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Abstract: A novel deterministic method to harvest energy within a broadband frequency (0~25 kHz)
from a mass-in-mass metamaterial is presented herein. Traditional metamaterials are composed of
multiple materials (named as resonators and matrix) with different mechanical properties (e.g., stiffness,
density). In this work, the stiffnesses of matrix materials are altered systematically to allow diversified
property mismatches between the constituent components to introduce local resonance in the unit cell.
While local resonance leverages wave energy passing through the acoustic metamaterials trapped
within the relatively soft matrix as dynamic strain energy, a strategic and deterministic methodology
is investigated to obtain a broadband local resonance frequency. The frequency band can then be
utilized to harvest the trapped energy by embedding a smart material inside the matrix which is
capable of electromechanical transduction (e.g., lead zirconate titanate). This concept has been proved
numerically by harvesting energy at a broadband frequency with a power density of ~10 µW/in2.
Finally, an experimental study is performed to prove the hypothesis proposed in this article.

Keywords: acoustic metamaterial; energy harvesting; smart structure; weakly dispersive mode;
local resonance

1. Introduction

The concept of low-power energy harvesters has been well-researched and trans-
formed into many practical applications over the last decades [1–7]. To extract energy
from the environment, scientists have been employing piezoelectric beams or cantilever-
based geometry. The physics of structural resonance at a certain frequency is utilized by
conventional energy harvesters to extract dynamic strain energy. Recently, researchers
are interested in broadband energy harvesting using linear or non-linear vibration mech-
anisms [8,9]. In this regard, manmade metamaterials are considered as potential energy
harvesting tools.

In recent decades, electromagnetic metamaterials [10–17] have been the subject of
extensive research to make use of their intriguing properties, such as bandgap [18], wave
guiding, one-way energy transmission, and so on. Following the photonic footprint,
elastodynamic metamaterials or phononic crystals [19–23] have been developed and used
to extract numerous useful features in kilo- or Mega-Hertz range applications. Band gap
and local resonance band manipulation in acoustic metamaterials are being exploited for
energy harvesting applications [24,25]. It is well-established that either local resonance
or Bragg scattering cause frequency band gaps in metamaterials. While conventional
high-frequency stop bands can be formed by multiple scattering (Bragg) of the periodic
inclusions [26–31], low-frequency vibrations can be created or manipulated by adding
locally resonant components to the phononic crystals [31–35]. Since the local resonance
bands are the portals for the localized trapping of wave energy, these locally resonant
metastructures enable band gaps at wavelengths much longer than the lattice size, and
this technique is becoming a good choice for efficient energy harvesting [36–40]. Sugino
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et al. [41] proposed a prototype of a locally resonant energy harvesting metastructure
containing several small cantilever beams with tip masses acting as mechanical resonators.
Despite the need for harvesting energy at broadband frequencies, most of the reported
works focus on harvesting energy at a specific frequency.

To overcome these limitations, in this study, a mass-in-mass system (MIMS) is pro-
posed to harvest energy at broadband frequencies [42,43]. MIMS, an acoustic metamaterial
with engineered inclusions, is frequently used as a predictive tool to manipulate band
gaps and local resonances in elastodynamic problems. It is a specific type of acoustic meta-
material design that utilizes nested masses to achieve desired acoustic properties. It is a
structural arrangement where smaller masses are embedded within larger masses, creating
a hierarchical structure that influences the propagation of sound waves and enhances local
resonance characteristics. Usually, a locally resonant medium consists of a heavy core
embedded into a soft matrix. We have hypothesized that the local resonance in matrix
material allows for a weakly dispersive zone (WDZ) with a high density of states which
can be pivoted to harvest energy at broadband frequencies. In many studies, the size
effect and/or volumetric dependency of the local resonators on the respective band gaps
are reported [26,44]; however, the manipulation of matrix properties on frequency bands
has not been studied extensively. Therefore, in this study, the possibilities of manipulat-
ing frequency bands through the alteration of the matrix properties have been explored.
Furthermore, the effect of stiffness of the softer materials in an MIMS is investigated in a
systematic manner to observe its influence on broadband energy harvesting capabilities.

2. Model Configurations and Computational Approach

In this study, a 2-dimensional MIMS is considered to induce local resonance phe-
nomena in the unit cell. These phenomena can trap elastic energy locally which can then
be harvested as usable electric energy. Therefore, the design of the unit should contain
geometric features and material combinations that are sufficient to induce local resonance.
In this respect, a multi-layered MIMS with repetitive mismatch in material properties is
proposed to achieve local resonance at a wider range of frequency. To design a 1 in2 unit
cell, initially, a heavy core (R1) is placed inside a circular ring (R2). A softer material (M1),
say, rubber, is used to seal the space between R1 and R2. A similar MIMS was also proposed
by Huang et al. [43]. However, an elliptical ring (R3) is added at the center of the unit cell
to further enhance the anisotropic property of the system (Figure 1a). Finally, the unit cell
is placed in a 1 × 1 square inch matrix. The material properties and dimensions of the
components in the unit cell are listed in Table 1.

Table 1. Properties of the components of the unit cell.

Component Name Outer Dimensions (Inch) Stiffness
(Pa)

Density
(kg/m3) Poisson’s Ratio

M1 Diameter—0.2121 10 × 106 980 0.49

M2 Major Radius—0.4
Minor Radius—0.2 2.5 × 109 1250 0.38

M3 1 × 1 Square 0.5 × 109 1050 0.49
R1 Diameter—0.1414 13 × 109 11,310 0.435
R2 Diameter—0.2828 100 × 109 2950 0.31

R3 Major Radius—0.435
Minor Radius—0.235 100 × 109 2950 0.31

Since the stiffness mismatch between the mating components in a unit cell is a key
factor to generate local resonance, in this work, the stiffnesses of the matrices (M1–M3)
are varied systematically with an objective to harvest energy at broadband frequencies. In
this process material properties of the resonating components (R1–R3) are kept unchanged
while the stiffness ratios between adjacent components are varied. For better comparison
and comprehension, only one matrix’s stiffness is altered in a single investigation set, while
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the stiffnesses of the other two matrices are unaffected. For example, if the property of
M1 is to be varied, the properties of the other two matrices (M2 and M3) are kept constant.
Similarly, if the property of M2 is to be varied, M1’s and M3’s properties remain constant.

3. Determination of Dispersion Curves

Due to the complexity of the analytical formulation of the unit cell, the Finite Element
Method is adopted for dispersion analysis [45]. By periodically arranging the unit cells,
the entire structure is considered infinite in both the x and y directions. Therefore, at
each of the unit cell’s boundaries, the Bloch–Floquet periodic [30,31] boundary condition
is applied. It can be noted that the Bloch–Floquet periodic boundary condition assumes
infinite repetition of the geometries in the periodic direction. These boundary conditions are
based on the Floquet theory applicable for small-amplitude vibrations of spatially periodic
structures. The theory states that the solution can be sought in the form of a product of
two functions. One follows the periodicity of the structure, while the other follows the
periodicity of the excitation. The problem can be solved on a unit cell of periodicity by
applying the corresponding periodicity conditions to each of the two components in the
product. The generalized wave equation in a composite material can be written as:

Cijkl(xm)[uk,l(xm, t) + ul,k(xm, t)] + fi(xm) = ρ(xm)
..
ui(xm, t) (1)

where the constitutive matrix, Cijkl , containing material properties and the density, ρ, of
the system are the functions of space xm ( m = 1, 2). Let the body force f (xm) be constant.
Assuming no periodicity along the x3 direction and decoupling the phase component, the
displacement solution can be found as follows:

ui(xm, t) = ∑
n2

∑
n1

Ai
n1n2exp(ikmxm)·exp (iGmxm)·exp(ik3x3)· exp(−iωt

)
(2)

where km and Gm are the wave number and the component of the reciprocal lattice vector
along m-th direction, respectively. Here, m takes the values 1 and 2. Gm can be expressed as
Gm = 2πnm/Dm, where Dm is the periodicity of the cells in the m-th direction. The Ai

n1n2
is the amplitude of the wave modes for particle displacement along i, and n1 and n2 are the
integer numbers between −∞ and + ∞. After substituting Equation (2) in Equation (1),
one can obtain the Bloch eigen value problem as:

ω2ρ(xm)∑n2 ∑n1 Ai
n1n2exp

(
i(km + Gm)xm − 1

2 Cijkl(xm)(km + Gm)
2δmj

)[
∑n1 ∑n2 Ak

n1n2exp(i(kl+

Gl)xl)+∑n1 ∑n1 Al
n1n2exp(i(kk + Gk)xk)

]
= 0

(3)

Equation (3) is then multiplied with the Bloch operator with Bloch transformed weight-
ing factor and integrated over the entire domain. After applying periodic boundary condi-
tions, the weak form of the Bloch equation is solved only within the irreducible Brillouin
Zone (BZ) [46]. In the reciprocal space or in k-space, the center of the unit cell is denoted
by the letter Γ, whereas the horizontal edge and the corner points are denoted by X and
M, respectively (Figure 1a). Furthermore, the number of amplitudes in the Equation (3) is
reduced for each wave number (k) point. Thus, the n1 and n2 are reduced from infinity, and
the truncated set of Bloch mode expansions [47] are used in the solution method. Based on
the periodic lattice’s high symmetry points, the appropriate reduced order basis function
is chosen. Next, the Finite Element discretization is performed using triangular elements.
Based on a series of convergence studies, the elements’ sizes are kept to a minimum of
1/10 of the corresponding minimum wavelength occurring in any material type. The Bloch
displacement amplitudes are discretized using an isoparametric shape function (Ni(x))
suitable for the triangular elements for each combination of n1 and n2 in their truncated
series, as follows:

An1n2 = ∑3
i=1Ni(x)Λi (4)
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Applying the discretization equations and periodic boundary conditions, the weak

form of the Bloch equation reduces to an algebraic eigenvalue problem
[
K(k)− ω2M

]∼
V = 0,

where
∼
V is the discrete Bloch amplitude vector, which is periodic within the unit cell. The

K(k) and M are the global stiffness and mass matrices, respectively, obtained by integrating
the element-level matrices. Detailed expressions for K and M can be found in reference [47].
The solutions of the eigen value problem provide the dispersion curves for the proposed pe-
riodic media. In this study, the solutions are determined using the commercial FEM solver
COMSOL Multiphysics, and the results are processed using MATLAB. The dispersion
relation of irreducible BZ is shown in Figure 1b. Note that the wave vector is normalized
by the length of the unit cell ‘a’.
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Figure 1. (a) Unit cell constituents and Brillouin zone, (b) dispersion curve, red rectangle captures
the presence of local resonance frequency, (c) normalized density of states, (d) displacement mode
shape ‘s’, (e) mode ‘p’ indicated in dispersion relation.

4. Density of States

The density of states (DOS) is a measure of a number of eigenmodes available at a
specific frequency. A high DOS at a specific frequency level means that there are multiple
modes available for occupation. The maximum DOS can be obtained where the frequency
band is almost straight in the dispersion curve, which means the group velocity is close
to zero and the wave energy is trapped inside the structure. A high DOS or a straight
band also indicates a localized resonance in the structure. A DOS of zero means that no
modes can be occupied at that frequency level and is termed a stop band. For highly
dispersive unimodal wave motion, the DOS is very small but not zero. For targeting local
resonance and energy harvesting, a high DOS pick is required. The DOS is calculated from
the dispersion relation using Equation (5). In calculating the DOS, the total wave number
(∑ dk) is computed for each frequency (dω = 1 Hz) level.

DOS(ω) =
1
π

dk
dω

(5)

5. Influence of Matrix Stiffness on Local Resonance Bands

A normalized DOS plot for the geometry in Figure 1b is illustrated in Figure 1c. One
almost straight band (marked in Figure 1b) for a wide range of wave vectors is observed,
along with other highly dispersive bands. Many resonance modes are present at that



Energies 2023, 16, 5883 5 of 13

frequency level, which corresponds to a high DOS (marked in Figure 1c). A high DOS
implies the presence of a local resonance band at that frequency where most of the wave
energy is either occupied or stored/trapped inside the components of the system. In other
words, wave energy does not propagate through the structure, but stays at the element,
and the group velocity of the wave is nearly zero. In this model, it is evident that the
straight band originates from the local resonance at the M1 and R1 interface (Figure 1e)
at 5.62 kHz (location ‘p’ in Figure 1b). In highly dispersive modes, the wave energy can
easily propagate through the structure (Figure 1d at 19.12 kHz, location ‘s’ in Figure 1b),
and consequently, the DOS is significantly low.

Matrix-1 (M1) is placed in connection with Resonator-1 (R1) and Resonator-2 (R2)
and assumed to be the softest component (say, rubber) of the cell with an initial stiff-
ness of 10 × 106 Pa. The stiffness ratios between M1 and other matrices are measured as
250 (M2/M1) and 50 (M3/M1). The stiffness ratio between M2 and M3 remained constant
(M2/M3 = 5) during the alteration of M1 stiffness. One local resonance band is observed at
5.62 kHz with such a configuration (Figures 1c and 2c). Recall that this band is generated
due to the local resonance at the M1 and R1 interface (mode shape in Figure 1e). Now,
by reducing the wave speed in M1 by decreasing its stiffness and thereby increasing the
stiffness ratio (M2/M1 = 2000, M3/M1 = 400), the same local resonance band is moved
down to 1.99 kHz (see Figure 2b, bullet ‘g’). Additionally, two new local resonance bands
are introduced at 4.6 kHz (Figure 2b, bullet ‘h’) and at 11.8 kHz (Figure 2b, bullet ‘k’), where
the second band results from the local resonance of both Resonator-1 and Matrix-1 (mode
shape of bullet ‘h’), and the third band is purely from Matrix-1’s resonance (mode shape of
bullet ‘k’).
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Figure 2. Manipulation of DOS (local resonance) by altering stiffness ratios between M1 and other
matrices (M2, M3) of the cell and keeping stiffness ratio between M2 and M3 unchanged (M2/M3 = 5).
(a) M2/M1 = 4000 and M3/M1 = 800; (b) M2/M1 = 2000 and M3/M1 = 400, (c) M2/M1 = 250 and
M3/M1 = 50, (d) M2/M1 = 31.25 and M3/M1 = 6.25, (e) M2/M1 = 15.6 and M3/M1 = 3.12. Bullet ‘g’,
‘h’, and ‘k’ are on local resonance band. Mode shapes of bullet ‘h’ and ‘k’ are shown on (b).

Many dispersive modes are prominent with a very low DOS; however, bands beyond
21.5 kHz are the local resonance bands, and the wave energy is trapped inside the softest
component of the cell (here, Matrix-1). Beyond 21.5 kHz, the wavelength is too small to
excite other components of the structure except for the softest materials. Since the wave
speed is directly proportional to the material’s stiffness and the applied wave frequency, a
further decrease in Matrix-1’s stiffness consequently lowers the corresponding resonance
bands of the structures (Figure 2a). However, with the increase in the matrix’s stiffness,
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the wave speed in the component increases, and the stiffness ratios between M1 and other
matrices is decreased, which results in higher dispersive behavior of the structure. Thus,
with a higher Matrix-1 stiffness, the local resonance band, which is formed due to the local
resonance of Matrix-1, disappears from the investigated frequency region (Figure 2d,e).

Matrix-2 is placed in between Resonator-2 and Resonator-3, and the initial stiffness is
considered as 2.5 × 109 Pa. In altering M2’s stiffness, the stiffness ratio between M3 and M1
remains at 50. Since the resonance band noticed at 5.62 kHz depends on the local resonance
at the R1 and M1 interface, the change in the stiffness of M2 does not contribute any change
on this band (Figure 3(a1)–(e1)). However, a new resonance band is introduced at 20.5 kHz
(Figure 3(a1)) when M2’s stiffness is considered to be 156.25 × 106 Pa, and the stiffness
ratios are reduced to 15.6 (M2/M1) and 0.31 (M2/M3). This new band is mainly formed at
the interface of R2 and M2 (mode shape of bullet ‘n’) due to a decreased wave speed and
a smaller stiffness ratio between Matrix-2 and the softest components (M1) of the cell. A
slight local resonance of Matrix-1 is also evident in this resonance mode since the stiffness
ratio between M2 and M1 is not high enough (~15). It is expected that more resonance
bands can be found beyond 28 kHz for a lower stiffness of Matrix-2.
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Matrix-3 is positioned outside Resonator-3 and acts as the boundary component of the
unit cell. A stiffness ratio M2/M1 = 250 is maintained during the variation in M3’s stiffness.
No change in the resonance band at 5.62 kHz is observed for increased stiffness of Matrix-3
since the band is dependent on the R1 and M1 interface (Figure 3(c2–e2)). However, a small
DOS pick is observed at around 12.9 kHz (bullet ‘u’ in Figure 3(c2)) which increases as the
stiffness of M3 increases. M1 and R1 are the principal vibrating elements at this frequency,
whereas a small vibration amplitude is observed for other components of the cell (mode
shape in Figure 3(c2)). When the stiffness ratio between M3 and M1 becomes higher due
to the increase in M3’s stiffness, the vibration becomes concentrated toward the softest
component (M1) of the cell and allows a high DOS (Figure 3(d2–e2) and their mode shapes).
Alternatively, when the stiffness of Matrix-3 decreases to 62.5 × 106 Pa (Figure 3(b2)) and
31.25 × 106 Pa (Figure 3(a2)), the stiffness ratios between M3 and M1 reduce to only ~6
and ~3, respectively. Due to the very low stiffness ratio, both components act as a single
element and are excited at almost the same frequencies. Hence, slightly dispersive modes
are observed with a higher DOS on those stiffness levels. Despite M3 having the largest
volume fraction compared to the combined components in the unit cell, it can be treated as
the softest element in the structure, which allows for a significant number of low dispersive
modes (Figure 3(a2,b2)).

6. Broad Band Energy Harvesting

To illustrate the broad-band resonances and the energy harvesting at these frequen-
cies, the dispersion relation and corresponding DOS study are used as a predictive tool.
As demonstrated earlier, by manipulating the matrix stiffnesses of a unit cell, the local
resonance can be generated within a frequency range. Based on the displacement mode
shapes, it is evident that the induced local resonances can arrest acoustic energy. The
harvesting of such energy at local resonance frequencies has already been demonstrated
in [48,49]. Therefore, in this study, a numerical analysis is performed to harvest energy
within these broadband frequencies. Since, in all cases, the innermost matrix M1 undergoes
local resonances in unique ways to arrest dynamic wave energies, it is logical to embed
an energy conversion material into this matrix. Researchers have been utilizing various
kinds of energy-harvesting materials for this purpose [50,51]. As proof of the possibility
to harvest energy from a broadband frequency as hypothesized, a rectangular piezoelec-
tric material (PZT-5H) is placed into the unit cell (Figure 4a) in M1. Using the geometric
configurations and material properties detailed in Figures 2a and 3(a1,a2), a parametric
frequency domain study is performed using COMSOL Multiphysics. The resulting power
densities are calculated for a unit external displacement (1 mm) excitation. The results are
shown in Figures 4 and 5, where the power densities and the corresponding DOS across a
frequency range of 0~25 kHz are reported. In Figure 4b,c, the power densities have higher
values (~10 µW/in2) when the DOS have maximum normalized value (i.e., 1). It can be
noted that at some higher values of the DOS (i.e., ~2 kHz), there is no power output, which
is due to the orientation of the PZT. A different amount of power can be harvested by
manipulating the orientation and the number of PZTs, which is not in the scope of the
current study. Using the present orientation of the PZT, it is evident in Figure 4b that the
power densities are consistently higher (10–12 kHz and 15–25 kHz), where the DOS have
higher normalized magnitudes. In other words, since a higher DOS at a specific frequency
corresponds to the generation of local resonance, the energy trapped into the structure
is being extracted by PZT at that frequency. As the number of higher-order DOS can be
increased by manipulating the matrix stiffness and thereby a continually higher-order DOS
can be generated in a broadband frequency range, it is possible to harvest energy from this
broadband frequency range. This claim is also illustrated in Figure 5a,b. Therefore, usable
and consistent harvesting of acoustic energy at a range of frequencies can be achieved using
the proposed design methodology.
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7. Experimental Investigation

To validate the hypothesis (increased energy output at higher DOS) presented above,
an experimental study is performed. While setting up the experimental study, a simpler
version of the unit cell model is considered as the fabrication of the actual simulated model
would be complex and time consuming for the current state of research. The simplified
model is presented in Figure 6i, which consists of a lead core embedded in a rubber matrix.
The diameters of the lead core and the rubber matrix are ~0.5 in and ~1 in. An aluminum
frame houses the matrix–core combination and makes the cell a ~1.44 in X ~1.44 in X ~0.55
in prism. The Young’s modulus of the lead, rubber matrix, and aluminum are considered
to be ~13.5 GPa, ~0.98 MPa, and 68.9 GPa.
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Initially, a numerical study is performed to identify the presence of DOS peaks. For
simplicity, the analysis is performed for a frequency range of 0 to 1 kHz. In this frequency
range, four local resonance modes have been identified, and the resulting DOS peaks are
presented in Figure 6ii. These four mode shapes are sequentially named as ‘P’, ‘Q’, R’,
and ‘S’. Based on the mode shapes, an appropriate PZT orientation is necessary to harvest
energy from various modes. As an example, the tentative PZT orientation to harvest energy
in modes P and Q are presented in Figure 6iii.

For experimental demonstration, mode Q is selected to harvest energy, as this position
is demonstrated in Figure 4a. Hence, a PZT disc is placed in the matrix material as shown
in Figure 6iii. The experimental setup is described in Figure 7a. In both experimental
and numerical studies, the unit cell is excited with a controlled displacement amplitude
for a frequency range of 0–1 kHz. During experimental setup, a vibration exciter from B
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and K (type 4809) is utilized to induce harmonic displacement excitations. The resulting
power density is shown in Figure 7b. It has been noticed that a power output peak can
be found at about ~0.41 kHz from the experimental study. The numerical result supports
the experimental outcome strongly with a power peak at about ~0.42 kHz. Because of
instrumentation imperfections and real-life considerations, the experimental profile holds a
Gaussian distribution compared to the numerical outcome. In Figure 6ii, it can be observed
that a DOS peak is available at ~0.42 kHz corresponding to local resonance mode Q. Hence,
it can be concluded that a power output peak can be obtained corresponding to a DOS
peak.
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In Figure 7b, it can be noticed that the power density peak is only observed at
~0.41 kHz even though three additional DOS peaks are available in Figure 6ii. This is
because the initial vibration modes are distinct or in-principle (e.g., translation or rotation)
modes. Hence, the placement and/or orientation of the PZT material is crucial for harvest-
ing energy from individual modes. With the increase in frequency, the vibration modes
become a mix of translation and rotation. Thus, significant power output can be observed,
if not the maximum, in those mixed modes irrespective of the PZT positioning/orientation.

8. Conclusions

In this work, a deterministic approach to develop a broadband energy harvesting
system by inducing local resonance phenomena in an MIMS over a range of frequencies is
reported. In this regard, the stiffnesses of the matrix materials are altered systematically to
generate locally resonant bands within a frequency range. In the weakly dispersive locally
resonant zone, where the frequency band is almost straight, the wave energy becomes
trapped/stored in the components of the unit cell with a low transmission coefficient for
a wide band of frequencies. This zone can be treated as a stop band. As the straight
frequency band is attributed to the DOS, an increased number of DOS signals the presence
of this stop band where the trapped energy can be harvested by embedding an energy
conversion device (e.g., a piezoelectric wafer). In this study, a frequency domain analysis
between 0~25 kHz shows that almost ~10 µW/in2 power can be harvested from the WDZ
by manipulating the constituent matrix stiffness of the proposed unit cell. An experimental
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study is performed by considering locally available materials and simple geometry of
the unit cell. While the experimental results show a relationship between the DOS and
harvested power density, a good agreement has been established between the numerical
and experimental results.
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