
Citation: Santos, V.F.;

Albuquerque, C.; Passos, D.;

Quincozes, S.E.; Mossé, D. Assessing

Machine Learning Techniques for

Intrusion Detection in Cyber-Physical

Systems. Energies 2023, 16, 6058.

https://doi.org/10.3390/en16166058

Academic Editors: Zbigniew

Leonowicz and Michał Jasiński
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Abstract: Cyber-physical systems (CPS) are vital to key infrastructures such as Smart Grids and
water treatment, and are increasingly vulnerable to a broad spectrum of evolving attacks. Whereas
traditional security mechanisms, such as encryption and firewalls, are often inadequate for CPS
architectures, the implementation of Intrusion Detection Systems (IDS) tailored for CPS has become
an essential strategy for securing them. In this context, it is worth noting the difference between
traditional offline Machine Learning (ML) techniques and understanding how they perform under
different IDS applications. To answer these questions, this article presents a novel comparison of
five offline and three online ML algorithms for intrusion detection using seven CPS-specific datasets,
revealing that offline ML is superior when attack signatures are present without time constraints,
while online techniques offer a quicker response to new attacks. The findings provide a pathway for
enhancing CPS security through a balanced and effective combination of ML techniques.

Keywords: cyber-physical systems; intrusion detection systems; offline machine learning; online
machine learning

1. Introduction

Cyber-physical systems (CPSs) integrate sensing, processing, communication, actua-
tion, and control through networks and physical devices [1,2]. CPSs are subject to diverse
attacks that can affect different aspects of human life [3], particularly public infrastructures
such as Smart Grids (SG), water treatment, and pipeline gas. CPSs are typically organized
in three architectural layers: perception, transmission, and application [1]. The perception
layer comprises sensor and actuator devices at the network’s edge, exchanging data with
the application layer through the intermediary transmission layer. Due to their resource
constraints, perception layer devices are the most vulnerable to attacks [4,5].

As an example of CPS vulnerability, one of the most harmful attacks was performed
by the Stuxnet malware that crippled Iran’s Nuclear Program in 2010 [6]; it was designed to
attack the Supervisory Control And Data Acquisition (SCADA) system used to control Ira-
nian uranium enrichment centrifuges. Another example is the 2015 blackEnergy cyberattack
that disrupted Ukraine’s electricity service, impacting approximately 225,000 users.

The primary security mechanisms to protect CPSs devices from external attacks rely on
encryption, firewalls, and antivirus systems. However, these mechanisms cannot avoid all
attacks, especially considering that attackers are constantly evolving their strategies. In this
context, using Intrusion Detection Systems (IDS) is fundamental for detecting malicious
behavior and defending the CPSs from threats. IDSs may employ Machine Learning
(ML) techniques to detect malicious activities by relying on training datasets [7–9].
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However, many studies in the literature still use datasets collected from general internet
protocols [5,10–13]. These datasets are not suitable for intrusion detection in CPSs, as they
have little relationship with the actual existing equipment and lack traffic from typical
CPS protocols.

The traditional offline ML techniques do not have their models frequently updated
when behavior shifts occur. Today, with the increasing emergence of Big Data systems
producing a huge volume of heterogeneous data and the tendency to take data processing
to the network nodes [14], there is a need to classify attacks in real time from a large flow of
data without compromising the hardware resources, such as memory and CPU. Therefore,
traditional offline ML techniques may not be suitable for processing events from large
data streams. On the other hand, the state-of-art techniques that support online learning
processing (online ML) are still not extensively studied. To the best of our knowledge,
no prior work has presented a comparison between offline and online ML techniques for
intrusion detection in CPS scenarios.

This work presents an assessment of popular ML algorithms for IDSs, covering both
online and offline learning techniques under CPS scenarios. Our main contributions are:

• Assessment of five offline and three online ML algorithms for intrusion detection
using traffic from seven datasets related to CPSs;

• Survey of CPSs datasets. The seven most promising datasets are used for the ex-
periments with the ML algorithms, and numerical results are presented for each
of them;

• Evidence, based on accuracy, precision, recall, and F1-score results, that offline ML is
most suitable when attack signatures are available without time constraints;

• Evidence that online techniques present a greater ability to quickly detect new attacks.

The rest of this work is organized as follows. Section 2 explains the background
knowledge needed for this work. Section 3 presents the related work. Section 4 discusses
intrusion detection datasets for CPS. Section 5 describes the methodology used in our
evaluation. Section 6 describes our experiment with online and offline ML. Finally, Section 7
presents our conclusions and future work.

2. Background

In this section, we describe, for the non-expert, the difference between online and
offline ML, as well as briefly describe how they work. We also describe the parameters that
can be used in these techniques, the classifiers considered, and the metrics.

Offline and online ML have different main characteristics, which offer advantages
depending on the application. In offline ML, the model is trained and tested on a fixed
dataset, which must be available ahead of time. Additionally, offline ML typically requires
longer training time as it involves processing the entire dataset ahead of time, which can be
resource-intensive, often requiring substantial computational resources to train and test the
model on large fixed datasets.

One of the disadvantages of offline ML is the lack of ability to detect Concept Drift, a
statistical distribution change in the variables or input attributes over time. In other words,
the relationship between the attributes and the classes may evolve, making the model
trained on old data less accurate or even invalid for making predictions on new data.

On the other hand, online ML creates the model incrementally, updating the model as
new data arrive. It operates with immediate responses able to adapt to evolving patterns
or changes in the process [15] with the use of change detectors. The model is designed
to provide predictions or actions based on the incoming data, facilitating quick decision-
making. So, the online ML technique is used to continuously monitor sensor data, identify
anomalies, predict failures, and make real-time adjustments to optimize the CPS process.
Additionally, it can be more resource-efficient as it learns and trains from streaming data
indefinitely without compromising memory or process [16].
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An online ML architecture is given in Figure 1: the classification process, which is
divided into two stages [15], the loss function, and change detector with the warning or
drift flag:

• Online model construction (learning): each new sample is used to build the model
to determine the class with the attributes and values. This model can be represented
by classification rules, decision trees, or mathematical formulas. To control the amount
of memory used by the model, a forgetting mechanism is used, like a sliding window or
fading factor, that discards samples while keeping an aggregate summary/value of
these older samples;

• Use of the model (classifying): it is the classification or estimation of unknown
samples using the constructed model. In this step, the model’s performance metrics
are also calculated, comparing the known label of the sample y with the classified
result of the model (i.e., the predicted label (ŷ)), for a supervised classification process.

• Loss function: for each input sample attributes (X), the prediction loss can be es-
timated as L(ŷ, y). The performance metrics of this method are obtained from the
cumulative sum of sequential loss over time, that is, the loss function between forecasts
and observed values.

• Change detector: detects concept drift by monitoring the loss estimation. When
change is detected based on a predefined threshold, the warning signal or drift signal
is used to retrain the model [17]. Interestingly, as will be shown below, no concept
drift was detected in any of the datasets used in this article.

Figure 1. Outline of the online ML with prediction loss function and change detector.

The evaluation of classical learning methods that use finite sets of data, such as cross-
validation and training/test techniques, are not appropriate for data streams due to the
unrestricted dataset size and the non-stationary independent samples. Two alternatives are
more usual for data stream [18]:

• Holdout: applies tests and training samples to the classification model at regular time
intervals (configurable by the user);

• Prequential: all samples are tested (prediction) and then used for training (learning).

The most suitable methodology for online ML models dealing with concept drift is
the prequential method [18,19]. It combines the predictive and sequential aspects with
memory window mechanisms, which maintain an aggregated summary of recent samples
while discarding older ones in order to process new samples. This approach is based on the
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notion that statistical inference aims to make sequential probability predictions for future
observations, rather than conveying information about past observations.

In online supervised ML the data-predicting process can be conducted in real time
through the forecast model (Figure 1) to identify anomalies or failures in an industrial
process. The labeling process is provided from CPS sensors after an additional delay.
For example, consider a smart grid system where sensors continuously monitor power
generation and distribution. In the absence of labeled data in real time, data prediction is
crucial to detect anomalies or failures in the grid, thereby alerting operators to potential
issues. By employing the labeling from the sensors after a delay, the system can analyze the
loss and make corrections to the prediction model. The datasets presented in this article
already include their respective classification labels, thereby enabling the use of supervised
approaches for both online and offline algorithms.

The following online data stream classifiers will be used in this article because they
were the most used in the studied references [20,21]:

• Naive Bayes (NB) is a probabilistic classifier, also called simple Bayes classifier or
independent Bayes classifier, capable of predicting and diagnosing problems through
noise-robust probability assumptions;

• Hoeffding Tree (HT) combines the data into a tree while the model is built (learning)
incrementally. Classification can occur at any time;

• Hoeffding Adaptive Tree (HAT) adds two elements to the HT algorithm: change
detector and loss estimator, yielding a new method capable of dealing with concept
change. The main advantage of this method is that it does not need to know the speed
of change in the data stream.

For the offline ML, we selected five popular classifiers from the literature [16]:

• Naive Bayes (NB) is available for both online and offline ML versions, making it
possible to compare them;

• Random Tree (RaT) builds a tree consisting of K randomly chosen attributes at
each node;

• J48 builds a decision tree by recursively partitioning the data based on attribute values,
it quantifies the randomness of the class distribution within a node (also known as
entropy), to define the nodes of the tree;

• REPTree (ReT) consists of a fast decision tree learning algorithm that, similarly to J48,
is also based on entropy;

• Random Forest (RF) combines the prediction of several independent decision trees to
perform classification. Each tree is constructed to process diverse training datasets,
multiple subsets of the original training data. The trees are built by randomly chosen
attributes used to divide the data based on the reduction in entropy. The results of all
trees are aggregated to decide on the final class based on majority or average, across
all trees.

Four traditional ML metrics (overall accuracy (Acc); precision (P); recall (R); and
F1-score) [1] will be used in this article to evaluate the performance of the classification
based on the numbers of true positive (TP), true negative (TN), false positive (FP), and false
negative (FN). Those metrics are defined as follows [16,22]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1Score = 2 × Precision × Recall
Precision + Recall

(4)
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In Equation (4), the formula of F1-score has values between 0 and 1. Therefore, we
chose to show the F1-score in the graphs as a percentage, along other percentage metrics.

3. Related Work

Although intrusion detection techniques are commonly studied in conventional net-
works and communication systems, only a few studies address CPSs, and assess online and
offline ML techniques. Traditional offline ML IDSs have limitations in terms of scalability
to operate on these systems [23], due in part to the limit in monitoring and interpreting
data from multiple sources. Moreover, few studies measure the delay or consumption of
computational resources by the IDS with CPS datasets.

The articles indicated in Table 1 evaluated the online ML with the MOA framework.
Some of those works [20,24] aimed to propose the use of online ML IDS techniques for SG
networks. Nixon et al. [17] made the same proposition, but for Internet of Things (IoT)
equipment. Other works [25,26] only compared different online ML techniques for real-time
classification. Except for [20,27], all methods mentioned above use generic Information
Technology (IT) datasets.

Table 1. Related articles.

Ref. Year Dataset Experiment

[24] 2014 KDD Cup 99
and NSL-KDD

Compare online ML
techniques for SG

[28] 2015 NSL-KDD
Test online ML techniques

for SG IDS

[27] 2015 Real-time digital
simulator (RTDS®)

Find best online ML
techniques for SG

[25] 2017 Kyoto2006 Find the best online ML
technique for computer networks

[20] 2017 SG simulated scenarios
Test resources for online ML

technique for SG

[17] 2019 KDD Cup 99 and
UNSW-NB15

Compare online ML techniques
for IoT

[29] 2021 SEA, KDD
and ANSWEM

Compare online ML techniques
for computer networks

[30] 2021 RBF, UNSW-NB15,
NSL-KDD and ISCX

Compare online ML techniques
for computer networks

[26] 2021 CICIDS 2018
Compare online ML techniques

for computer networks

We also note that there is a shortage of IDS works that deal with online ML using real
CPS datasets. The work [27] was only limited to comparing online ML algorithms and
it did not use a public CPS dataset. The work [27] used a not public realistic dataset of
smart grid technology and compared the performance of the online and offline approaches
based on the kappa statistics and execution time of the algorithm. Our article builds on
and extends this analysis by being the first to use a bigger variety of public CPS datasets
for comparing the performance of online and offline learning techniques using extra and
more appropriate metrics, like F1-score and run-time per instance.

4. CPS Related Datasets

Several datasets are widely used in IDS research, such as KDD Cup [10], CICIDS [12],
UNSW-NB15 [13], and SUTD-IoT [31]. They are often cited in the literature, but these
datasets are only based on classic IT networks and, as such, they are not representative of
the traffic in industrial facilities networks. Therefore, they are not suitable for building or
evaluating an IDS that operates with CPSs.

Seven specific CPS datasets can be seen in Table 2 and the percentage of samples that
represent attacks, known as balance. The Secure Water Treatment (SWaT) [3] and BATtle of
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the Attack Detection ALgorithms (BATADAL) [32] datasets are related to large-scale water
treatment. The Morris datasets are related to Industrial Control System (ICS) and they are
analyzed by Hink et al. [33], Morris and Gao [34], and Morris et al. [35]. ERENO is a Smart
Grid (SG) dataset [22]. Below we describe these datasets in detail.

Table 2. CPS datasets profile.

Dataset Attack
Types

Number of
Samples Attributes Balance

(% Attack Class)

SWaT 1 946,719 51 5.77%
BATADAL 14 13,938 43 1.69%
Morris-1 40 76,035 128 77.85%

Morris-3 gas 7 97,019 26 36.96%
Morris-3 water 7 236,179 23 27.00%

Morris-4 35 274,628 16 21.87%
Ereno 7 5,750,000 69 6.60%

The SWaT dataset [3] was created for specific studies in the CPS area. It is available
from the iTrust Lab website and was generated from an actual CPS for a modern six-stage
water treatment system. In total, it contains 946,722 samples, each with 53 attributes
collected from sensors and actuators in 11 days. The attack models of this dataset comprise
several variations of fake data injection. In summary, the attacker captures the network
messages to manipulate their values. Then, the tampered packets are transmitted to the
PLCs. All attacks succeeded. All the attacks on SWaT dataset appear during the last 4 days
of data collection—which corresponds to approximately 1

3 of the samples. As can be seen
in Equations (2)–(4), precision, recall, and F1-score can only be defined in the presence of
attacks—so that TP, FP, and FN are not all zero. Thus, for SWaT, those metrics can only be
computed for the final third of the dataset.

Another dataset, known by the academic competition BATADAL [32], was created to
test attack detection algorithms in CPS water distribution systems. The dataset consisted of
a network of 429 pipes, 388 junctions, 7 tanks, 11 hydraulic pumps, 5 valves, and 1 reservoir.
In total, there are nine PLCs to control the status of the valves (open or closed), the inlet
pressure, and the outlet pressure of the pumps, as well as the flow of water. It contains
13,938 samples, 43 attributes, and 14 attack types, and it is available for the academic
community. The attacks on BATADAL dataset only appear during the last 1

5 of the dataset,
when their occurrences must be identified in the competition. Therefore, like with the
SWaT dataset, precision, recall, and F1-score can only be defined after the occurrence of
these attacks.

Morris-1 [33] consists of a set of supervisory controls interacting with various SG
devices along with network monitoring devices. The network consists of four circuit
breakers controlled by smart relays, which are connected to a switch substation, through a
router, to the supervisory control and the network acquisition system. The attack scenarios
were built on the assumption that the attacker already has access to the substation network
and can inject commands from the switch. In total, 76,035 samples were collected containing
128 attributes and four attacks.

The datasets on Morris-3 [34] were captured using network data logs that monitor and
store MODBUS traffic from an RS-232 connection. Two laboratory-scale SCADA systems
of a pipeline network (dataset Morris-3 gas) and a water storage tank (dataset Morris-3
water) were used. The Wireshark program was used to capture and store network traffic
during normal and under-attack operations. The datasets have 97,019 samples for the gas
system (Morris-3 gas) and 236,179 samples for the water system (Morris-3 water), with
26 and 23 attributes, respectively, and seven attacks each.

The Morris-4 dataset [35] also refers to a pipeline network simulation. This dataset has
the same origin as the Morris-3 gas, but it has improvements such as 35 labeled random
cyberattacks simulated in a virtual gas network. The virtual environment was chosen



Energies 2023, 16, 6058 7 of 18

because it allows other experiments without the need to have access to physical devices
and the possibility of expansion. The dataset has 274,628 samples with 16 attributes.

ERENO [22] was developed as a synthetic traffic generation framework based on the
IEC-61850 [36] standard for SG. Its development was motivated by the absence of specific
security datasets for SG. Therefore, the objective is to provide a reference for research in
the area of intrusion detection. The dataset starts with the SG generation by means of
simulations using the Power Systems Computer-Aided Design (PSCAD) tool. This allows
the generation of realistic data from the Generic Object Oriented Substation Events (GOOSE)
and Sampled Value (SV) protocols. In the end, the final dataset is composed of samples
from seven different Use Cases (scenarios) in sequence (i.e., each at a different time),
corresponding to seven different new sequential attacks, as well as normal operations.

5. Material and Methods

We employ the Waikato Environment for Knowledge Analysis (WEKA) framework
for offline ML experiments [37]. We selected 5 popular classifier algorithms (Section 2),
however, for conciseness, in the remainder of this paper, only the results of the best and
worst performing classifiers in terms of F1-score are included in the graphs. The best and
worst classifiers in F1-score for each dataset are shown in Table 3.

Table 3. The best and worst offline ML classifiers in terms of F1-score.

Dataset Best Worst

SWaT Random Forest Naive Bayes
BATADAL REPTree Random Tree

ERENO REPTree Naive Bayes
Morris-1 Random Forest Naive Bayes

Morris-3 gas J48 Naive Bayes
Morris-3 water REPTree Naive Bayes

Morris-4 Random Tree Naive Bayes

To analyze online ML techniques we employ the Massive Online Analysis (MOA)
framework, an environment that includes techniques for online learning from evolving data
streams and scaling up the implementation of techniques to real-world dataset sizes [19].
We selected 3 classifier algorithms (Section 2): the Naive Bayes because is available on both
online and offline ML techniques; the Hoeffding Tree because of its vast use in the literature
(described in Section 3); and the Hoeffding Adaptive Tree which is an evolution of the HT
with better metrics. All of the online ML were executed within the prequential method, so
the time spent on training and testing can not be divided.

The classification metrics for all online and offline classifiers were (Figure 2) accuracy,
precision, recall, and F1-score. The data regarding CPU time and consumed memory are
collected at the end of the processing of the entire dataset. Both online and offline techniques
are assessed with binary classification, that is, classify only whether the sample belongs to
the normal class or any attack class (without identifying the attack class specifically).

All experiments were performed on a computer with eight 2.80 GHz CPU cores and
32 GB of RAM. Based on the literature [22], the offline classifiers were executed with
a 50/50 split between training and testing. This parameter does not apply to online
techniques. Figure 2 shows the methodology for the experiments with both online and
offline techniques. Similar to many other studies on applications of ML techniques, a single
split test was used, and the statistical significance of our methodology relies on the large
size of each dataset and not on repeating the experiments with different seeds.
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Figure 2. Methodology used in our evaluation of offline and online ML methods.

6. Results and Discussion

The experiments described in this section aim to compare the online and offline ML
techniques for IDS using CPS datasets described in Section 4 based on the metrics and
classifiers listed in Section 2, following the methodology presented in Section 5. This section
begins with a concise summary of our findings (Section 6.1), followed by an in-depth
analysis of the results and their implications (Section 6.2).

6.1. Summary of Findings

We first present the online classifiers performance over time (Section 6.2.1). Among
the online classifiers, the HAT classifier was selected as a reference classifier for further
comparison because of its good performance. Nevertheless, the study indicates that
offline ML classifiers generally perform better than online classifiers. The discrepancy in
performance is more pronounced in unbalanced datasets like BATADAL and Morris-4,
which appear more challenging for online methods, suggesting that they struggle with a
lack of representative data during the initial learning (training) phase.

Next, in Section 6.2.1, we provide a comparative analysis of offline and online classi-
fiers, highlighting key performance metrics. We emphasize the performance differences
across various datasets and explain the implications of these differences. Our findings
indicate that the offline decision tree classifiers generally outperform the HAT online ML,
primarily because the former uses the complete dataset for learning and is not limited by
time and memory resources.

Since the response time to detect attacks is important, we examine the execution time
of each technique in Section 6.2.2, addressing the balance between the superior metrics of
offline classifiers and the speed of online classifiers. We show that while offline classifiers
may yield better detection (superior F1-scores), online classifiers provide the advantage of
faster learning times.
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We also evaluate the classifiers’ adaptability to new attack occurrences in Section 6.2.3,
simulating zero-day attacks on the ERENO dataset. Our study revealed that the best offline
classifier struggled to detect new, unknown attacks (zero-day attacks). In particular, it
was not successful in identifying new attacks when trained on datasets for different use
cases. Conversely, the online HAT classifier demonstrated better performance in handling
zero-day attacks, suggesting superior adaptability to novel threats.

We present and discuss our detailed results in Section 6.2.

6.2. Detailed Analysis
6.2.1. Online Classifiers’ Metrics over Time

We can gain insight into the performance of online classifiers by studying how their
performance varies over time during the tests. The graphs in Figures 3–9 show the evolution
of the F1-score of the classifiers for the sequence of samples (i.e., over time) using the
reference classifier (HAT). The best and worst offline classifiers in F1-score are also shown
for comparison. The worst of the online ML is not shown because of the much worse result
when compared with the worst offline ML. Another reason for not using the worst offline
is the excess of data in the graphics that would complicate the analysis. The percentages
of FN and FP in the figures (FN f igure and FPf igure) are extracted from the HAT classifier
calculated by Equations (5) and (6), respectively. It is a jumping window where the
FNinterval and FPinterval are the number of errors (FN and FP) present in the interval of
datasetsize/100 samples. They are presented on the secondary vertical axis to allow the
identification of bursts of classification errors. The first vertical axis on the left denotes
F1-score (between 0 and 1) for HAT online classifiers.

FN f igure =
FNinterval

FNtotal + FPtotal
(5)

FPf igure =
FPinterval

FPtotal + FNtotal
(6)

Figure 3. SWaT’s F1-score evolution through the samples. The metrics of F1-score, recall, and
precision appear only after attacks start, that is, only after sample 492,284.
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Figure 4. BATADAL’s F1-score evolution through the samples. The metrics of F1-score, recall, and
precision appear only after attacks start, that is, only after sample 10,578.

Figure 5. ERENO’s F1-score evolution through the samples; attacks are distributed throughout.

Figure 6. Morris-1’s F1-score evolution through the samples; attacks are distributed throughout.
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Figure 7. Morris-3 gas’s F1-score evolution through the samples.

Figure 8. Morris-3 water’s F1-score evolution through the samples.

Figure 9. Morris-4’s F1-score evolution through the samples.

Figure 3 shows the results obtained with the SWaT dataset. Despite more FN peaks,
overall there are 1914 (58.3%) FPs and 1369 (41.7%) FNs. The total number of errors
represents 0.34% of the samples in the test. By the end of the experiment, HAT had an
F1-score 2.77% below the result obtained by RF.

Figure 4 shows the results for the BATADAL dataset. In total, HAT had 201 errors
throughout the experiment: FP = 20 and FN = 181. That indicates that the HAT model was
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not able to learn to identify the occurrence of the attacks. The total errors represent 1.44%
of the samples, and the attacks are present in 1.69% of the samples. The HAT F1-score at
the end of the experiment is 37% below the F1-score obtained by ReT.

In Figure 5, we see that the ERENO dataset has attacks distributed along the entire
range of samples. The 1070 errors obtained with HAT are divided into 516 FPs and 554 FNs.
The total number of errors represents 0.018% of the samples in the dataset. The HAT
F1-score at the end of the experiment is 0.11% below the F1-score obtained with ReT.

Figure 6 shows that, in the Morris-1 dataset, HAT had a total of 14,202 errors: 6214 of FPs
and 7988 of FNs. The total number of errors represents 18.67% of the samples, which is
substantially higher than the results obtained with the previous datasets. By the end of the
experiment, HAT had an F1-score 6.33% below the F1-score obtained with RF.

In Figure 7, we note that HAT had a total of 1074 errors in the Morris-3 gas dataset:
245 FPs and 829 FNs. The total number of errors represents 1.1% of the samples in the
experiment, which is in line with most of the datasets in this evaluation. HAT’s F1-score at
the end of the experiment is 0.49% below the result obtained by J48.

For the Morris-3 water dataset (Figure 8), HAT had a total of 4116 errors: 2007 FPs and
2109 FNs. This represents 1.74% of the samples in the dataset. By the end of the experiment,
HAT had an F1-score 1.63% below that of ReT.

In Figure 9, HAT had a total of 45,404 errors the Morris-4 dataset: 3149 FPs and
42,255 FNs, corresponding to errors in 15.38% of the samples. In particular, the significant
number of FNs indicate that HAT had difficult detecting attacks, classifying most of them
as normal. HAT had an F1-score 51.32% below the result obtained by RaT at the end of
the experiment.

Through Figures 3–9, we noticed the offline decision tree classifiers had better results
than the Hoeffding Adaptive Tree online ML because their learning is performed with the
complete dataset and without the restriction of time and memory resources. On average,
the best offline ML F1-score classifiers outperformed the best online ML F1-score classifier
(HAT) by 3.17% in accuracy, 4.38% in precision, 14.81% in recall, and 12.08% in F1-score,
while the difference in accuracy is relatively small, we notice that the F1-score, which
depends on other metrics (see Equations (1)–(4)), results in a particularly large difference,
as can be noted in Figure 10. So, the accuracy is not a good metric for this evaluation,
because of the unbalanced datasets (with one class having significantly more instances
than the others), the small number of attacks used, as can be seen in Table 2. The use of
F1-score is the most suitable to identify the differences in the classifiers’ performance in
these unbalanced cases.

Figure 10. Comparison of best offline algorithm and online reference (HAT) in terms of F1-score,
recall, and precision for all datasets.

From Figure 10, we can see the differences between the online and offline ML average
F1-scores (yellow line). The Morris-4 and BATADAL datasets show the largest performance
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differences (55% and 20%, respectively), indicating that these two datasets are the most dif-
ficult for the online ML methods. The Morris-1 and SWaT datasets show smaller differences
(6% and 5%), while the remaining show no significant difference (less than 2%).

Figure 11 shows the evolution of the HAT F1-score results each datasets as more and
more instances (samples) are processed; we show a percentage of instances because each
dataset has a different number of samples. The worst result was verified in BATADAL,
followed by Morris-4, Morris-1, Morris-3 water, SWaT, Morris-3 gas, and ERENO. One of
the reasons BATADAL has such bad results is the lack of attacks during most of the initial
time. As the dataset is unbalanced, the model does not have enough samples to learn about
the attacks.

Figure 11. HAT F1-score of all datasets.

6.2.2. Run Time Performance

As mentioned above, intrusion detection must be performed quickly. Figure 12
summarizes the time it took for offline and online classifiers for each dataset. Overall, the
dataset size (number of instances) is directly related to the amount of time spent by both
offline ML and online ML. To isolate that factor, we report the average run time spent per
instance (log scale) to compare the classifiers for the different datasets.

Figure 12. Offline and online classifiers’ average run time per instance.

In our study, we evaluated various offline classifiers using different datasets, focusing
on their performance in terms of F1-score. We found that the top-performing classifiers
exhibited an average training time of 530 µs per instance and an average test time of
40.6 µs per instance. This stark difference between training and testing times indicates that
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the majority of the computational effort in offline classifiers is spent during the training
phase, which is approximately 13 times slower than the testing phase. During training,
the Random Tree, REPTree, J48, and Random Forest classifiers (the best offline models,
as can be seen in Table 3) invest time in generating decision trees to build the learned
model. However, the Naive Bayes classifier demonstrates a faster training time compared
to the others since it focuses on generating and calculating probabilities for assigning
input features to specific classes. It is worth noting that in all models, the testing phase
is generally quicker than the training phase as it primarily involves the application of a
decision rule to assign inputs to their respective classes. These findings shed light on the
time distribution and computational characteristics of the evaluated classifiers, providing
insights into their practical usage and efficiency in real-world scenarios.

Therefore, while the best offline classifiers in terms of F1-score had an average of 0.93,
0.12 better than online HAT classifier F1-score, its learning time per instance is 9.78 times
larger than that of HAT. So, there is a trade-off between the best metrics of offline classifiers
and the faster time of online classifiers. On the other hand, we must comment the delay
problems that might happen because of the labeling (Figure 1). If the labeling process
has problems, a bigger delay must be inserted after the arrival of the following samples.
These malfunctioning might compromise the online ML real-time response and compromise
the entire process.

6.2.3. Adaptability to New Attack Occurrences

To compare the performance of online and offline ML techniques, in terms of adapt-
ability to new attacks, an experiment was carried out in WEKA with the ERENO dataset
and its attacks’ Use Cases (UC) in sequence. More specifically, the offline REPTree classifier
was used to train six models using six “cumulative” training datasets, each referring to
a different attack UC, named UC1, UC1-2, UC1-3, UC1-4, UC1-5, and UC1-6. Here, UC1
denotes a training dataset containing only samples from the use case number one, while
UC1-X denotes a dataset comprising samples from all UCs from 1 to X. The test is per-
formed on samples of the following X + 1 UC. Each of the six models was then evaluated
using, respectively, UC2, UC3, UC4, UC5, UC6, and UC7. The goal of this experiment was
to simulate the behavior of the classifiers in handling zero-day attacks (i.e., showing how
capable an IDS is of detecting an unknown attack based on the training it received on other
attacks). Figure 13 shows the F1-score evolution of the offline REPTree classifier in com-
parison to the performance of the online HAT classifier executed with the described UCs.
The attacks found on each UC are as follows: UC1, Random Replay Attacks; UC2, Inverse
Replay Attacks; UC3, Masquerade Attacks-Outage; UC4, Masquerade Attacks-Equipment
Damage; UC5, Random Message Injection attacks; UC6, High-Status Number attacks; and
UC7, High-Rate Flooding Attack.

Figure 13. ERENO: cumulative F1-score; best offline (RepTree) and online (HAT) classifiers.
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The presence of zero-day attacks harmed the offline classifier’s performance, especially
for cases UC1/UC2 (trained on UC1 and tested on UC2), UC1-2/UC3, UC1-3/UC4, and
UC1-4/UC5. In all those cases, the REPTree, offline’s best classifier in F1-score for this
dataset was not able to detect new attacks, as it cannot adapt to changes, which was
already expected due to the offline ML characteristic. In the last two cases, UC1-5/UC6
and UC1-6/UC7, the REPTree classifier had good F1-score results, due to the similarities
between the last two attacks, UC6 and UC7, and the previous five attack UCs. One of
the experiments carried out with this objective uses the Leave-One-Out approach, where
training is performed with all Use Cases minus the one that will be used in the test.
In Table 4, the values in red show the conjunction between training and testing of the UCs
where the accuracy was below the Majority Class and with a low F1-score, the values in
green show the conjunction between training and testing where the accuracy was higher
than the Majority Class and with high F1-score. The metrics where there is a division by
zero in Equations (2) and (4) are shown as “Undef.”.

Table 4. Leave-One-Out test. In red, performance values for the UCs where the accuracy was below
the Majority Class and with a low F1-score. In green, performance values for the UCs where the
accuracy was above the Majority Class and with a high F1-score.

Leave One Out Accuracy Precision Recall F1-score TP TN FP FN

Random Replay 99.09% 100.00% 90.46% 94.99% 70,560 742,794 0 7440
Inverse Replay 98.66% 100.00% 73.46% 84.70% 41,397 1,057,800 0 14,955
Masquerade Outage 95.58% 100.00% 0.46% 0.92% 160 742,794 0 34,327
Masquerade Equip. Damage 95.52% Undef. 0.00% Undef. 0 742,794 0 34,839
Message Injection 90.50% 100.00% 99.94% 99.97% 19 742,794 0 77,981
High-Status Number 99.99% 100.00% 99.94% 99.97% 77,950 742,794 0 50
High-Rate Flooding 99.69% 93.90% 100.00% 96.86% 37,144 740,383 2411 0

As shown in Table 4, the Masquerade–Outage, Masquerade–Equipment Damage, and
Random Message Injection attacks (UC3, UC4, and UC5, respectively) are not identified by
the offline classifier trained with any other UC. These attacks are also pointed out by [22] as
the most difficult to detect. The detection of Inverse Replay attacks, UC2, was moderately
successful while Random Replay, High-Status Number, and High-Rate Flooding Attacks
(UC1, UC6, and UC7, respectively) are easily identified by training with other UCs.

To complement the analysis and find an individual relationship between the Use
Cases, another experiment was performed using only the F1-score metric. As can be seen
in Table 5, all UC combinations for training and testing were tested. The same conventions
(color scheme and Undef.) from Table 4 were used. It can be seen that attacks from UC1
(Random Replay) are easily detected by training the model with data from both UC2 and
UC7 (Inverse Replay Attack and High-Rate Flooding Attack, respectively). Attacks from
UC2 are easily detected with models trained on UC7, meaning that the Inverse Replay
Attacks can be identified by models for the High-Rate Flooding Attack. Similarly, the High-
Rate Flooding Attack (UC6) has a strong relationship with the Inverse Replay Attacks
(UC2) and Random Message Injection attacks (UC5). Also, the High-Rate Flooding
Attack (UC7) has a strong relationship with the Inverse Replay Attacks (UC2) and the
Masquerade–Outage (UC3). Hence, we can conclude that the good results obtained by
REPTree on UC6 and UC7, in Figure 12, happen because of their correlation with the attacks
UC2/UC5 and UC2/UC3, respectively.
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Table 5. One-by-one Use Cases test with REPTree F1-score metric. In red, performance values for the
UCs where the accuracy was below the Majority Class and with a low F1-score. In green, performance
values for the UCs where the accuracy was above the Majority Class and with a high F1-score.

Train/Test Random
Replay

Inverse
Replay

Masquerade
Outage

Masquerade
Equip. Damage

Message
Injection

High-Status
Number

High-Rate
Flooding

Random Replay F1-score 21.82% Undef. Undef. Undef. 13.42% 28.99%
Inverse Replay 94.50% F1-score 7.54% Undef. 0.07% 99.83% 96.86%
Masquerade Outage 62.23% 30.05% F1-score Undef. 33.68% 60.05% 100.00%
Masquerade Equip. Damage 95.52% Undef. Undef. F1-score 0.03% 66.66% Undef.
Message Injection Undef. Undef. Undef. Undef. F1-score 100.00% Undef.
High-Status Number Undef. Undef. Undef. Undef. 40.06% F1-score Undef.
High-Rate Flooding 93.38% 65.28% 14.82% Undef. 2.75% 13.58% F1-score

7. Conclusions

The rapidly growing integration of CPS in critical industries underscores an urgent
need for effective intrusion detection. By evaluating various online and offline machine
learning techniques for intrusion detection in the CPS domain, this study reveals that:
(i) when known signatures are available, offline techniques present higher precision, recall,
accuracy, and F1-score, whereas (ii) for real-time detection online methods are more suitable,
as they learn and test almost 10 times faster. Furthermore, while offline ML’s robust
classification metrics are important, the adaptability and real-time responsiveness of online
classifiers cannot be overlooked. Thus, a combined approach may be key to effective
intrusion detection in CPS scenarios.

The implications of these findings for the field of CPS security and intrusion detection
are twofold. First, they highlight the potential for conducing future research to reach a more
flexible and robust CPS security mechanism that leverages the strengths of both offline and
online techniques. Second, they reinforce the value of machine learning as a powerful tool
in the ever-evolving landscape of CPS security.

Our future research will explore new classification techniques, analyze adaptability
to emerging threats, and continue to investigate the merits and limitations of online and
offline ML techniques. These insights not only contribute to current understanding but also
guide the next steps in enhancing CPS security and intrusion detection.
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