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Abstract: Waste disposal remains a challenge due to land availability, and environmental and health
issues related to the main disposal method, landfilling. Combining computer vision (machine
learning) and robotics to sort waste is a cost-effective solution for landfilling activities limitation. The
objective of this study was to combine transfer and ensemble learning to process collected waste
images and classify landfill waste into nine classes. Pretrained CNN models (Inception–ResNet-v2,
EfficientNetb3, and DenseNet201) were used as base models to develop the ensemble network,
and three other single CNN models (Models 1, 2, and 3). The single network performances were
compared to the ensemble model. The waste dataset, initially grouped in two classes, was obtained
from Kaggle, and reorganized into nine classes. Classes with a low number of data were improved
by downloading additional images from Google search. The Ensemble Model showed the highest
prediction precision (90%) compared to the precision of Models 1, 2, and 3, 86%, 87%, and 88%,
respectively. All models had difficulties predicting overlapping classes, such as glass and plastics,
and wood and paper/cardboard. The environmental costs for the Ensemble network, and Models 2
and 3, approximately 15 g CO2 equivalent per training, were lower than the 19.23 g CO2 equivalent
per training for Model 1.

Keywords: CNN; deep learning; ensemble learning; Inception–ResNet; EfficienNet; DenseNet; MSW;
image classification; computational cost

1. Introduction

Waste generation has increased over time along with demography, and soared from
88.1 million tons in 1960 to 292.4 million tons in 2018 [1]. The world waste production
is expected to increase by 70% and reach 3.4 billion tons by 2050 [2]. Landfilling is the
most common waste disposal method used worldwide, especially in the US. However,
the constant increase in waste generation has raised concerns about land availability, and
health and safety of humans, animals, and the environment [3]. The US Environmental
Protection Agency (U.S EPA) provided the following waste management hierarchy: source
reduction and reuse, recycling/composting, energy recovery, treatment, and disposal [1].

Waste recycling is one of the most environmentally friendly waste management pro-
cesses proposed. The process allows material recovery and saves energy by avoiding
new raw material mining (metals) and production (plastics, glass, and papers) [4]. In
addition, recycling reduces landfilling activities and therefore minimizes air and water
pollution [5]. However, waste recycling remains a challenge because of the lack of viable
and cost-effective technologies for the segregation of wet and contaminated waste (waste
with high moisture and food waste) [6]. Waste recycling involves manual and mechanical
sorting. Manual sorting is inefficient and dangerous for workers because of the toxic nature
of waste [6,7]. In addition, the lack of manpower makes the process challenging [6]. Me-
chanical sorting on the other hand processes dry recyclables only and requires presorting by
households or at initial disposal place (trash can). However, the lack of public knowledge
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and awareness on waste recycling practices and improper waste categorization by residents
often lead to inefficient recycling and result in contaminated batches that get routed to
landfills [7,8]. Due to the aforementioned reasons, the recycling efficiency in the US is low
and about half of the US waste is still landfilled. Hence, it is imperative to develop cost
effective technologies that will not rely on household waste separation and be able to sort
waste at landfill or processing sites.

The convolutional neural network (CNN) method, a subbranch of deep learning
specifically for computer vision, has potential use in building a cost-effective waste seg-
regation system for landfill wastes using classification of waste images. The availability
of performant CNN algorithms helps towards developing cost effective and automated
waste sorting systems with visually guided robotic arms for waste segregation. According
to the US Environmental Protection Agency [1], landfill wastes are municipal solid wastes
composed of over nine types of materials: paper and paperboard, glass, metals, plastics,
yard trimmings, food, wood, rubber and leather, textiles, misc. inorganic waste, and others.
These waste classes can be separated and reused (recyclable material) or properly disposed
of via biological (composting and anaerobic digestion of food waste) and thermal process-
ing (gasification and pyrolysis with energy recovery) to avoid landfilling. The main goal of
this study is to develop and fine tune a CNN algorithm to classify landfill waste into nine
marketable material classes (aluminum, carton, e-waste, glass, organic waste, paper and
cardboard, plastics, textiles, and wood).

Several conference papers investigated waste classification using CNNs but very
limited number of peer-reviewed published journals on the same topic exist. A pretrained
CNN (ResNet 18) was used to classify recyclable waste into four classes (plastic, paper,
metals, and glass) in one study that reported an accuracy of 87.8% [4]. Another study
reported an accuracy of 82% in classifying recyclable waste into five classes using another
pretrained model, DenseNet169 [7]. These studies only targeted recyclables and categorized
waste into four and five classes. In this study, the landfill waste will be classified into nine
classes and a combination of CNNs, transfer learning, and ensemble learning will be used.
Moreover, based on the results reported in literature, the accuracy of waste classification
using the CNN can be improved [4,7]. To date, no study has used a combination of
Inception–ResNet, EfficientNet, and DenseNet via transfer and ensemble learning to classify
landfill waste into nine classes. Consequently, the three pretrained CNNs were used as a
base model to develop the ensemble network. This study investigated and compared the
proposed model’s performance to the three other networks (Models 1, 2, and 3) trained on
the same data and conditions as the ensemble model. In addition, the models’ training cost
and environmental burden were investigated.

The rest of the paper is presented in four sections: Section 2 defines the CNN base
models used; Section 3 presents the methodology used; Section 4 presents the results and
discussion, and Section 5 presents the summary and conclusions.

2. Pretrained CNN Models Architecture

This study used three pretrained CNNs as base models to build the ensemble network.
These pretrained Convolutional Neural Networks are models that were trained on large
datasets. For example, ImageNet was created by a team of researchers to provide a large
database for object recognition models training [9]. The database is composed of more
than a million images categorized into 1000 classes and has been used in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) every year since 2010. The challenge
has allowed the development of several CNN models such as VGG (Visual Geometry
Group) and Inception (previously called GoogleNet) [10]. Pretrained CNN models have
shown a potential for image classification. In this study, the pretrained models including
Inception–ResNet-v2, EfficientNetB3, and DenseNet201 were used to develop an ensemble
model for landfill waste classification into nine classes.
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2.1. Inception–ResNet

The Inception–ResNet-v2, introduced by Szegedy, et al. [11], is a hybrid version based
on the architectures of Inception family and residual connection [11]. The author described
the network as costly but significantly performant in terms of recognition [11]. Inception–
ResNet-v2 has a deep structure composed of 164 layers. As shown in Figure 1, the model’s
basic architecture is composed of stem block, five Inception–ResNet-As, a reduction-A, ten
Inception–ResNet-Bs, a reduction-B, five Inception–ResNet-Cs, an average pooling, and
a dropout layer (Figure 1) [11]. The residual connection used in the model is known for
improving the model training speed and reducing network degradation due to its deep
structure [11,12].
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2.2. EfficientNet

EfficientNet was introduced by Tan and Le [13]. The network was reported to be
8.4 times smaller and 6.1 times faster than existing CNNs. Tan and Le [13] applied advanced
scaling to all three dimensions (depth, width, and resolution) of the network using an
effective compound coefficient. Unlike other research that scale up depth, width, or
resolution, the authors uniformly scaled up the three dimensions with a fixed ratio, which
therefore, led to a higher accuracy (Figure 2) [13,14].

2.3. Densely Connected Convolutional Network (DenseNet)

The Densely Connected Convolutional Network (DenseNet) comes from a collabo-
rative work between Cornell and Tsinghua Universities and Facebook AI research [15].
The network was designed to address challenges related to gradient vanishing due to the
increased depth of the CNN models [15]. The authors found that connecting all layers to
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each other guarantees information flow throughout the network. Figure 3 shows the archi-
tecture of DenseNet 201 (201 layers), which is composed of a convolution layer, pooling
layer, dense blocks, and transition layers (convolution and average pooling layers).
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3. Methods

This study proposed a CNN model using transfer and ensemble learning to classify
landfill waste into nine classes: aluminum, carton, e-waste, glass, organic waste, paper and
cardboard, plastics, textiles, and wood.

3.1. Deep Learning Libraries

Open-source platforms and libraries such as Keras, TensorFlow, Numpy, Matplotlib,
Scikit-Learn, and Seaborn were used to train the models, and Google Colab Pro [16] was
used as the training platform. Keras is a deep learning framework and open-source library
capable of running on top of TensorFlow [17]. Keras provides full access to the TensorFlow
platform and can run experiments faster [17]. Tensorflow is an open-source library able to
carry complex numerical computation for machine learning and artificial intelligence [17].
In this study, Tensorflow and Keras were used for data processing (ImageDataGenerator),
CNN architecture (layers, model), model training/optimization (regularizers, optimizers
and callbacks), and evaluation (utils). Numpy is a library for Python used to work with
arrays, matrices, linear algebra, and Fourier transform, etc. In this study, Numpy was
used to transform images into matrices. Matplotlib is a library and an extension of Numpy
used for plotting. The library was used to plot models, training curves, and performance
metrics. The Scikit-Learn library was used to establish the models’ classification reports
(performance metrics) and confusion matrices. Google Colab Pro was used as a training
platform for the CNN models. The platform offers faster GPU (NVIDIA P100 or T4), longer
runtimes, and additional RAM.

3.2. Data Collection and Preprocessing

A waste dataset of 22,500 images was collected from waste classification dataset
on Kaggle [18]. The dataset was preprocessed through image scrapping (repeated and
misclassified image removal) and reorganized into nine groups with a total of 6536 images:
aluminum, carton, e-waste, glass, organic waste, paper and cardboard, plastics, textiles and
wood. Waste classes such as e-waste, carton, textiles, and wood had a low number of images.
Therefore, the aforementioned classes datasets were increased by downloading 1810 images
from Google Search and a recycling waste dataset on Kaggle. Finally, 8346 images were
included in the study. Figure 4 and Table 1 show the dataset samples and repartition per
class of waste, respectively.
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Table 1. Waste dataset collection and repartition per class.

№ Classes Class Items Initial
Database

Added
Database

Total Number
of Images

1 Aluminum Canes, plates, bottles, leads, bottle openers, trash
cans, cooking pots, car parts, and silverware 1019 - 1019

2 Carton Juice, milk, and cigarettes boxes 382 151 533

3 E-waste Batteries, electronics (computer, phones, etc.)
circuit boards, microchips, cables, and chargers - 1029 1029

4 Glass Bottles, jars, containers, cups, decoration, plates,
and pitchers 1089 - 1089

5 Organic waste Fruits, vegetables, meats, fast food, meals, plants,
seeds, cheese, bread, and eggshells 1053 - 1053

6 Paper and
cardboard

Newspapers, magazines, books, shipping boxes,
letters, envelopes, gift and pizza boxes, shredded
paper, flyers, and stickers.

1194 - 1194

7 Plastics
Bottles, containers, cups, plates, food packaging,
bags, silverware, furniture, cases, buckets,
planting pots, and trash bins

1035 - 1035

8 Textiles Clothes, curtains, towels, decorations, sheets,
bags and fabric 346 484 830

9 Wood
Signs, furniture, cases, wood blocks, tiles,
utensils, plates, silverware, wine cork, pellets,
boards, baskets, mashed wood, and containers.

418 146 564

Total 6536 1810 8346

After the dataset was uploaded in the simulation platform, all images in RGB format
were resized to 224 × 224 pixels in resolution for data uniformity. A data augmentation
technique is used to increase dataset size, reduce overfitting, capture more features, and
therefore, increase the CNN models’ performance. In this study, the ImageDataGenerator
function was used for data augmentation techniques such as horizontal flip, shearing (0.2),
zooming (0.2), and dataset repartition (training and validation). The waste dataset was
then divided into training dataset (80%) and validation dataset (20%).

3.3. Ensemble Method

The method proposed in this study is called the ensemble method. The technique
consists of combining feature extraction techniques of three CNN models to improve waste
class prediction using the concatenation function. Transfer learning is known as a suitable
technique to address the lack of data and computing cost. The hypothesis of this study is
that combining several CNN models using transfer learning and ensemble learning will
enhance useful and diverse feature collection and increase waste prediction accuracy, while
reducing misclassification errors (for classes with similar features such as plastics, glasses,
and metals). The pretrained models were trained on the waste dataset and the optimized
weights were used to build the ensemble model.

The ensemble model architecture can be divided into three sections (Figure 5). The
first section (grey in Figure 5) is the image collection and preprocessing step. The second
section (Model 1, 2, and 3) consists of using weights of three pretrained CNNs through
transfer learning to classify the waste dataset into nine classes. Models 1, 2, and 3 were built
using Inception–ResNet, EfficientNetb3, and DenseNet201 as base models, respectively.
An input layer was created for each model to define the image shape. The models’ feature
extraction abilities were optimized using layers such as a batch normalization layer, dense
layer, dropout layer, and an additional dense layer (classifier for nine classes). Once the
models were trained on the waste dataset, the updated weights were ensembled through
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concatenation (third section) and trained again (yellow in Figure 5). The networks’ loss
function, also called its objective function, was defined using categorical crossentropy
(multiple classes). The optimizer in charge of the networks’ learning rate was set using
Adamax (0.001 initial learning rate). When CNN models are trained independently, the
concatenation step is challenging and leads to errors because layers have repetitive names
and parameters are not compatible. To resolve the issue, a method was created to allow
Models 1, 2, and 3 to be trained and validated in the same algorithm. The models were
saved and used to build, train, and validate the ensemble model.
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3.4. Experiment Setting

Four CNN models (Model 1: Inception–ResNet-v2 based, Model 2: EfficientNetB3
based, Model 3: DenseNet201 based, and Model 4: the Ensemble Model) were run with the
waste dataset of 8346 images containing nine classes of waste. CNNs. The training was
completed on 80% of the waste dataset and the remaining 20% was used for testing and
validation. The networks were trained in 80 epochs.
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3.5. Performance Measures

The performance of each CNN model was evaluated using accuracy, precision, f-1
score, and recall. Performance metrics were evaluated using prediction indicators, true and
false positives and true and false negatives. A true positive is when a data point belonging
to a positive class is correctly predicted (belongs to positive class). A true negative is
when a data point belonging to a negative class is correctly predicted (belongs to negative
class). Alternatively, a false positive and negative correspond to an incorrect prediction of a
positive and negative class, respectively.

Accuracy is the number of correct predictions made over the total predictions (Equation (1)),

Accuracy (%) =
True positives + True negatives

Total prediction
. (1)

Precision is the ratio of true positives and total positives (Equation (2)),

Precision (%) =
True Positives

(True positives + False positives)
. (2)

Recall or sensitivity is the quotient of true positive and sum of true positive and false
negatives (Equation (3)),

Recall (%) =
True Positives

(True positives + False negatives)
. (3)

F1-score is the harmonic mean of precision and recall (Equation (4)),

F− 1 score (%) =
2× Precision× Recall

Precision + Recall
. (4)

4. Results and Discussion
4.1. Performance Metrics

Figure 6 shows the accuracy, precision, recall, and F1-score of the Ensemble Model
and the three single networks (Models 1, 2, and 3). The Ensemble Model was the most
performant model (accuracy: 90% and precision: 90%) and was followed by Model 3
(accuracy: 88% and precision: 88%). Model 2 (accuracy: 87% and precision: 87%) and
Model 1 (accuracy: 86% and precision: 86%) were the poorest performing models. As shown
in Table 2, the Ensemble Model predicted each waste class did better than Models 1, 2, or
3. The precision accuracy for wood was very low for all models. However, the Ensemble
Model prediction accuracy was higher (71% precision) than those of Models 1, 2, and 3
(69%, 63%, and 70%, respectively). The low precision accuracy for wood is due to the small
data size of the class (Table 1). Another reason for the misclassification of wood as food or
cardboard was due to feature similarities among the classes. The prediction accuracy of
the model proposed in this study was higher than the results reported by Gyawali, Regmi,
Shakya, Gautam and Shrestha [4] (88% accuracy) and Zhang, Yang, Zhang, Bao, Su and
Liu [7] (82% accuracy). These results proved that combining multiple pretrained CNNs as
base model increased feature extractions abilities and led to higher prediction accuracy. The
effect of waste class number on the Ensemble Model’s performance was investigated by
training and testing the model to predict six waste classes. The model showed a prediction
accuracy of 93%, leading to the conclusion that the model’s performance increases as the
number of classes decreases.

4.2. Error Per Class and Model

Wood, textiles, paper/cardboard, and plastics were the waste classes with the highest
prediction errors. The prediction errors were calculated by summing misclassified images
per class and per model. As mentioned above, all models performed poorly in classifying
wood, with precision values of 69, 63, 70, and 71% for Models 1, 2, and 3 and the Ensemble
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Model, respectively. Prediction performances for Models 1 and 2 were low for plastics (82
and 83%, respectively), while Model 3 showed a low precision for paper and cardboard
class (86%). Figure 7 shows the percentage of errors for each model per class. Overall, the
Ensemble Model had the lowest prediction error. However, this model was the second-most
accurate in predicting glass (behind Model 3), textiles (behind Model 1) and wood (behind
Model 3).
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Table 2. Models’ precision per class (%).

Ensemble Model 1 Model 2 Model 3

Aluminum 95 88 94 91
Carton 95 90 91 88
E-waste 93 92 90 92

Glass 93 92 91 92
Organic waste 92 88 90 89

Paper & cardboard 88 87 85 86
Plastics 87 82 83 89
Textiles 95 86 95 92
Wood 71 69 63 70

4.3. Confusion Matrix

The confusion matrices (Figure 8) show the models’ prediction performance on the
test dataset. The horizontal axis represents the predicted values (predicted classes) from
the CNN models and the vertical axis shows the true values (true classes) of the data. The
diagonal line represents accurate predictions. Although the Ensemble Model’s overall
performance was higher than those of Models 1, 2, and 3, the results showed that all models
had difficulties in the classification of waste classes with similar features such as glass
and plastics, paper/cardboard and wood, e-waste and aluminum and wood and organic
waste. Azis, et al. [19] reported that plastics were confused with glass and cardboard.
Susanth, et al. [20] confirmed that glass was misclassified as metal and plastic, metal as
glass, plastic as glass, and metal and paper as trash. Rahman, et al. [21], Mao, et al. [22],
and this study observed similar trends. According to Huang, Lei, Jiao and Zhong [6], the
misclassification errors could be due to several issues such as: 1. plastic and glass bottle
were so similar that the human eye could not detect a difference; 2. a plastic or glass bottle
was covered with a plastic or paper label; and 3. metal was covered with a plastic or paper
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sticker. Wood and textiles were additional classes sorted in this study. Wood was mostly
misclassified as paper and carboard because of feature similarities. Mao, Chen, Wang and
Lin [22] supported that paper and carboard features were extracted based on the edges and
corners. Wood shares similar features.
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This study was a unique case study using three CNN models’ knowledge to classify
landfill waste into nine classes. Limited number of peer reviewed journals in the field have
reported such a comparison. Table 3 shows the comparison between other research findings
(4 conferences and 2 journals), and the results obtained with the ensemble method. The
Ensemble method’s accuracy was higher than the accuracies reported by Miko, et al. [23]
(75%) with Inception v3 and Ruiz, et al. [24] with ResNet (89%). Accuracy reported by
other studies varied between 93 and 95% when models were trained to classify six classes
(Table 3), while this study classified nine waste classes. An evaluation of the Ensemble
Model on six waste classes showed a higher accuracy (93%) than on nine waste classes,
which was among the highest. Wood misclassification led to lower nine-class prediction
accuracy. In addition, the characteristics of the dataset (non-uniform background, different
color light, and non-obvious features) used to train and test the models affected the results.
Overall, the Ensemble Model prediction performance was higher than the pretrained CNNs
investigated in this study. The results of that model proved that the combination of transfer
and ensemble learning reduced the sensitivity of CNNs to small datasets and increased
useful feature extraction.

Trained CNN models are dependent on image datasets that the model was trained on,
as the model’s learning process is based on features extracted from the images. Waste image
prediction is challenging because of image noises such as background, object deformation,
dirt, and presence of several types of waste on an image. To increase the prediction accuracy
of the models presented in this study, images with several backgrounds and deformed
images were included in the dataset. Though these types of noise were included in the
dataset used in this study, other noise types, such as wastes with soil/dirt, were not
included.
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Figure 8. Confusion matrices: (a) Model 1; (b) Model 2; (c) Model 3; (d) Ensemble.

Table 3. Comparative results of different models.

# Method Data Source Data Size Number of
Classes Classes Accuracy (%) References

1 Inception
V3 - 2433 6 Cardboard, glass, paper, plastic,

metal, and organic waste 75 [23]

2 ResNet TrashNet 2527 6 Cardboard, glass, paper, plastic,
metal, and trash 89 [24]

3 Inception-
v3 GitHub 2400 6 Cardboard, glass, paper, plastic,

metal, and others 93 [19]

4 YOLO - 2527 6 Cardboard, glass, paper, plastic,
metal, and organic trash 94 [25]

5 DenseNet169 TrashNet and
Google images 4163 6 Cardboard, glass, paper, plastic,

metal, and trash 95 [20]

6 ResNet-34 GITHUB 2560 6 Cardboard, glass, paper, plastic,
metal, and trash 95 [21]

7 Ensemble Kaggle and
Google images 5559 6 Cardboard, glass, paper, plastic,

aluminum, and organic waste 93 This study

8 Ensemble Kaggle and
Google images 8346 9

Paper and cardboard, glass,
plastic, aluminum, organic

waste, carton, wood, textiles,
and e-waste

90 This study
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4.4. Models Training Cost

Training CNNs requires large computational resources with fast GPUs. Although cost
can vary with time and between vendors, the average value of a Tesla T4 GPU is $1797 [26].
This study trained and tested the ensemble model on a paid subscription of Google Colab
Pro using GPU (Tesla T4). Use of computational resources to train CNNs requires energy
consumption and therefore leads to an environmental cost. Using the method proposed in
Strubell, et al. [27], the carbon footprint of training the CNN models was calculated. The
total power consumption (Pt) of each model shown in (Equation (5)) was calculated using
each model’s training time (t), the 2022 power usage effectiveness factor (1.55) [28], and
the power (Pg) consumed by the Tesla T4 GPU (70 W) [29]. The environmental cost is the
amount of CO2 emitted due to training the CNN models and was calculated using the
factor provided by the US EPA for average CO2 produced per power consumed (0.976 lb.
of CO2 equivalent/kWh) [30]. Table 4 shows the training time, total power consumption
and environmental cost (grams CO2 equivalent) of the Ensemble network and Models 1, 2,
and 3.

Pt = 1.58 tPg (5)

Table 4. CNNs models computational costs.

CNN Models Training Time
(Minutes)

Total Power
(Wh)

Environmental Cost
(g CO2 Equivalent)

Ensemble 19.28 34.87 15.45
Model 1 24.00 43.40 19.23
Model 2 19.57 35.38 15.68
Model 3 18.77 33.94 15.04

According to Table 4, training the Ensemble networks emitted less carbon dioxide
(15.45 g CO2 equivalent) compared to Models 1 (19.23 g CO2 equivalent) and 2 (15.68 g
CO2 equivalent). However, Model 3 showed the lowest carbon footprint (15.04 g CO2
equivalent). The Ensemble Model was built using three networks. However, the Ensemble
Model’s training time, power consumption, and environmental cost are close to, or lower
than the single networks’ computational cost. These results proved that the combination of
transfer and ensemble learning was energy-efficient.

5. Conclusions

The exponential increase in waste generation, shortage of land availability, and envi-
ronmental and health related issues have led to the search for novel waste management
methods to limit landfilling. Waste recycling is one of the most preferred methods for waste
management. However, due to lack of cost-effective sorting technologies, waste segrega-
tion and recycling remain a challenge. Advances in machine learning have the potential
to solve this challenge through development of automated and visually guided robotic
arms to sort wastes. In this study, several models (Models 1, 2, and 3) were developed
with pretrained Inception-ResNet-v2, EfficientNetB3, and DenseNet201 as base models
using transfer learning. An ensemble model was developed using a combination of the
three models via transfer and ensemble learning. The performance metrics showed the
ensemble model was the highest performant of all networks, with a precision of 90%, while
precision ranged from 86% to 88% for Models 1, 2, and 3. The results showed that by
combining transfer and ensemble learning approaches, network performance increased
and increased essential feature extraction despite, the relatively small dataset. Additionally,
the multi-network’s environmental cost (15.45 g CO2 equivalent) was similar to single
networks’ (Models 2 and 3) cost (15.68 and 15.04 g CO2 equivalent, respectively) and lower
than Model 1′s environmental impact (19.23 g CO2 equivalent).
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