)

where PGT max, PGB max, PCEC max, PHRC max are the maximum output of the CHP, gas boiler,
and refrigeration unit. Pgrid max and Fmax represent the maximum electric power supplied
by the power grid and the maximum ratio of natural gas supplied by the natural gas
pipeline.

The energy storage unit constraints include electric, heating, and cooling storage
balance constraints which are as follows:

EES(t) = (1− ηES)EES(t− 1) + (PESCηESC − PESD/ηESD)∆t (32)

αESC + αESD ≤ 1 (33)

0 ≤ PESC ≤ αESCPESC max (34)

0 ≤ PESD ≤ αESDPESD max (35)

EES min ≤ EES(t) ≤ EES max (36)

QTS(t) = (1− ηTS)QTS(t− 1) + (PTSCηTSC − PTSD/ηTSD)∆t (37)

αTSC + αTSD ≤ 1 (38)

0 ≤ PTSC ≤ αTSCPTSC max (39)

0 ≤ PTSD ≤ αTSDPTSD max (40)

QTS min ≤ QTS(t) ≤ QTS max (41)

where αESC, αESDαTSC, αTSD are binary parameters (0–1) which could constrain the energy
storage unit so that it could not charge and discharge simultaneously.

3. Flexibility Margin Considering Demand Response

Terminal customers are a strong uncertainty, and the load could be divided into the
interruptible, adjustable, and sensitive loads [15,33,34]. We have divided the load demand
into certainty and uncertainty loads. The certainty load means the invariable load which
must be supplied, and the uncertainty loads are variable loads in the flexibility margin.
According to the theory of uncertainty, the electricity price is described by the probability
distribution. The output of renewable energy is analyzed by weather prediction.
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3.1. Flexibility Margin

The flexibility of the VPP refers to the degree of balance between the supply and
demand of energy. The difference between the power load and the output of photovoltaic
power is described as the net load. We can describe the VPP flexibility requirement as being
calculated by

Ft = Pnetload,t+1 − Pnetload,t (42)

Pnetload,t = Pload,t − PPV,t (43)

Ft
up = {Ft| Ft > 0}

Ft
down = {Ft| Ft < 0} (44)

where PPV,t is the actual output of photovoltaic power generation at time t. Ft
up, Ft

down

are the upward and downward flexibility requirements at time t. Pnetload,t, Pload,t are the
power load and net load at time t. Pnetload,t+1 is the net load at time t + 1. Moreover, the
prediction error of the photovoltaic system output satisfied the normal distribution, which
is described as ∆PPV,t ∼ N(0, σPV,t).

3.2. Flexibility Indicators

The flexibility margin is described as the difference between flexible supply and
demand. The direction includes up and down.{

Fru_up = Fup
gong,t − Fup

t
Fru_down = Fdown

gong,t − Fdown
t

(45)

where Fru_up, Fru_down are the upward and downward flexibility margins, respectively.

4. Example Analysis

There is a community which has the data showing electricity load, cooling load,
heating load, light radiation, and temperature in Beijing. The time scale is one hour. The
charging price of electric vehicles refers to the charging standard of Beijing electric vehicles.
The valley periods are 23:00–7:00, the usual periods are 8:00–10:00, 16:00–18:00, and 22:00,
and the peak periods are 11:00–15:00 and 19:00–21:00, which are shown in Table 1. The
electricity price of users is shown in Table 2. The valley periods are 23:00–6:00, 7:00–9:00,
12:00–18:00, 10:00–11:00–11:00, and 19:00–22:00, and the selling price of energy storage
equipment to the grid is set at 0.45 yuan/kWh, which is higher than the electricity price of
both valleys and lower than the usual price of both.

Table 1. Charging price of the electric vehicles.

Times Prices (yuan/kWh)

valley period 0.3946
usual period 0.685
peak period 1.0044

Table 2. Purchase electricity price of users.

Times Prices (yuan/kWh)

valley period 0.284
usual period 0.52
peak period 0.89

Moreover, the carbon emission of the CHP unit is 0.798 t/(MWh), and the carbon
trading price is 52.78 yuan/t. The peak power load of the user is 150 kW, the peak cooling
load is 201 kW, the peak heating load is 672 kW, and the PV installation capacity is within
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the range of 0.5~2 times of the power capacity. Considering the charging demand of
electric vehicles, the installed capacity of the battery is 4000 Ah, the installed capacity of
air conditioning is 220 kW, the installed capacity of ice storage equipment is 500 kWh, the
installed capacity of the electric boiler is 70 kW, and the installed capacity of heat storage
tank equipment is 120 kWh. The cost parameters of the energy unit are shown in Table 3.

Table 3. The cost parameters of the energy unit.

Technical Equipment Installation Cost
yuan/kW

Running Costs
yuan/kWh

Efficiency
Period (Year)

Electrical Efficiency Heating Efficiency

Internal combustion engine 5000 0.072 0.4 0.45 30
Photovoltaic system 7500 0.01 0.12 0 25

Energy storage system 4000 0.0022 0.81 15

In our model, the prices of different energies are shown in Figure 2. The gas price
and photovoltaic feed-in tariff do not change with time. However, the electricity prices
in different voltages change at different times. Moreover, the charging load of the electric
vehicle benchmark is shown in Figure 3. It changes with a normal distribution.
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The typical daily operation is shown in the following figure which is the power balance
in the traditional model without a VPP. At the low price, the charging station buys electricity
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from the power grid, and the CHP system starts and stops twice a day. The photovoltaic
output is small in the morning and evening, and at noon, when the photovoltaic output
is large, the renewable energy is fully used. There are no power exchanges with the
power grid.

The photovoltaic system outputs energy during the day. At the peak time, buying
electricity from the grid is not economical. Therefore, it integrates photovoltaic systems into
the charging stations, showing a good economy. The gas internal combustion engine in the
CHP system is easy to start and stop, which could increase the power safety and stability
of charging stations. According to the gas price and the safety and stability requirements of
the charging station, it has more benefits with the appropriate gas generator sets. According
to the above analysis, the mode of grid-connected and non-connected VPPs is adopted. For
the charging station, a 10 MW photovoltaic system, 2 MW CHP unit, and 1 MW energy
storage system are arranged to calculate the gas price. The price of the gas is 2 yuan/m3,
and the charging cost of the electric vehicle is 1.4 yuan/kWh. The operation strategy is
shown in traditional model in Figure 4. As shown in Figure 5, the energy storage station
saves energy during the low electricity price at night and discharges during the daytime
peak. In the case of the photovoltaic system, when the energy supply of the energy system
is higher than the load demand, the energy storage increases the efficient operation of the
energy system.
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According to the above, the VPP is modelled in Section 2. The typical daily operation
situation is shown in Figure 6. Since all the power comes from the photovoltaic, CHP, and
energy storage systems, the selected installed capacity must meet the real-time demand
of the charging load. The equipment capacities are set relatively high, and the overall
investment cost of the system is high. From the perspective of operation, the transmission
power exceeds the demand in the low load period. The high output of renewable energy is
greater than the load demand at noon. The energy storage system mainly stores renewable
energy and releases electricity during the load peak period in the evening.
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Figures 4–6 are the different scenarios of the traditional model, VPP model, and the
VPP model with an electric vehicle. In Figure 4, there are no power exchanges with the
power grid. The power exchanges with the power grid are shown in Figures 5 and 6.
Moreover, the huge power exchanges are shown in Figure 6 which illustrates more profits
for the VPP operator.

The orderly charging and discharging strategy are adopted in the VPP shown in
Figure 7. The power interaction by electric vehicle load is changing, and the load distribu-
tion is more reasonable. Peak load filling is carried out, and no new load peak is generated
which is conducive to keeping the safe operation of the power grid. The transformer has
no overload. In the peak period of electricity consumption, the discharge is conducted by
electric vehicle according to the demand of the users. It not only reduces the load rate of
the transformer but also improves the income of the users.
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Figures 8 and 9 are the benefits of the proposed VPP model. We could give the
conclusion that the charging price is the key point for the electric vehicle, which is the
flexibility resources of the VPP. The CHP system has more income in the night when the
power load is at its peak. Moreover, the flexibility resources based on the flexibility margin
have more benefits all day.
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5. Conclusions

This paper puts forward the orderly charging and discharging strategy of electric
vehicles in a VPP considering the needs and interests of users based on the flexibility margin
in the VPP. The numerical results showed that the proposed VPP optimization method
reduced the operation cost very well. The strategy could prevent overload, complete load
transfer, realize peak shifting and valley filling, and solve the problems of peaks and new
peaks caused by disorderly power utilization. Moreover, the VPP strategy proposed in this
paper changes the multi-objective function into a single-objective function by optimizing
the load model of electric vehicles which could increase the economic efficiency of the VPP.
Finally, the orderly charging and discharging strategy of electric vehicles could reduce the
charging cost for users participating in the peak-regulating auxiliary services market.
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Abbreviations

αPV the power temperature reduction coefficient in the standard state
ηE the electric efficiency CHP
ηEC the utilization efficiency of the electric refrigeration unit
ηES the self-discharge ratio
ηESC the charging efficiency
ηESD the discharge efficiency
ηH the thermal efficiency CHP
ηGB the gas utilization efficiency of the gas boiler
ηloss the heat loss rate of CHP
ηRC the refrigeration efficiency
EES min the lower climbing limits (MW/h)
EES max the upper climbing limits (MW/h)
EES(t) The electric energy stored by the electric energy storage unit at time t (MW)
EES(t− 1) the electric energy stored by the electric energy storage unit at time t − 1 (MW)
fpv the reduction coefficient
FGB the consumption of natural gas (m3)
FGT the energy of gas combustion (MW)
Fru_up the upward flexibility margin (MW)
Fru_udown the downward flexibility margin (MW)
G the illumination intensity of the current position (W/m2)
GS the illumination intensity of the standard state (W/m2)
PC the cooling load (MW)
PE the electric load (MW)
PEC the cooling output of the electric refrigeration unit (MW)
PEGT the electric power output by CHP (MW)
PESC the charging power output (MW)
PESD the discharge power output (MW)
PESC max the rated charging power output (MW)
PESD max the rated discharge power output (MW)
Pgrid the power supply of the power gird (MW)
PGB The thermal output power of the gas boiler (MW)
PH the thermal load (MW)
PHGT the thermal power output by CHP (MW)
PHRC the cooling output of the absorption refrigeration unit (MW)
PPV the power output of the photovoltaic power system (MW)
PPVR the rated power output in the standard state (MW)
PRC the cooling output and heating input of the absorption refrigeration unit (MW)
T the temperature on the surface of the photovoltaic panel (◦C)
Ts the temperature of the photovoltaic surface in the standard state (◦C)
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