
Citation: Guo, M.; Ren, M.; Chen, J.;

Cheng, L.; Yang, Z. Tracking

Photovoltaic Power Output Schedule

of the Energy Storage System Based

on Reinforcement Learning. Energies

2023, 16, 5840. https://doi.org/

10.3390/en16155840

Academic Editor: Peter D. Lund

Received: 15 June 2023

Revised: 23 July 2023

Accepted: 31 July 2023

Published: 7 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Tracking Photovoltaic Power Output Schedule of the Energy
Storage System Based on Reinforcement Learning
Meijun Guo 1, Mifeng Ren 1,*, Junghui Chen 2,*, Lan Cheng 1 and Zhile Yang 3

1 College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
mmmguomeijun@163.com (M.G.); taolan_1983@126.com (L.C.)

2 Department of Chemical Engineering, Chung-Yuan Christian University, Taoyuan 320314, Taiwan
3 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;

zyang07@qub.ac.uk
* Correspondence: renmifeng@126.com (M.R.); jason@wavenet.cycu.edu.tw (J.C.)

Abstract: The inherent randomness, fluctuation, and intermittence of photovoltaic power generation
make it difficult to track the scheduling plan. To improve the ability to track the photovoltaic
plan to a greater extent, a real-time charge and discharge power control method based on deep
reinforcement learning is proposed. Firstly, the photovoltaic and energy storage hybrid system
and the mathematical model of the hybrid system are briefly introduced, and the tracking control
problem is defined. Then, power generation plans on different days are clustered into four scenarios
by the K-means clustering algorithm. The mean, standard deviation, and kurtosis of the power
generation plant are used as the features. Based on the clustered results, the state, action, and reward
required for reinforcement learning are set. In the constraint conditions of various variables, to
increase the accuracy of the hybrid system for tracking the new generation schedule, the proximal
policy optimization (PPO) algorithm is used to optimize the charging/discharging power of the
energy storage system (ESS). Finally, the proposed control method is applied to a photovoltaic power
station. The results of several valid experiments indicate that the average errors of tracking using
the Proportion Integral Differential (PID), model predictive control (MPC) method, and the PPO
algorithm in the same condition are 0.374 MW, 0.609 MW, and 0.104 MW, respectively, and the
computing time is 1.134 s, 2.760 s, and 0.053 s, respectively. The consequence of these indicates
that the proposed deep reinforcement learning-based control strategy is more competitive than the
traditional methods in terms of generalization and computation time.

Keywords: deep reinforcement learning; energy storage system; photovoltaic power output; schedule
tracking control

1. Introduction

China has announced to the world its goal of achieving carbon neutrality by 2060,
which fully reflects the responsibility of a major country and further emphasizes the
important position of ecological civilization construction in the national strategy. The key to
achieving China’s carbon neutrality goal is building a clean, low-carbon, recycling economic
system and a green, carbon-reducing, secure, and highly efficient energy system [1]. To
continuously promote the energy revolution and achieve the carbon peaking and carbon
neutrality goals, the National Energy Administration plans that the country will install
more than twice the current amount of capacity of installed wind and solar power in the
next 10 years [2].

Wind and photovoltaic power generation are characterized by randomness, fluc-
tuation, and intermittence. If wind or photovoltaic power with randomness is directly
connected to the grid, it would bring great instability to the power grid. To solve this
problem, energy storage has been employed in renewable green and clean energy power
stations, and it has been proven to be an effective way of fluctuation smoothing [3], peak
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cutting, and valley filling [4]. In [5], a pumped storage power station was used to establish
an optimization model to overcome the risks associated with excessive power fluctuations
in wind power generation. Ref. [6] equips energy storage systems in energy communities
to sell surplus energy to energy retailers when consumers have excess energy over demand
energy and to buy energy from the storage system when consumers have insufficient
energy. It is important to form a combined wind-power storage system that can effectively
make up for the shortcomings of renewable energy generation for the stability of the power
grid [7].

Currently, some scholars have conducted research on applications of the ESS in track-
ing new energy power generation schemes. In [8], an integrated control approach to internal
energy coordination control and multi-objective optimization control was adopted to realize
the power tracking control of photovoltaic power stations. In [9], a charge/discharge con-
trolling strategy for an ESS with five control parameters was established, and a method of
real-time optimization of control coefficients by the particle swarm optimization algorithm
was proposed to track the power generation schedule. Ref. [10] proposed an optimal control
technique for power flow control of hybrid renewable energy systems, combining the whale
optimization algorithm and the artificial neural network, the simulation results show that
the proposed technique is successfully used to resolve the optimal power flow problem of
the hybrid system In [11], a fuzzy model predictive control for the ESS has been proposed,
and simulation based on the historical operation data of the photovoltaic plant shows that
the proposed control method has flexibility and adaptability. Although those methods can
effectively realize the tracking control problem, they can only be used for a fixed power
generation schedule, which is difficult to dynamically adapt to the random fluctuations of
scenery and achieve online control. For the multi-time scale scheduling problem, the above
methods are easy to fall into the local optimum due to the dimensional disaster.

Reinforcement learning is an adaptive model-free machine learning method, which has
a good ability to extract historical data features and can avoid the problems of uncertainty
modeling and dimensionality disaster [12]. Reinforcement learning has now been applied
to the energy scheduling problem [13,14]. In [15], the q-learning algorithm was used for
minimizing the photovoltaic power generation cost installed in the microgrid, and its results
indicate that q-learning was superior to the rule-based heuristic algorithm. In [16], the deep
reinforcement learning theory was applied to integrated energy distribution. It can respond
dynamically to uncertainties in the environment and achieve the effect of improving the
economy of system operation. In [17], an improved K-means algorithm was used to achieve
energy storage grouping. The multi-agent deep deterministic policy gradient (MADDPG)
algorithm was then used to tackle the grouped multi-agent system. The experiments
showed that the suggested scheduling strategy can suppress the fluctuation impacts in
the wind power output and improve the operational efficiency of the hybrid system. The
application of reinforcement learning reduces costs and minimizes fluctuations in hybrid
storage systems. It provides a good way to track generation plans.

In this paper, a charging and discharging control strategy for an energy storage
system based on the PPO algorithm is proposed. The major contributions of the paper are
as follows:

(1) A charge and discharge power control method for the energy storage system is
proposed based on deep reinforcement learning. It can adapt to different power genera-
tion plans.

(2) The K-means algorithm is used to solve the problem that the control parameters
will be different in different weather conditions.

(3) The charge/discharge power limit of the energy storage system and the residual
capacity limit of the energy storage system are considered.

This paper proposes an effective scheduling scheme based on reinforcement learning.
The whole scheme will be detailed in the following sections. First, the mathematical model,
constraint conditions, and the objective function of the hybrid system are established
in Section 2; then, the state, action, and reward required by the PPO algorithm and the
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optimization process are introduced in Section 3; next, the proposed control method is
applied to a photovoltaic power station in Section 4; finally, the whole paper is summarized
in Section 5.

2. Problem Formulation

The photovoltaic and energy storage hybrid system includes a photovoltaic power
generation system, a control center, and an ESS. The structure of the hybrid system is
described in Figure 1. The photovoltaic power generation station delivers the day-ahead
forecast power to the dispatching center as the power generation plan every day. If the
actual power generation is too distinct from the power generation plan, it needs to be
adjusted through the ESS.
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Figure 1. Photovoltaic and energy storage hybrid system.

In an ideal condition, the power generation of a photovoltaic power station should be
equal to the power generation plan, but in practice, because photovoltaic power generation
is affected by solar radiation and other meteorological factors, so the power generation
of the photovoltaic power station and the power generation plan cannot be equal; there
will always be deviations, which is not conducive to the stability of the power grid. Thus,
it is necessary to connect the energy storage system to regulate the power generation of
photovoltaic power stations. This means that to ensure stable operation of the power grid, a
simple way is to make the hybrid system (the power generation of photovoltaic and energy
storage) and the power generation plan as close as possible. When the power generation
of the photovoltaic power station is smaller than the power generation plan, the energy
storage system discharges to provide the missing power; when the power generation of the
photovoltaic power station is larger than the power generation plan, the energy storage
system charges to absorb the excess power.

The mathematical model of the hybrid system can be established as (1).
Cess(t) = (1− ρ)Cess(t− 1)− ∆Cess(t)

∆Cess(t) =
{

Pess(t)ηc∆t, Pess(t) ≤ 0
Pess(t)∆t/ηd, Pess(t) > 0

Pgrid = Pess(t) + Ppv(t)

, (1)

where Cess(t) is the residual capacity of the ESS at the end of time t, MW·H, Pess(t) is the
charging and discharging power value of the ESS at time t, the charging power is negative
and the discharging power is positive, ρ is the self-discharge rate of the ESS, ηc and ηd are
the charging and discharge efficiency of the ESS, ∆t is the time interval, and Ppv(t) is the
photovoltaic power generation at time t.

To make the ESS run healthily for a long time and save costs, the design of the hybrid
system should satisfy some constraints.
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1. The capacity constraint of the ESS:

SOCmin · Crated ≤ Cess(t) ≤ SOCmax · Crated, (2)

where SOC = Cess(t)
Crated

, SOCmin and SOCmax are the lower and upper limits of the SOC, and
Crated is the rated capacity of the ESS.

2. Charge/discharge power constraint of the ESS:

−Pmax ≤ Pess(t) ≤ Pmax, (3)

where Pmax is the maximum charge/discharge power value, and Pess(t) can take all real
numbers in this range.

To make the residual capacity still satisfy the constraint after charging/discharging,
Pess(t) should satisfy the following requirements:

(a) Charging:

−min(Pmax,
SOCmax · Crated − (1− ρ)Cess(t)

ηc · ∆t
) ≤ Pess(t) ≤ 0. (4)

(b) Discharging:

0 ≤ Pess(t) ≤ min(Pmax,
[(1− ρ)Cess(t)− SOCmin · Crated] · ηd

∆t
). (5)

During the tracking of the generation plan, the target power curve is the planned
output curve (day-ahead forecast of photovoltaic power generation) issued by the dispatch
center. Take the time interval to be 15 min for example. There are 96 time periods in a
day, and each period corresponds to a planned output value. The objective function in
this paper is composed of (1) the deviation between the power generation and the power
generation plan of the hybrid optical storage system, and (2) the deviation between the
residual capacity and the ideal capacity, as shown in (6). The first part of the objective
function describes the economics of energy storage, and the second part describes the
tracking effect of the hybrid system.

J = α
∣∣Cess(t)− Cideal

∣∣+β
∣∣Ppv + Pess − Paim

∣∣, (6)

where Cideal is the ideal capacity of the ESS, Paim is the power generation plan for each time
interval, α and β are the weight coefficients, and α + β = 1.

This work aims to design a charge/discharge power control method for an ESS to
satisfy two requirements simultaneously: (1) The power generation of the hybrid system
follows the power generation plan as closely as possible; (2) The residual capacity of the
ESS is close to the ideal capacity in the condition of satisfying the constraint conditions.

3. Power Generation Control Strategy Based on the PPO Algorithm

The flow chart is shown in Figure 2. First, establish the mathematical model of the
hybrid system, the constraint conditions of each variable, and the optimization objective
function, all of which are defined in Section 2. Use the K-means algorithm to divide
different days into k classes based on mean, standard deviation, and kurtosis; then, set
the state, action, and reward required by the PPO algorithm. Next, the selected action is
constantly optimized according to the PPO algorithm in different scenarios. Finally, the
output power of the hybrid system can follow the power generation plan under the optimal
regulation of the ESS.
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3.1. Scenario Clustering Based on the K-Means Algorithm

As weather conditions vary, the generation power of the photovoltaic power station is
a lot different from day to day, which brings difficulties to the control. Before designing the
control algorithm, it is essential to cluster the scenarios on different days.

Because there is no definite classification for power generation plans of different days,
the clustering algorithm is chosen to cluster different power generation plans, and among
the original many power generation plans similar ones are clustered into one class. The
K-means algorithm is widely used by researchers because of its simple principle and fast
convergence, so it is chosen as the clustering algorithm for power generation plans in
this study.

In this paper, the mean, standard deviation, and kurtosis of the power generation plan
are taken as characteristics to divide the different power generation plans into different
scenarios. All three metrics are used to measure the characteristics of the generation
schedule curve. The mean represents the average of the generation schedule at 96 time
points per day. (The photovoltaic power output is measured every 15 min, so there are
96 photovoltaic power generation data in a day). The standard deviation reflects the degree
of dispersion of the generation schedule. The mean and the standard deviation are the
two most important measures to describe the trend of data concentration and the degree
of dispersion. Kurtosis is used to measure the steepness of the probability distribution of
the generation schedule. The K-means clustering algorithm is a cluster analysis algorithm
with an iterative solution [18]. By calculating the distance between different generation
plan characteristics, similar generation plans are clustered into one scenario. The clustering
process is as follows:

(i) Determine the clustering features: The mean, standard deviation, and kurtosis of the
power generation plan are taken as clustering features.

(ii) Select cluster center: Select k objects from the data as the initial clustering center.
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(iii) Calculate the distances from each set of features to all cluster centers. Among the
calculated distances, each feature that has the minimum distance with the cluster
center would be classified into that cluster.

(iv) The center of each cluster is the average of all the features in the corresponding cluster.
(v) Calculate the clustering cost function.
(vi) Stop the calculation if the cost function is below a certain threshold value or the

improvement over the previous iteration is below a certain tolerance.

After the above steps, different daily power generation plans in the historical data
are divided into k scenarios. Because different scenarios have different control parame-
ters, a reinforcement learning algorithm is adopted to choose a more appropriate charg-
ing/discharging strategy in each scenario.

3.2. Tracking Control Based on Reinforcement Learning

Reinforcement learning is a self-learning mechanism that establishes the mapping
relationship between environmental states and actions by training agents to constantly
interact with the environment [19], as shown in Figure 3.
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Reinforcement learning regards learning as a process of exploration and exploitation.
The agent chooses an option for action based on the environmental information. After
the action is received by the environment, the state changes accordingly and generates
reward or punishment feedback for the agent. The agent chooses action according to
the reinforcement signal (reward) and the observed state in the current environment and
repeats this process until the last state or until the end condition is reached.

During constant interactions with the environment, the agent constantly learns the
optimal control strategy that maximizes the total reward value in the whole process. In
reinforcement learning, policy-based approaches are more applicable for continuous state
and action space problems than value-based approaches.

The PPO algorithm was proposed by Schulman et al. [20]. It is a reinforcement
learning algorithm proposed by OpenAI. It can quickly learn the correct strategy in complex
scenarios and solve the problem of continuous action and continuous state. Among
many reinforcement learning algorithms, the PPO algorithm has the advantages of strong
adaptability and stable training. Since the actual residual capacity of the energy storage
system and the generation schedule are continuous variables, the PPO algorithm applies
to the study of this paper. The PPO algorithm is used to optimize the charging and
discharging power decisions of the energy storage system, so that the power generated
by the photovoltaic power system can follow the power generation schedule as closely as
possible in the regulation of the energy storage system.

As the PPO algorithm is adopted to make sequence decisions, the corresponding state
space, action space, and reward should be set according to the problem to be solved. The
mathematical function of the hybrid system is analyzed in Section 2. The corresponding
state space, action space, and reward function are set as follows.
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(1) State space

The definition of the state space is shown in (7). The residual capacity of the ESS
Cess(t− 1), the ultra-short-term forecast of the photovoltaic power generation Ppv−pre(t)
and the power generation plan Paim(t) (day-ahead forecast of photovoltaic power genera-
tion) is selected as the state space.

s(t) =
{

Cess(t− 1), Ppv−pre(t), Paim(t)
}

. (7)

(2) Action space

The charging/discharging power of the ESS Pess(t) is selected as the action space, as
shown in (8).

a(t) = {Pess(t)}. (8)

(3) Reward function

The reward function in this paper is composed of the objective function. Since re-
inforcement learning aims to maximize the reward, the negative value of the objective
function is taken as the reward function as shown in (9).

r(t) = −α
∣∣Cess(t)− Cideal

∣∣−β
∣∣Ppv(t) + Pess(t)− Paim(t)

∣∣. (9)

Algorithm 1 shows the process of the PPO algorithm. The output power determination
procedure based on the PPO algorithm is shown in Figure 4. In the offline process of
training, the neural network is trained, and after the training is completed, the state is
directly inputted into the trained neural network to complete the online application.

Algorithm 1. PPO algorithm.

Train:

1. Initialize: policy parameter θ, replay buffer
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2. for i = 1 to N do
3. Initialize the environmental information s1.
4. for t = 1 to T do
5. Sample action at according to πθ

6. Calculate the reward rt and observe the next state st+1;
7. Store transitions (st, at, rt, st+1) in
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Figure 4. Control strategy based on the PPO algorithm.

The advantage function (Ât) is used to evaluate the advantage value of taking the
current action in the current state versus taking the average action as shown in Equation (10).

Ât = rt + γrt+1 + γT−t+1rT−1 + γT−tV(sT)−V(st), (10)

where T is the maximum length of a trajectory, γ is a discounted factor, and V(st) denotes
the value expectation of state st.

The parameter update formula of the PPO algorithm is as follows:

θk+1 = argmax
θ

E
s,a∼πθk

[Lt(θ)], (11)

where Lclip(θ) is the objective function.

Lt(θ) = ∑
(st ,at)

min
{

rt(θ)Ât, clip[rt(θ), 1− ε, 1 + ε]Ât
}

, (12)

where ε is the maximum difference between the old and new probability ratios. Ât is the
advantage function; when Ât > 0, if rt(θ) > 1 + ε, the upper limit value is (1 + ε)Ât; when
Ât < 0, if rt(θ) < 1− ε, the lower limit value is (1− ε)Ât.
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4. Simulation Analysis
4.1. Description of Photovoltaic and Energy Storage Hybrid System

All work mentioned in this paper is based on actual historical power data, day-
ahead forecast of the photovoltaic power generation data, and ultra-short-term forecast of
photovoltaic power generation data of a 40 MW photovoltaic energy storage power station
in Belgium from March to May 2019. The daily power forecast data will be used to provide
a strong reference for generation planning for the photovoltaic power station. Considering
the actual needs, the allowable error between the output power of the hybrid system and
the power generation plan is taken as ε = 3%.

The maximum storage capacity of the ESS is 20 MW·H, the maximum charging/discharging
power value is 10 MW, the charging/discharging efficiency is 1; self-discharge rate ρ = 0,
SOCmin = 0.1, SOCmax = 0.9, α = 0.1, β = 0.9, and ∆t = 15 min. The hyper-parameters used
in the PPO algorithm are shown in Table 1.

Table 1. The hyperparameters of PPO algorithm.

Parameter Value

Minibatch size 32
Actor neural network size (3,32,64,128,1)
Critic neural network size (3,16,64,1)

Actor learning rate 2 × 10−5

Critic learning rate 4 × 10−5

Clipping parameter 0.2
Discount factor 0.9

Maximum episode 1500

4.2. Results and Discussions

According to the mean, standard deviation, and kurtosis of the power generation plan,
days from March to May 2019 in Belgium are clustered, and the different days are divided
into four scenarios. The four scenarios from March to May are 26 days, 13 days, 28 days,
and 25 days, respectively. As shown in Figure 5. The four colors represent four types of
scenarios. The generation schedule for one day for each type of scenario is selected and
plotted in Figure 6, and it can be seen that the generation schedules for the four scenarios
are quite different.
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Figure 6. Power generation plans in different 4 scenarios.

In the four scenarios, the process of optimizing the charging/discharging power is
the same. The data collected on multiple days in each scenario is used for training, and
the remaining data in each scenario is used for testing. The testing results in Scenario 1
are shown in Figure 7. The actual photovoltaic power generation fluctuates greatly, and
several periods are outside the range of the power generation plan, deviating from the
power generation plan. After the PPO algorithm optimizes the charge/discharge power,
the power generation of the hybrid system satisfies the power generation requirements.
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It can be seen from Figures 8 and 9 that the proposed method can satisfy all the
constraint conditions of the hybrid system. Figure 10 shows the mean deviation under
the condition of no ESS, the PID algorithm with the ESS, the MPC algorithm with the ESS
and the PPO algorithm with the ESS. Adding the ESS would reduce the deviation, and
the deviation from using the PPO algorithm is smaller than that of using PID and MPC.
The maximum deviation, average deviation, probability of deviation less than 3%, and
execution time in three conditions are shown in Table 2. “Max deviation” and “Mean
deviation” represent the maximum deviation and mean deviation between the hybrid
generation system and the generation plan after the energy storage system has completed
charge/discharge in a day, respectively. “Probability of deviation of less than 3%” represents
the probability that the generation plan deviates from the hybrid system generation between
97% and 103% of the generation plan for 96 time points in a day. “Time” represents the
average control time. The smaller “Max deviation”, “Mean deviation”, and “Time”, the
better; the larger “Probability of deviation of less than 3%”, the better. It shows that the
maximum deviation, average deviation, and computing time using the PPO algorithm
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are smaller than those using PID or MPC, and the Probability of deviation of less than 3%
using the PPO algorithm is larger than that of using the PID and MPC method. It is shown
that the PPO method can successfully make the power generation of the hybrid system
track power generation plans.
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Figure 10. The average errors of tracking for no storage system, and two storage system with PID,
MPC, and PPO.

Table 2. Deviation of day 1 (Scenario 1).

The Evaluation Index

Max Deviation/
MW

Mean Deviation/
MW

Probability of
Deviation of Less than

3%
Time/s

Without an ESS 4.615 0.843 51.04%

PID 1.835 0.374 64.58% 1.134
MPC 4.395 0.609 54.17% 2.760

The proposed PPO-based
control method 0.377 0.104 85.40% 0.053

To check the universality of the proposed method, this paper used data from another
two days in Scenario 1 for comparison experiments (Tables 3 and 4). In addition, the
tracking results under different scenarios are shown in Tables 5–7. The experimental results
show that the proposed method is better than PID and MPC on different days in terms of
generalization and time consumption.

Table 3. Deviation of day 2 (Scenario 1).

The Evaluation Index

Max Deviation/
MW

Mean Deviation/
MW

Probability of
Deviation of Less than

3%
Time/s

Without an ESS 3.040 0.808 47.92%

PID 1.098 0.280 54.16% 1.069
MPC 1.996 0.468 53.13% 1.273

The proposed PPO-based
control method 0.598 0.133 82.29% 0.049
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Table 4. Deviation of day 3 (Scenario 1).

The Evaluation Index

Max Deviation/
MW

Mean Deviation/
MW

Probability of
Deviation of Less than

3%
Time/s

Without an ESS 3.514 0.716 45.83%

PID 1.528 0.314 56.25% 0.341
MPC 1.912 0.419 42.71% 1.357

The proposed PPO-based
control method 0.448 0.106 78.13% 0.055

Table 5. Deviation (Scenario 2).

The Evaluation Index

Max Deviation/
MW

Mean Deviation/
MW

Probability Of
Deviation of Less than

3%
Time/s

Without an ESS 3.005 0.690 50%

PID 1.666 0.498 58.33% 0.331
MPC 2.831 0.591 55.83% 1.389

The proposed PPO-based
control method 0.481 0.131 83.33% 0.047

Table 6. Deviation (Scenario 3).

The Evaluation Index

Max Deviation/
MW

Mean Deviation/
MW

Probability of
Deviation of Less than

3%
Time/s

Without an ESS 5.102 0.571 65.63%

PID 3.237 0.432 66.67% 0.334
MPC 4.112 0.816 54.17% 2.150

The proposed PPO-based
control method 1.109 0.137 84.37% 0.051

Table 7. Deviation (Scenario 4).

The Evaluation Index

Max Deviation/
MW

Mean Deviation/
MW

Probability of
Deviation of Less than

3%
Time/s

Without an ESS 2.873 0.293 60.41%

PID 0.827 0.135 58.33% 0.355
MPC 1.540 0.162 61.46% 2.321

The proposed PPO-based
control method 0.460 0.063 69.79% 0.049

5. Conclusions

This paper presents a scheduling strategy for photovoltaic and energy storage hybrid
systems based on the PPO algorithm. The proposed method can adapt to the uncertainty of
photovoltaic power generation by learning the historical output data of photovoltaic power
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generation and has good generalization. The experimental results show the feasibility and
effectiveness of the control strategy. However, in this paper, only the deviation between the
residual capacity of the energy storage system and the ideal capacity is used to measure
the economics and lifetime of energy storage. The smaller deviation between the residual
capacity of the energy storage system and the ideal capacity means that the charging and
discharging consumption of the energy storage system is smaller and the economy is better.
However, in the actual process, the focus of the economy on the consumption of the energy
storage system including charging and discharging, the operation of the energy storage
system, the construction of the energy storage system, and post-maintenance would be
considered. This aspect will be studied in the future.
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